如果看過海鷗的飛翔,一定會為了牠們可以輕易的在空中停留飛翔讚嘆,那樣的飛行幾乎不費力。現在有公司把海鷗的飛行能力帶到人造的鳥類機器人上了。
利用仿海鷗外型跟傳動方式,在飛行的時候能像海鷗一樣改變翅膀的取向,讓氣流產生非對稱性的流動,也加上大的尾翼來穩定控制方向,同時因為大的活動翅膀,也更能利用周圍的氣流來滑行。這樣栩栩如生的人造海鷗模擬生物的航空設計,因為更能利用氣流跟自然演化出的流線設計,或許有一天可以發揮更多傳統固定機翅跟螺旋槳所達不到的效率。
本文原發表於科學影像Scimage
如果看過海鷗的飛翔,一定會為了牠們可以輕易的在空中停留飛翔讚嘆,那樣的飛行幾乎不費力。現在有公司把海鷗的飛行能力帶到人造的鳥類機器人上了。
利用仿海鷗外型跟傳動方式,在飛行的時候能像海鷗一樣改變翅膀的取向,讓氣流產生非對稱性的流動,也加上大的尾翼來穩定控制方向,同時因為大的活動翅膀,也更能利用周圍的氣流來滑行。這樣栩栩如生的人造海鷗模擬生物的航空設計,因為更能利用氣流跟自然演化出的流線設計,或許有一天可以發揮更多傳統固定機翅跟螺旋槳所達不到的效率。
本文原發表於科學影像Scimage
本文與 研華科技 合作,泛科學企劃執行。
每次 NVIDIA 執行長黃仁勳公開發言,總能牽動整個 AI 產業的神經。然而,我們不妨設想一個更深層的問題——如今的 AI 幾乎都倚賴網路連線,那如果哪天「網路斷了」,會發生什麼事?
想像你正在自駕車打個盹,系統突然警示:「網路連線中斷」,車輛開始偏離路線,而前方竟是萬丈深谷。又或者家庭機器人被駭,開始暴走跳舞,甚至舉起刀具向你走來。
這會是黃仁勳期待的未來嗎?當然不是!也因為如此,「邊緣 AI」成為業界關注重點。不靠雲端,AI 就能在現場即時反應,不只更安全、低延遲,還能讓數據當場變現,不再淪為沉沒成本。
邊緣 AI,乍聽之下,好像是「孤單站在角落的人工智慧」,但事實上,它正是我們身邊最可靠、最即時的親密數位夥伴呀。
當前,像是企業、醫院、學校內部的伺服器,個人電腦,甚至手機等裝置,都可以成為「邊緣節點」。當數據在這些邊緣節點進行運算,稱為邊緣運算;而在邊緣節點上運行 AI ,就被稱為邊緣 AI。簡單來說,就是將原本集中在遠端資料中心的運算能力,「搬家」到更靠近數據源頭的地方。
那麼,為什麼需要這樣做?資料放在雲端,集中管理不是更方便嗎?對,就是不好。
第一個不好是物理限制:「延遲」。
即使光速已經非常快,數據從你家旁邊的路口傳到幾千公里外的雲端機房,再把分析結果傳回來,中間還要經過各種網路節點轉來轉去…這樣一來一回,就算只是幾十毫秒的延遲,對於需要「即刻反應」的 AI 應用,比如說工廠裡要精密控制的機械手臂、或者自駕車要判斷路況時,每一毫秒都攸關安全與精度,這點延遲都是無法接受的!這是物理距離與網路架構先天上的限制,無法繞過去。
第二個挑戰,是資訊科學跟工程上的考量:「頻寬」與「成本」。
你可以想像網路頻寬就像水管的粗細。隨著高解析影像與感測器數據不斷來回傳送,湧入的資料數據量就像超級大的水流,一下子就把水管塞爆!要避免流量爆炸,你就要一直擴充水管,也就是擴增頻寬,然而這樣的基礎建設成本是很驚人的。如果能在邊緣就先處理,把重要資訊「濃縮」過後再傳回雲端,是不是就能減輕頻寬負擔,也能節省大量費用呢?
