Loading [MathJax]/extensions/tex2jax.js

0

0
0

文字

分享

0
0
0

斯佩曼誕辰|科學史上的今天:6/27

張瑞棋_96
・2015/06/27 ・1139字 ・閱讀時間約 2 分鐘 ・SR值 512 ・六年級

自古以來,人們總傾向於相信一定有種「生命力」存在,才使得生物與非生物有所區別。不過進入十九世紀之後,隨著科學的進展,越來越多人認為生命其實也是物理與化學作用的結果,就像鐘錶運作一樣,並無特殊之處。「生機論者」與「機械論者」兩派爭論不休,後來主戰場自然轉往生命的起點——胚胎。

德國生物學家盧克斯(Wilhelm Roux)是機械論者,他於 1888 年發表實驗結果,指出青蛙的受精卵一分為二後,若用燒燙的針刺死其中一個細胞,讓剩下另一個細胞繼續分裂下去,最後只會長成半個胚胎。他認為這代表生物就像複雜的機器,早就預備齊全的零件隨著細胞分裂,而散布到應有的位置,長成各種器官。

但盧克斯的師弟德瑞胥(Hans Driesch)在 1892 年所做的實驗卻又大不相同。他在海膽的胚胎細胞分裂成四個時,用力搖晃分開它們(因為沒其它分開細胞的方法)。若按照盧克斯的理論,這四個細胞應該各自發展成四分之一的海膽,但並沒有;它們長成四隻完整的海膽,只是比正常尺寸來得小。因此德瑞胥主張肯定有超乎物理定律的力量,才能讓生命一分為四。

那麼,該如何解釋這兩個看似互相衝突的實驗?結果由同是德國的胚胎學家斯佩曼找出合理的解釋。

-----廣告,請繼續往下閱讀-----
斯佩曼。圖/Wikipedia

1902 年,斯佩曼靈機一動,利用女兒的頭髮將蠑螈的胚胎細胞從中束緊成葫蘆狀,結果有時能長成兩個完整的胚胎,但有時失敗,而失敗的情況都是變成一個近乎完整的胚胎與一個不成形的腹側部,斯佩曼認為這是因為腹側部缺乏「分化物質」。因此他主張分離的胚胎細胞能否長成完整的胚胎,取決於其中是否含有誘導分化的物質;而且分化物質會透過化學訊號影響鄰近的細胞。

後來斯佩曼指導的女博士生曼果得(Hilde Mangold)自 1921 年開始進一步的實驗。她將確定會繼續分化的胚胎細胞植入另一個胚胎,結果不管後者原本能否繼續分化,都會被植入細胞誘導分化成完整的胚胎;這可說是首次成功的動物複製實驗。斯佩曼因此提出組織者(organizer)的概念,用以稱呼這種指導細胞如何分化、組織成完整個體的物質——如今我們知道這其實就是 DNA。

1935 年,斯佩曼因為發現胚胎發展過程中的組織者效應,而獲頒諾貝爾生理或醫學獎。可惜曼果得於 1924 年發表論文後幾個月,就因廚房瓦斯爆炸引發大火而被燒死,而無緣共享榮耀,只能由斯佩曼在演講時特別提及她的貢獻。

本文同時收錄於《科學史上的今天:歷史的瞬間,改變世界的起點》,由究竟出版社出版。
-----廣告,請繼續往下閱讀-----
文章難易度
張瑞棋_96
423 篇文章 ・ 1028 位粉絲
1987年清華大學工業工程系畢業,1992年取得美國西北大學工業工程碩士。浮沉科技業近二十載後,退休賦閒在家,當了中年大叔才開始寫作,成為泛科學專欄作者。著有《科學史上的今天》一書;個人臉書粉絲頁《科學棋談》。

0

1
0

文字

分享

0
1
0
拆解邊緣AI熱潮:伺服器如何提供穩固的運算基石?
鳥苷三磷酸 (PanSci Promo)_96
・2025/05/21 ・5071字 ・閱讀時間約 10 分鐘

-----廣告,請繼續往下閱讀-----

本文與 研華科技 合作,泛科學企劃執行。

每次 NVIDIA 執行長黃仁勳公開發言,總能牽動整個 AI 產業的神經。然而,我們不妨設想一個更深層的問題——如今的 AI 幾乎都倚賴網路連線,那如果哪天「網路斷了」,會發生什麼事?