第三個挑戰:系統「可靠性」與「韌性」。
如果所有運算都仰賴遠端的雲端時,一旦網路不穩、甚至斷線,那怎麼辦?很多關鍵應用,像是公共安全監控或是重要設備的預警系統,可不能這樣「看天吃飯」啊!邊緣處理讓系統更獨立,就算暫時斷線,本地的 AI 還是能繼續運作與即時反應,這在工程上是非常重要的考量。
所以你看,邊緣運算不是科學家們沒事找事做,它是順應數據特性和實際應用需求,一個非常合理的科學與工程上的最佳化選擇,是我們想要抓住即時數據價值,非走不可的一條路!
知道要把 AI 算力搬到邊緣了,接下來的問題就是─邊緣 AI 究竟強在哪裡呢?它強就強在能夠做到「深度感知(Deep Perception)」!
所謂深度感知,並非僅僅是對數據進行簡單的加加減減,而是透過如深度神經網路這類複雜的 AI 模型,從原始數據裡面,去「理解」出更高層次、更具意義的資訊。
以研華科技為例,旗下已有多項邊緣 AI 的實戰應用。以工業瑕疵檢測為例,利用物件偵測模型,快速將工業產品中的瑕疵挑出來,而且由於 AI 模型可以使用同一套參數去檢測,因此品管上能達到一致性,減少人為疏漏。尤其在高產能工廠中,檢測速度必須快、狠、準。研華這套 AI 系統每分鐘最高可處理 8,000 件產品,替工廠節省大量人力,同時確保品質穩定。這樣的效能來自於一台僅有膠囊咖啡機大小的邊緣設備—IPC-240。
此外,在智慧倉儲場域,研華與威剛合作,研華與威剛聯手合作,在 MIC-732AO 伺服器上搭載輝達的 Nova Orin 開發平台,打造倉儲系統的 AMR(Autonomous Mobile Robot) 自走車。這跟過去在倉儲系統中使用的自動導引車 AGV 技術不一樣,AMR 不需要事先規劃好路線,靠著感測器偵測,就能輕鬆避開障礙物,識別路線,並且將貨物載到指定地點存放。
當然,還有語言模型的應用。例如結合檢索增強生成 ( RAG ) 跟上下文學習 ( in-context learning ),除了可以做備忘錄跟排程規劃以外,還能將實務上碰到的問題記錄下來,等到之後碰到類似的問題時,就能詢問 AI 並得到解答。
你或許會問,那為什麼不直接使用 ChatGPT 就好了?其實,對許多企業來說,內部資料往往具有高度機密性與商業價值,有些場域甚至連手機都禁止員工帶入,自然無法將資料上傳雲端。對於重視資安,又希望運用 AI 提升效率的企業與工廠而言,自行部署大型語言模型(self-hosted LLM)才是理想選擇。而這樣的應用,並不需要龐大的設備。研華的 SKY-602E3 塔式 GPU 伺服器,體積僅如後背包大小,卻能輕鬆支援語言模型的運作,實現高效又安全的 AI 解決方案。
但問題也接著浮現:要在這麼小的設備上跑大型 AI 模型,會不會太吃資源?這正是目前 AI 領域最前沿、最火熱的研究方向之一:如何幫 AI 模型進行「科學瘦身」,又不減智慧。接下來,我們就來看看科學家是怎麼幫 AI 減重的。
當硬體資源有限,大模型卻越來越龐大,「幫模型減肥」就成了邊緣 AI 的重要課題。這其實跟圖片壓縮有點像:有些畫面細節我們肉眼根本看不出來,刪掉也不影響整體感覺,卻能大幅減少檔案大小。
模型量化的原理也是如此,只不過對象是模型裡面的參數。這些參數原先通常都是以「浮點數」表示,什麼是浮點數?其實就是你我都熟知的小數。舉例來說,圓周率是個無窮不循環小數,唸下去就會是3.141592653…但實際運算時,我們常常用 3.14 或甚至直接用 3,也能得到夠用的結果。降低模型參數中浮點數的精度就是這個意思!