想像你正在自駕車打個盹,系統突然警示:「網路連線中斷」,車輛開始偏離路線,而前方竟是萬丈深谷。又或者家庭機器人被駭,開始暴走跳舞,甚至舉起刀具向你走來。

這會是黃仁勳期待的未來嗎?當然不是!也因為如此,「邊緣 AI」成為業界關注重點。不靠雲端,AI 就能在現場即時反應,不只更安全、低延遲,還能讓數據當場變現,不再淪為沉沒成本。

什麼是邊緣 AI ?

邊緣 AI,乍聽之下,好像是「孤單站在角落的人工智慧」,但事實上,它正是我們身邊最可靠、最即時的親密數位夥伴呀。

當前,像是企業、醫院、學校內部的伺服器,個人電腦,甚至手機等裝置,都可以成為「邊緣節點」。當數據在這些邊緣節點進行運算,稱為邊緣運算;而在邊緣節點上運行 AI ,就被稱為邊緣 AI。簡單來說,就是將原本集中在遠端資料中心的運算能力,「搬家」到更靠近數據源頭的地方。

-----廣告,請繼續往下閱讀-----

那麼,為什麼需要這樣做?資料放在雲端,集中管理不是更方便嗎?對,就是不好。

當數據在這些邊緣節點進行運算,稱為邊緣運算;而在邊緣節點上運行 AI ,就被稱為邊緣 AI。/ 圖片來源:MotionArray

第一個不好是物理限制:「延遲」。
即使光速已經非常快,數據從你家旁邊的路口傳到幾千公里外的雲端機房,再把分析結果傳回來,中間還要經過各種網路節點轉來轉去…這樣一來一回,就算只是幾十毫秒的延遲,對於需要「即刻反應」的 AI 應用,比如說工廠裡要精密控制的機械手臂、或者自駕車要判斷路況時,每一毫秒都攸關安全與精度,這點延遲都是無法接受的!這是物理距離與網路架構先天上的限制,無法繞過去。

第二個挑戰,是資訊科學跟工程上的考量:「頻寬」與「成本」。
你可以想像網路頻寬就像水管的粗細。隨著高解析影像與感測器數據不斷來回傳送,湧入的資料數據量就像超級大的水流,一下子就把水管塞爆!要避免流量爆炸,你就要一直擴充水管,也就是擴增頻寬,然而這樣的基礎建設成本是很驚人的。如果能在邊緣就先處理,把重要資訊「濃縮」過後再傳回雲端,是不是就能減輕頻寬負擔,也能節省大量費用呢?

第三個挑戰:系統「可靠性」與「韌性」。
如果所有運算都仰賴遠端的雲端時,一旦網路不穩、甚至斷線,那怎麼辦?很多關鍵應用,像是公共安全監控或是重要設備的預警系統,可不能這樣「看天吃飯」啊!邊緣處理讓系統更獨立,就算暫時斷線,本地的 AI 還是能繼續運作與即時反應,這在工程上是非常重要的考量。

所以你看,邊緣運算不是科學家們沒事找事做,它是順應數據特性和實際應用需求,一個非常合理的科學與工程上的最佳化選擇,是我們想要抓住即時數據價值,非走不可的一條路!

邊緣 AI 的實戰魅力:從工廠到倉儲,再到你的工作桌

知道要把 AI 算力搬到邊緣了,接下來的問題就是─邊緣 AI 究竟強在哪裡呢?它強就強在能夠做到「深度感知(Deep Perception)」!