然而,量化並不是那麼容易的事情。而且實際上,降低精度多少還是會影響到模型表現的。因此在設計時,工程師會精密調整,確保效能在可接受範圍內,達成「瘦身不減智」的目標。
建立一個 AI 模型,其實就是在搭建一整套類神經網路系統,並訓練類神經元中彼此關聯的參數。然而,在這麼多參數中,總會有一些參數明明佔了一個位置,卻對整體模型沒有貢獻。既然如此,不如果斷將這些「冗餘」移除。
這就像種植作物的時候,總會雜草叢生,但這些雜草並不是我們想要的作物,這時候我們就會動手清理雜草。在語言模型中也會有這樣的雜草存在,而動手去清理這些不需要的連結參數或神經元的技術,就稱為 AI 模型的模型剪枝(Model Pruning)。
模型剪枝的效果,大概能把100變成70這樣的程度,說多也不是太多。雖然這樣的縮減對於提升效率已具幫助,但若我們要的是一個更小幾個數量級的模型,僅靠剪枝仍不足以應對。最後還是需要從源頭著手,採取更治本的方法:一開始就打造一個很小的模型,並讓它去學習大模型的知識。這項技術被稱為「知識蒸餾」,是目前 AI 模型壓縮領域中最具潛力的方法之一。
想像一下,一位經驗豐富、見多識廣的老師傅,就是那個龐大而強悍的 AI 模型。現在,他要培養一位年輕學徒—小型 AI 模型。與其只是告訴小型模型正確答案,老師傅 (大模型) 會更直接傳授他做判斷時的「思考過程」跟「眉角」,例如「為什麼我會這樣想?」、「其他選項的可能性有多少?」。這樣一來,小小的學徒模型,用它有限的「腦容量」,也能學到老師傅的「智慧精髓」,表現就能大幅提升!這是一種很高級的訓練技巧,跟遷移學習有關。
舉個例子,當大型語言模型在收到「晚餐:鳳梨」這組輸入時,它下一個會接的詞語跟機率分別為「炒飯:50%,蝦球:30%,披薩:15%,汁:5%」。在知識蒸餾的過程中,它可以把這套機率表一起教給小語言模型,讓小語言模型不必透過自己訓練,也能輕鬆得到這個推理過程。如今,許多高效的小型語言模型正是透過這項技術訓練而成,讓我們得以在資源有限的邊緣設備上,也能部署愈來愈強大的小模型 AI。
但是!即使模型經過了這些科學方法的優化,變得比較「苗條」了,要真正在邊緣環境中處理如潮水般湧現的資料,並且高速、即時、穩定地運作,仍然需要一個夠強的「引擎」來驅動它們。也就是說,要把這些經過科學千錘百鍊、但依然需要大量計算的 AI 模型,真正放到邊緣的現場去發揮作用,就需要一個強大的「硬體平台」來承載。
像研華的 SKY-602E3 塔式 GPU 伺服器,就是扮演「邊緣 AI 引擎」的關鍵角色!那麼,它到底厲害在哪?
一、核心算力
它最多可安裝 4 張雙寬度 GPU 顯示卡。為什麼 GPU 這麼重要?因為 GPU 的設計,天生就擅長做「平行計算」,這正好就是 AI 模型裡面那種海量數學運算最需要的!
你想想看,那麼多數據要同時處理,就像要請一大堆人同時算數學一樣,GPU 就是那個最有效率的工具人!而且,有多張 GPU,代表可以同時跑更多不同的 AI 任務,或者處理更大流量的數據。這是確保那些科學研究成果,在邊緣能真正「跑起來」、「跑得快」、而且「能同時做更多事」的物理基礎!