-----廣告,請繼續往下閱讀-----

所謂深度感知,並非僅僅是對數據進行簡單的加加減減,而是透過如深度神經網路這類複雜的 AI 模型,從原始數據裡面,去「理解」出更高層次、更具意義的資訊。

研華科技為例,旗下已有多項邊緣 AI 的實戰應用。以工業瑕疵檢測為例,利用物件偵測模型,快速將工業產品中的瑕疵挑出來,而且由於 AI 模型可以使用同一套參數去檢測,因此品管上能達到一致性,減少人為疏漏。尤其在高產能工廠中,檢測速度必須快、狠、準。研華這套 AI 系統每分鐘最高可處理 8,000 件產品,替工廠節省大量人力,同時確保品質穩定。這樣的效能來自於一台僅有膠囊咖啡機大小的邊緣設備—IPC-240。

這樣的效能來自於一台僅有膠囊咖啡機大小的邊緣設備—IPC-240。/ 圖片提供:研華科技

此外,在智慧倉儲場域,研華與威剛合作,研華與威剛聯手合作,在 MIC-732AO 伺服器上搭載輝達的 Nova Orin 開發平台,打造倉儲系統的 AMR(Autonomous Mobile Robot) 自走車。這跟過去在倉儲系統中使用的自動導引車 AGV 技術不一樣,AMR 不需要事先規劃好路線,靠著感測器偵測,就能輕鬆避開障礙物,識別路線,並且將貨物載到指定地點存放。

當然,還有語言模型的應用。例如結合檢索增強生成 ( RAG ) 跟上下文學習 ( in-context learning ),除了可以做備忘錄跟排程規劃以外,還能將實務上碰到的問題記錄下來,等到之後碰到類似的問題時,就能詢問 AI 並得到解答。

你或許會問,那為什麼不直接使用 ChatGPT 就好了?其實,對許多企業來說,內部資料往往具有高度機密性與商業價值,有些場域甚至連手機都禁止員工帶入,自然無法將資料上傳雲端。對於重視資安,又希望運用 AI 提升效率的企業與工廠而言,自行部署大型語言模型(self-hosted LLM)才是理想選擇。而這樣的應用,並不需要龐大的設備。研華的 SKY-602E3 塔式 GPU 伺服器,體積僅如後背包大小,卻能輕鬆支援語言模型的運作,實現高效又安全的 AI 解決方案。

但問題也接著浮現:要在這麼小的設備上跑大型 AI 模型,會不會太吃資源?這正是目前 AI 領域最前沿、最火熱的研究方向之一:如何幫 AI 模型進行「科學瘦身」,又不減智慧。接下來,我們就來看看科學家是怎麼幫 AI 減重的。

-----廣告,請繼續往下閱讀-----

語言模型瘦身術之一:量化(Quantization)—用更精簡的數位方式來表示知識

當硬體資源有限,大模型卻越來越龐大,「幫模型減肥」就成了邊緣 AI 的重要課題。這其實跟圖片壓縮有點像:有些畫面細節我們肉眼根本看不出來,刪掉也不影響整體感覺,卻能大幅減少檔案大小。

模型量化的原理也是如此,只不過對象是模型裡面的參數。這些參數原先通常都是以「浮點數」表示,什麼是浮點數?其實就是你我都熟知的小數。舉例來說,圓周率是個無窮不循環小數,唸下去就會是3.141592653…但實際運算時,我們常常用 3.14 或甚至直接用 3,也能得到夠用的結果。降低模型參數中浮點數的精度就是這個意思! 