二、工程適應性——塔式設計。
邊緣環境通常不是那種恆溫恆濕的標準機房,有時是在工廠角落、辦公室一隅、或某個研究實驗室。這種塔式的機箱設計,體積相對緊湊,散熱空間也比較好(這對高功耗的 GPU 很重要!),部署起來比傳統機架式伺服器更有彈性。這就是把高性能計算,進行「工程化」,讓它能適應台灣多樣化的邊緣應用場景。
三、可靠性
SKY-602E3 用的是伺服器等級的主機板、ECC 糾錯記憶體、還有備援電源供應器等等。這些聽起來很硬的規格,背後代表的是嚴謹的工程可靠性設計。畢竟在邊緣現場,系統穩定壓倒一切!你總不希望 AI 分析跑到一半就掛掉吧?這些設計確保了部署在現場的 AI 系統,能夠長時間、穩定地運作,把實驗室裡的科學成果,可靠地轉化成實際的應用價值。
研華科技攜手八維智能,能幫助企業或機構提供客製化的AI解決方案。他們的技術能力涵蓋了自然語言處理、電腦視覺、預測性大數據分析、全端軟體開發與部署,及AI軟硬體整合。
無論是大小型語言模型的微調、工業瑕疵檢測的模型訓練、大數據分析,還是其他 AI 相關的服務,都能交給研華與八維智能來協助完成。他們甚至提供 GPU 與伺服器的租借服務,讓企業在啟動 AI 專案前,大幅降低前期投入門檻,靈活又實用。
台灣有著獨特的產業結構,從精密製造、城市交通管理,到因應高齡化社會的智慧醫療與公共安全,都是邊緣 AI 的理想應用場域。更重要的是,這些情境中許多關鍵資訊都具有高度的「時效性」。像是產線上的一處異常、道路上的突發狀況、醫療設備的即刻警示,這些都需要分秒必爭的即時回應。
如果我們還需要將數據送上雲端分析、再等待回傳結果,往往已經錯失最佳反應時機。這也是為什麼邊緣 AI,不只是一項技術創新,更是一條把尖端 AI 科學落地、真正發揮產業生產力與社會價值的關鍵路徑。讓數據在生成的那一刻、在事件發生的現場,就能被有效的「理解」與「利用」,是將數據垃圾變成數據黃金的賢者之石!
👉 更多研華Edge AI解決方案
👉 立即申請Server租借
討論功能關閉中。
一年一度、讓你廢到笑出來的搞笑諾貝爾獎,今年在美東時間 9 月 14 日下午 6 點準時直播。
今年的主題為「水」,這次 10 項獲獎都或多或少與「水」有關(但大部分是口水),現在就快讓我們一起來看看今年的得獎快訊,並一起期待後續的個別研究報導吧~
這是一封說明「過去」地質學家與古生物學家,為什麼會有舔化石習慣的「快訊」(發表在期刊上,但被歸類為快訊),這封快訊說了幾個故事,其中最讓我印象深刻的,是「義大利地質之父」的喬瓦尼·阿爾杜伊諾(Giovanni Arduino,1714-1795)用自己的舌頭「品嚐」這些化石,分類出可能是史上第一個「地質時期」
故事的亮點是引用了喬瓦尼·阿爾杜伊諾的研究紀錄,看起來就像是個美食家在品嚐化石。
A 編小學時,曾被老師罰抄生字 100 遍,寫到一半突然懷疑這個字是不是這樣寫,趕緊回頭看前面寫的字,還把課本翻出來看才確定自己沒有寫錯。
上述的情境,稱為「猶昧感」(Jamais Vu),「猶昧感」是「既視感」(Deja Vu)的反義詞,描述人們對熟悉的事物,突然感到陌生,也是這篇論文主要探討的主題。
這研究的笑點在於他的實驗,他們讓受試者一直重複寫同一個字,跟小學被老師罰抄生字一樣。
實驗中,約有三分之二的受試者體驗到「猶昧感」,這些受試者大約在重複 30 次或一分鐘後開始感到異狀。另外,研究也發現平常越容易發生「既視感」的人,也更容易發生「猶昧感」,未來「猶昧感」的相關研究,可能會加深我們對「既視感」的理解。
會招喚骷髏或操縱屍體的死靈法師稱為 Necromancer,而科學家再次中二病發作,把用液壓操控的蜘蛛屍體,稱作 Necrorobotics 死靈機器。
我跟同事討論這種死靈機器,算不算是一種仿生科技?他覺得是,我覺得不是,你們覺得呢?
恩,就是接上各種感應器的物聯網馬桶,能即時檢測使用者的糞便與尿液。這東西最酷的是能「肛門辨識」,只要坐到馬桶上,斯坦福馬桶就能透過肛門的型態,辨識出使用者!
因為這個獎項,我才知道原來每個人的肛門都長得不一樣……謝謝你,搞笑諾貝爾獎。
趣有超也獎學播傳,心擔別,的常正是來過反來起看子句得覺在現你!
你有試過快速把彩虹的顏色順序倒著背,或是把你說話中的每個名詞都倒過來講嗎?大家都知道這超難,但這份研究中的兩位受試著確有著超強「顛倒單字或語句」的能力。
研究對象以西班牙語為母語,他們能在對話中輕鬆地將 banana 念成 ananab,或是將「 basket is fun」念成「nuf si teksab」。研究著重在這兩位有著特殊能力的人,推理、記憶能力是否優於常人,以及大腦灰質、白質比例與一般人(對照組)是否有差別。
大腦如何組織語言一直都是個有趣的研究題目,像是為什麼中文的序順不會響影到閱讀,這也是 A 編跟大家都一樣好奇的。而了解大腦語言是如何形成的,也能推進對於失語症、癡呆症的症狀研究。
俗稱鬼剃頭的「圓禿」(Alopecia areata)不只會頭髮脫落,同時睫毛、眉毛與鼻毛也會脫落,其中,鼻毛脫落會增加得到過敏、呼吸道感染的機率。
由於鼻毛的相關研究非常少,為此,研究者調查 20 具「遺體」的鼻毛數量與長度,並收集相關病史、死往原因…等數據,來評估正常人的鼻毛數量與長度。研究結果顯示,平均每個鼻孔的鼻毛數量約為 120~122 根,左右鼻孔並沒有顯著差異,鼻毛平均長度大約是 1 公分。
日本明治大學教授宮下芳明 (Homei Miyashita)與他的團隊,發現在筷子與吸管上附加微弱電流,會改變食物的味道。
他們發現微弱電流刺激舌頭時,會產生一股「電味」(論文上寫 Electric taste,你說我要怎麼翻比較好) 。這股「電味」味道如何呢?基本上沒有味道(不能啟動味覺細胞),但如果有其他味道存在,例如鹹味(氯化鈉)或鮮味(麩胺酸鈉),電味會讓食物吃起來更鹹或更鮮。
接著,他們發明了連著電線的通電筷子與吸管(看起像整人玩具),證明了通電筷子與吸管確實能在不改變食物味道的情況下,讓人們吃進更少的鹽跟味精。
你覺得上課無聊嗎?多半人都會問答「是」,而這系列研究仔細分析了為什麼上課無聊,且越來越無聊的原因。
你可能會想:「那不就是老師上課很無聊啊,老師不有趣阿。」我只能說你們這樣太沒同理心了,搞不好老師也在想:「教你們真無聊!」
所以,研究者第一個想探討的問題是:「老師如果覺得無聊,會不會讓學生也覺得無聊。」先說結論,不會。
雖然學生不會刻意去了解老師的心情。但如果學生明確感受到老師很無聊,像是死氣沉沉地念課文,學生就會覺得這堂課更無聊,進而影響學習動機與學習成效。某種程度上,研究還是印證了「老師不有趣覺得無聊」這件事,但老師是否在強顏歡笑,這就不得而知了。
另一個問題則是:「是不是想著上課很無聊,就會覺得更無聊?」沒錯,的確是這樣!只要上課前預期這堂課很無聊,那這堂課就會比你預期的還要更無聊!