然而,量化並不是那麼容易的事情。而且實際上,降低精度多少還是會影響到模型表現的。因此在設計時,工程師會精密調整,確保效能在可接受範圍內,達成「瘦身不減智」的目標。

當硬體資源有限,大模型卻越來越龐大,「幫模型減肥」就成了邊緣 AI 的重要課題。/ 圖片來源:MotionArray

模型剪枝(Model Pruning)—基於重要性的結構精簡

建立一個 AI 模型,其實就是在搭建一整套類神經網路系統,並訓練類神經元中彼此關聯的參數。然而,在這麼多參數中,總會有一些參數明明佔了一個位置,卻對整體模型沒有貢獻。既然如此,不如果斷將這些「冗餘」移除。

這就像種植作物的時候,總會雜草叢生,但這些雜草並不是我們想要的作物,這時候我們就會動手清理雜草。在語言模型中也會有這樣的雜草存在,而動手去清理這些不需要的連結參數或神經元的技術,就稱為 AI 模型的模型剪枝(Model Pruning)。

-----廣告,請繼續往下閱讀-----

模型剪枝的效果,大概能把100變成70這樣的程度,說多也不是太多。雖然這樣的縮減對於提升效率已具幫助,但若我們要的是一個更小幾個數量級的模型,僅靠剪枝仍不足以應對。最後還是需要從源頭著手,採取更治本的方法:一開始就打造一個很小的模型,並讓它去學習大模型的知識。這項技術被稱為「知識蒸餾」,是目前 AI 模型壓縮領域中最具潛力的方法之一。

知識蒸餾(Knowledge Distillation)—讓小模型學習大師的「精髓」

想像一下,一位經驗豐富、見多識廣的老師傅,就是那個龐大而強悍的 AI 模型。現在,他要培養一位年輕學徒—小型 AI 模型。與其只是告訴小型模型正確答案,老師傅 (大模型) 會更直接傳授他做判斷時的「思考過程」跟「眉角」,例如「為什麼我會這樣想?」、「其他選項的可能性有多少?」。這樣一來,小小的學徒模型,用它有限的「腦容量」,也能學到老師傅的「智慧精髓」,表現就能大幅提升!這是一種很高級的訓練技巧,跟遷移學習有關。

舉個例子,當大型語言模型在收到「晚餐:鳳梨」這組輸入時,它下一個會接的詞語跟機率分別為「炒飯:50%,蝦球:30%,披薩:15%,汁:5%」。在知識蒸餾的過程中,它可以把這套機率表一起教給小語言模型,讓小語言模型不必透過自己訓練,也能輕鬆得到這個推理過程。如今,許多高效的小型語言模型正是透過這項技術訓練而成,讓我們得以在資源有限的邊緣設備上,也能部署愈來愈強大的小模型 AI。

但是!即使模型經過了這些科學方法的優化,變得比較「苗條」了,要真正在邊緣環境中處理如潮水般湧現的資料,並且高速、即時、穩定地運作,仍然需要一個夠強的「引擎」來驅動它們。也就是說,要把這些經過科學千錘百鍊、但依然需要大量計算的 AI 模型,真正放到邊緣的現場去發揮作用,就需要一個強大的「硬體平台」來承載。

-----廣告,請繼續往下閱讀-----

邊緣 AI 的強心臟:SKY-602E3 的三大關鍵

像研華的 SKY-602E3 塔式 GPU 伺服器,就是扮演「邊緣 AI 引擎」的關鍵角色!那麼,它到底厲害在哪?

一、核心算力
它最多可安裝 4 張雙寬度 GPU 顯示卡。為什麼 GPU 這麼重要?因為 GPU 的設計,天生就擅長做「平行計算」,這正好就是 AI 模型裡面那種海量數學運算最需要的!

你想想看,那麼多數據要同時處理,就像要請一大堆人同時算數學一樣,GPU 就是那個最有效率的工具人!而且,有多張 GPU,代表可以同時跑更多不同的 AI 任務,或者處理更大流量的數據。這是確保那些科學研究成果,在邊緣能真正「跑起來」、「跑得快」、而且「能同時做更多事」的物理基礎!

二、工程適應性——塔式設計。
邊緣環境通常不是那種恆溫恆濕的標準機房,有時是在工廠角落、辦公室一隅、或某個研究實驗室。這種塔式的機箱設計,體積相對緊湊,散熱空間也比較好(這對高功耗的 GPU 很重要!),部署起來比傳統機架式伺服器更有彈性。這就是把高性能計算,進行「工程化」,讓它能適應台灣多樣化的邊緣應用場景。

三、可靠性
SKY-602E3 用的是伺服器等級的主機板、ECC 糾錯記憶體、還有備援電源供應器等等。這些聽起來很硬的規格,背後代表的是嚴謹的工程可靠性設計。畢竟在邊緣現場,系統穩定壓倒一切!你總不希望 AI 分析跑到一半就掛掉吧?這些設計確保了部署在現場的 AI 系統,能夠長時間、穩定地運作,把實驗室裡的科學成果,可靠地轉化成實際的應用價值。

-----廣告,請繼續往下閱讀-----
研華的 SKY-602E3 塔式 GPU 伺服器,體積僅如後背包大小,卻能輕鬆支援語言模型的運作,實現高效又安全的 AI 解決方案。/ 圖片提供:研華科技

台灣製造 × 在地智慧:打造專屬的邊緣 AI 解決方案

研華科技攜手八維智能,能幫助企業或機構提供客製化的AI解決方案。他們的技術能力涵蓋了自然語言處理、電腦視覺、預測性大數據分析、全端軟體開發與部署,及AI軟硬體整合。

無論是大小型語言模型的微調、工業瑕疵檢測的模型訓練、大數據分析,還是其他 AI 相關的服務,都能交給研華與八維智能來協助完成。他們甚至提供 GPU 與伺服器的租借服務,讓企業在啟動 AI 專案前,大幅降低前期投入門檻,靈活又實用。

台灣有著獨特的產業結構,從精密製造、城市交通管理,到因應高齡化社會的智慧醫療與公共安全,都是邊緣 AI 的理想應用場域。更重要的是,這些情境中許多關鍵資訊都具有高度的「時效性」。像是產線上的一處異常、道路上的突發狀況、醫療設備的即刻警示,這些都需要分秒必爭的即時回應。

如果我們還需要將數據送上雲端分析、再等待回傳結果,往往已經錯失最佳反應時機。這也是為什麼邊緣 AI,不只是一項技術創新,更是一條把尖端 AI 科學落地、真正發揮產業生產力與社會價值的關鍵路徑。讓數據在生成的那一刻、在事件發生的現場,就能被有效的「理解」與「利用」,是將數據垃圾變成數據黃金的賢者之石!

👉 更多研華Edge AI解決方案
👉 立即申請Server租借

-----廣告,請繼續往下閱讀-----
-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

0

2
0

文字

分享

0
2
0
從遺傳學角度剖析:女性能在體育場上超越男性嗎?——《運動基因》
行路出版_96
・2024/08/10 ・3712字 ・閱讀時間約 7 分鐘

科學期刊的預言:女性能追趕甚至超越男性?

我在 2002 年還在讀大四時,第一次看到兩位 UCLA 生理學家的論文〈不用多久女性就會跑得比男性快?〉,當時我覺得這個標題很荒謬。在那之前我花了五個賽季,進行 800 公尺中距離跑步訓練,成績已經超越世界女子紀錄。而且我還不是自己接力隊上跑最快的。

但那篇論文發表在《自然》(Nature)期刊上,這是世上極具聲望的科學期刊,所以一定有些道理。大眾就是這麼認為的。《美國新聞與世界報導》雜誌在 1996 年亞特蘭大奧運之前,對一千個美國人做了調查,結果其中有三分之二認為,「終有一天頂尖女運動員會勝過頂尖男運動員」。