他們到底在看什麼?眼前一群人停下腳步抬頭看著上方,你一定會跟著將視線移向相同的地方,看看他們到底在看什麼。
沒錯,這就是著名的從眾效應,或稱做群聚效應、羊群效應。這個1969年進行的經典實驗,應該很多人也聽說過。Stanley Milgram、Leonard Bickman、Lawrence Berkowitz 三人組,在紐約的街道上測試要有多少人同時往上看,才能吸引其他人也駐足湊熱鬧。
這個實驗能得獎感覺毫不意外,甚至覺得怎麼現在才得獎!
群聚效應引響甚遠,因為整個社會的運作都養類人與人之間的互動與連結。不管是跟風買東西、參與熱鬧的大型活動、政治意識型態的抉擇等等,都能看到群聚效應影響著人們的身影。
大家都有可能是羊群裡面的羊。
一隻拍翅膀的蝴蝶能讓海的對面產生颶風,那一群在海中游泳的鯷魚呢?他們可能直接影響了洋流與海面的大氣流動。
如果要計算颱風能量或是海洋鹽分的變化,我們通常會考慮海面風速與氣壓,要不然就是洋流、海溫和密度的垂直梯度等等。但這份研究發現,我們或許忽視了大海居民造成的影響。
研究發現只要到了鯷魚的產卵季,當天晚上海面附近海水的垂直混合程度會增加10~100倍。也就是這群游動的小魚們,像是攪拌棒一樣攪混了上層海洋,程度相當於地球物理現象造成的影響,對海溫與營養鹽分布的作用可能比我們想像的還大。
15 組國內外藝術家與團隊,開啟新生命與未來情境的提問、想像與思索
「你是否曾想像,在身體中植入機械,人機融合並化身為賽博格的自己?」
忠泰美術館即將於 9 月 9 日至 2024 年 1 月 28 日推出全新當代藝術展《未來的生命,未來的你─數位、機器與賽博格》(The Future Life, Future You – Digital, Machine and Cyborgs)。延續上檔展覽中以建構城市與文明的基礎「人」出發,由反思擁有肉身的「人類」存在與本質,進一步探問「生命何為」,思考人與科技共構的未來生命情境與議題。本展邀請沈伯丞擔任策展人,匯集來自英、美、法、日、德國與埃及、西班牙、墨西哥、臺灣共 15 組國外內藝術家與團體,帶來 6 組全球首展與 4 組全臺首度亮相的新作,透過 AI 演算、大數據、深偽技術、穿戴裝置、賽博格等科技與藝術的結合創作,映射出藝術家們對未來生命形貌的多元想像。
當 AI 人工智慧、機械穿戴手臂從科幻電影橋段躍入我們的日常生活中,科技改變生活,也逐漸影響了生命的樣貌與演化,生命開始超越人類肉身的物理型態時,我們又該如何去思考未來的生命與生活?忠泰美術館本次邀請沈伯丞擔任策展人,以其長期的藝術計畫「再・創世:智慧生命的衍生型態」研究為基礎,從生命是一個持續發展中、創造中的概念出發,策劃當代藝術展《未來的生命,未來的你─數位、機器與賽博格》,從藝術視角思辨,當科技介入了生活與生命,生物六大分類之外是否還將多出「科技界」?物競天擇「演化論」與科技始終來自於人性的「控制論」交會之下,未來的生命與生活情境又會有怎樣的想像。
沈伯丞表示:「展覽所意欲投射的並非僅是關乎生命的『科技』,更是關乎新科技情境中『生命樣態』的人文思索與美學關懷。」,展覽邀請了 Aiden Faherty、Hassan Ragab、Jake Elwes、JIZAI ARMS project team、Mal Bueno、Markos Kay、Martin Backes、Moon Ribas、Patrick Tresset、Universal Everything、陳乂、陳萬仁、陽春麵研究舍─陳姿尹、莊向峰、黃新、蘇匯宇,國內外共 15 組用創作回應科技浪潮的藝術家與團隊,透過3個子題「流動的生命與身體」、「數位裡的你與數位的它」和「機器、人與賽博格」,引領觀者凝視現場作品,直面新生命與新生命情境的提問、想像與思索。
地球上的生命經歷數十億年的自然演化,形成了如今的物種樣貌,隨著科技的日新月異,無序且隨機的自然演化過程被演算與邏輯控制。隨著科技而流動的生命觀點與身體型態,恰是「人擇」的證明,人與動物、有機體與無機體,現實與虛擬之間的邊界逐漸模糊鬆動,生命與身體的型態也有了更多的解讀。