1996 年亞特蘭大奧運前,一千位美國人中有三分之二認為,「終有一天頂尖女運動員會勝過頂尖男運動員」。 圖/envato

《自然》期刊上那篇論文的作者,把男子組和女子組從 200 公尺短跑到馬拉松各項賽事歷年的世界紀錄畫成圖表,發現女子組紀錄進步得遠比男子組急速。他們用外推法從曲線的趨勢推斷未來,確定到 21 世紀前半葉,女性就會在各個賽跑項目擊敗男性。兩名作者寫道:「正因進步速度的差異實在非常大,而使(兩者)差距逐漸縮小。」

2004 年,趁著雅典奧運成為新聞焦點之際,《自然》又特別刊出一篇同類型的文章〈2156 年奧運會場上的重要衝刺?〉(Momentous Sprint at the 2156 Olympics?)──標題所指的,正是女子選手會在 100 公尺短跑比賽中,勝過男子選手的預計時間。

-----廣告,請繼續往下閱讀-----

2005 年,三名運動科學家在《英國運動醫學期刊》發表了一篇論文,省去問號開門見山在標題宣稱:〈女性終將做到〉(Women Will Do It in the Long Run.)。

難道男性主導世界紀錄的情況,始終是歧視女性、把女性排除於競技場外的結果?

20 世紀上半葉,文化規範與偽科學嚴重限制了女性參與運動競技的機會。在 1928 年阿姆斯特丹奧運期間,有媒體(捏造)報導指稱,女性選手在 800 公尺賽跑後筋疲力竭地躺在地上,這讓一些醫生和體育記者十分反感,使得他們認為這個比賽項目會危害女性健康。《紐約時報》上有篇文章就寫:「這種距離太消耗女性的體力了。」〔1〕那幾屆奧運之後,在接下來的三十二年間,距離超過 200 公尺的所有女子項目,都突然遭禁,直到 2008 年奧運,男女運動員的徑賽項目才終於完全相同。但《自然》期刊上的那幾篇論文指出,隨著女性參賽人數增多,看起來她們的運動成績到最後可能會與男性並駕齊驅,甚至比男性更好。

運動能力的基因密碼:性別差異的生物學根源

我去拜訪約克大學的運動心理學家喬.貝克時,我們談論到運動表現的男女差異,尤其是投擲項目的差異。在科學實驗裡證實過的所有性別差異中,投擲項目一直名列前茅。用統計學術語來說的話,男女運動員的平均投擲速度相差了三個標準差,大約是男女身高差距的兩倍。這代表如果你從街上拉一千個男子,其中 997 人擲球的力氣會比普通女性大。

-----廣告,請繼續往下閱讀-----

不過貝克提到,這種情形可能是反映女性缺乏訓練。他的太太是打棒球長大的,輕輕鬆鬆就能贏過他。他打趣說:「她會發出一束雷射光。」那麼這是生物學上的差異嗎?

男性和女性的 DNA 差異極小,僅限於在女性身上為X或男性為Y的那單一染色體。姊弟或兄妹從完全相同的來源取得基因,透過重組母親和父親的 DNA,確保兄弟姊妹絕對不會相近到變成複製人。

性別分化過程大部分要歸結到 Y 染色體上的「SRY 基因」,它的全名是「Y 染色體性別決定區基因」。若要說有「運動能力基因」,那就非 SRY 基因莫屬了。人類生物學的安排,就是讓同樣的雙親能夠同時生育出男性的兒子和女性的女兒,即使傳遞的是相同的基因。SRY 基因是一把 DNA 萬能鑰匙,會選擇性地啟動發育成男性的基因。

我們在生命初期都是女性──每個人類胚胎在形成的前六週都是女性。由於哺乳動物的胎兒會接觸到來自母親的大量雌激素,因此預設性別為女性是比較合算的。在男性身上,SRY 基因到第六週時會暗示睪丸及萊氏細胞(Leydig cell)該準備形成了;萊氏細胞是睪丸內負責合成睪固酮的細胞。睪固酮在一個月之內會不斷湧出,啟動特定基因,關閉其他基因,兩性投擲差距不用多久就會出現。