英國藝術家傑克.艾維斯(Jake Elwes)首度在臺展出的〈Zizi 動起來:深偽變裝烏托邦〉,將深偽技術(deepfake)與酷兒群體結合,從 AI 演算中誕生的變裝皇后們,在如同櫥窗的螢幕中不斷流轉變換軀體與角色,企圖反思人工智慧的族群概念,打破固化的性別與身體定義。臺灣藝術家蘇匯宇的〈The White Waters〉三頻道錄像作品,以「後人類」敘事補述經典傳說《白蛇傳》,從文本中人、蛇異種的身體流動,解構生物界的邊界。埃及建築師哈桑.拉賈(Hassan Ragab)的系列影像,提取人與建築的影像,透過 AI 圖像生成系統 Midjourney、Stable Diffusion 等,將建築從「生活機器」,幻化為能走秀、跳舞的人形「生物活體」。
美術館還將於 11 月中旬加碼開放忠泰企業大廳展區,展出英國藝術團體Universal Everything的知名作品〈變形〉,巨型人形影像,邁著未曾停止的步伐,宛如電影《驚奇4超人》般從石頭、火、水、金屬等自然的元素不斷地演化變形,映照著生命與人類的演化從不止息。
當生命與身體在演化與演算交會時被重新定義,數位維度中對「自我」與「他者」的認知也將有所轉變。
關於人類於數位環境中對「自我」的認定,甫獲得林茲電子藝術獎的臺灣藝術團隊陽春麵研究舍─陳姿尹、莊向峰,於本展中將得獎作品《Inter net》系列延伸出兩組全新現地創作,接續探討 AI 演算中「我」的形象。空間互動裝置〈Inter net – Labeling me〉中,可見 AI 判讀標記、搜尋引擎記錄,以及機器人與觀者「眾包標註」下的「我」的形象。單頻道演算影像裝置〈The Portrait – The Crowd’s Portrait of Me〉與〈The Portrait – My Self-Portrait〉將描述藝術家的文本轉換成特徵向量,以看似雜訊的影像,勾勒出數位足跡中的認知肖像。
陳萬仁作品〈歪腰一下〉,位於美術館天井中,讓觀者以仰望的視角,觀看由藝術家 3D 繪製的人形,將現實去背進行數位縫合,行走於數位時空裡無止盡的空循環與延伸。墨西哥藝術家馬爾.布埃諾(Mal Bueno)全球首次展出的作品〈終曲〉,將與作品互動的觀者形象上傳到數位維度中,直覺呈現數位演算法中的「你」。
當現實生活中的元素與概念轉化成編碼再重新生成,人的意識與選擇,又會如何影響新生命情境?臺灣藝術家黃新的全新創作〈生成速寫:多肉植物園〉即時演算影像裝置,便是將多肉植物由演算法生成速寫畫,以程式的幾何造型來解構日常的場景。陳乂的人造風動模擬裝置〈風場〉,以風量、風向與風的聲音資訊作為採集與實驗項目,將 AI 演算法生成的數據模型匯入機械裝置結合,由蘆葦般的發光體演繹一段模仿自然風吹的搖曳姿態。
以數位人造生命為題,英國藝術家馬科斯.凱(Markos Kay)的〈非生物起源〉,直接在數位環境中生成擁有鮮豔色彩,如同細胞般的新物種,藝術家試圖透過創作生命探詢生命起源。在 TikTok 抖音擁有超過 50 萬粉絲的「Coolacloy」,創作者是來自美國的藝術家艾登.費海提(Aiden Faherty),本次展出的影像作品〈穿越超驗森林之旅〉為藝術家首次於國際間展出的作品,透過 AI 深層學習模型捕捉自然界資訊生成的生態系,讓觀者進入現實與想像無縫融合的《愛麗絲夢遊仙境》。
德國藝術家馬丁.貝克斯(Martin Backes)的擴增實境創作〈我知道什麼?我只是個機器?!〉,讓觀眾透過行動裝置與懸浮在美術館空間內的正圓球形機器人相遇、對話,藝術家試圖透過 AR 擴增實境昭示數位維度裡的新生命型態。
科技趨勢預言家凱文.凱利(Kevin Kelly)曾提出「科技界」的概念,即科技體為生命的第七種型態,而人工智慧的發展,彷彿回應著此概念,預告了人與機器之間的新關係網路。法國藝術家帕特里克.特雷塞特(Patrick Tresset)透過作品〈人類研究 #2─公雞與狐狸等的大虛幻〉,思考著機器、人之間的多重可能性。機器手臂進行素描繪圖,如同人類般觀察、提筆,探索著機器如何學習成人的過程,同時也由此行為反思機器的「創作」是否為創作?是否為「藝術」?
機器學著成為人,而人則試圖將肉體改造為混合機器的「賽博格」。被喻為世界上第一位女賽博格藝術家的西班牙藝術家穆恩.里巴斯(Moon Ribas),通過將地震傳感器植入體內,讓身體與大地的律動結合一體。首次在臺展出的作品〈在蒙塞拉特山等待地震〉為一支雙人舞作,由地球掌控節奏和強度,而藝術家則透過接收地震波動的強弱來詮釋舞曲。日本東京大學實驗室研究計畫的自在肢計畫團隊(JIZAI ARMS project team),則以外掛型態研究開發穿戴式機器人模組《自在肢》,形似電影角色「八爪博士」的穿戴肢,能由使用者自由改變其穿戴型式,試圖探索賽博格社會中,不同「數位賽博格」之間所能發生的互動。
忠泰美術館導入 AI 技術應用 生成語音導覽、展覽主視覺
忠泰美術館持續透過當代藝術展覽及視角回應美術館長期關注的「城市」與「未來」議題,忠泰基金會執行長李彥良表示:「科技帶領著當代生活不停地變動與發展,也改變著人們的生活型態與認知。我們該如何在這樣的環境中找到適應並前進的方式?希望藉由本展所開啟的對話,能提供我們對於近未來想像的素材與方向。」
館方也嘗試於展覽周邊事務中導入 AI 技術應用,包括結合 Bing Image Creator AI 繪圖工具製作的展覽主視覺,以及 AI 聲音生成技術製作的語音導覽等。本展中多件影像創作,忠泰美術館與連續 17 年全球電視銷售第一的三星電子攜手合作,使用擁有 AI 影像升頻技術的 Neo QLED 8K,結合量子 Mini LED 背光與金屬量子點顯色技術,呈現藝術家於數位維度的創作中,新物種、新生命情境的絢麗幻想。《未來的生命,未來的你》從 9 月 9 日展至明年 1 月 28 日,期間將陸續推出展覽系列專題講座、電影與漫畫共享沙龍、專家導覽等多元活動,邀請觀眾一同想像「未來的生命,未來的你」。更多展覽活動與看展優惠資訊,詳見美術館官方網站。
【展覽資訊】
展覽名稱|未來的生命,未來的你─數位、機器與賽博格
展覽期間|2023.09.09(六)-2024.01.28(日)
展覽地點|忠泰美術館、忠泰企業大廳(臺北市大安區市民大道三段178號)
開放時間|週二至週日 10:00-18:00(週一休館);忠泰企業大廳作品展出時間請見官網參觀資訊
參觀資訊|全票 100 元、優待票 80 元(學生、65 歲以上長者、10 人以上團體);身心障礙者與其陪同者一名、12 歲以下兒童免票(優待票及免票須出示相關證件)
週三學生日|每週三憑學生證可當日單次免費參觀
官網|https://jam.jutfoundation.org.tw/exhibition/4337