-----廣告,請繼續往下閱讀-----

男孩還在子宮時,就開始發育出比較長的前臂,這使得他們日後投擲時會做出更有力的揮臂動作。儘管男孩和女孩在投擲技能方面的差異,不如成年男性和女性之間那麼顯著,但這種差異在兩歲幼童身上已經很明顯了。

性別分化過程大部分要歸結到 Y 染色體上的「SRY 基因」,會選擇性地啟動發育成男性的基因。 圖/envato

文化與訓練的影響:投擲項目中的性別差距

為了確定孩童之間的投擲差距有多少與文化有關,北德州大學和西澳大學的科學家組成團隊,共同測試美國孩童與澳洲原住民孩童的投擲技能。澳洲原住民沒有發展出農業,仍過著狩獵採集生活,他們教導女孩丟擲戰鬥及狩獵用武器,就像教導男孩一樣。這項研究確實發現,美國男孩和女孩在投擲技能上的差異,比澳洲原住民男孩和女孩之間的差異顯著許多。不過儘管女孩因為較早發育長得較高較壯,男孩仍比女孩擲得更遠。

普遍來說,男孩不僅比女孩更善於投擲,視覺追蹤攔截飛行物的能力往往也出色許多;87% 的男孩在目標鎖定能力的測試上,表現得比一般女孩好。另外,導致差異的部分原因,至少看起來是因為在子宮的時期接觸到了睪固酮。由於先天性腎上腺增生症,而在子宮裡接觸到高濃度睪固酮的女孩,上述項目的表現會像男孩一樣,而不像女孩;患有這種遺傳疾病的胎兒,腎上腺會過度分泌男性荷爾蒙。

受過良好投擲訓練的女性,能輕易勝過未受訓練的男性,但受過良好訓練的男性,表現會大幅超越受過良好訓練的女性。男子奧運標槍選手擲出的距離,比女子奧運選手遠大約三成,儘管女子組使用的標槍比較輕。此外,女性投出的最快棒球球速的金氏世界紀錄是 65 mph(相當於時速 105 公里),表現不錯的高中男生的球速經常比這還要快,有些男子職業球員可以投出超過 100 mph(相當於時速 160 公里)的球速。

-----廣告,請繼續往下閱讀-----

在跑步方面,從 100 公尺到 1 萬公尺,經驗法則是把菁英級表現差距定在 11%。從短跑到超級馬拉松,不管任何距離的賽跑,男子組的前十名都比女子組的前十名快大約 11%。〔2〕在職業等級,那就是個鴻溝。女子組的 100 公尺世界紀錄,跟 2012 年奧運男子組的參賽資格還差了四分之一秒;而在一萬公尺長跑,女子組的世界紀錄成績,與達到奧運參賽資格最低標準的男選手相比落後了一圈。

不論距離,男子組前十名的跑步速度普遍比女子組快約 11%。圖/enavato

投擲項目與純爆發力型運動項目的差距更大。在跳遠方面,女子選手落後男子 19%。差距最小的是長距離游泳競賽;在 800 公尺自由式比賽中,排名前面的女子選手,與排名前面的男子選手差距不到 6%。

預言女性運動員將超越男性的那幾篇論文暗示,從 1950 年代到 1980 年代,女性表現的進展遵循一條會持續下去的穩定軌跡,但在現實中是有一段短暫爆發,隨後趨於平穩──這是女子運動員,而非男子運動員進入的平穩期。儘管到 1980 年代,女性在 100 公尺到 1 英里各項賽跑的最快速度,都開始趨於穩定,但男子運動員仍繼續緩慢進步,雖然只進步一點點。

數字很明確。菁英女子選手並未趕上菁英男子選手,也沒有保持住狀況,男性運動員則在非常慢地進步。生物學上的差距在擴大。但為什麼原本就有差距存在?

-----廣告,請繼續往下閱讀-----

註釋

  1.  各報上氣不接下氣地報導 800 公尺女子選手紛紛倒在跑道上。正如運動雜誌《跑步時代》(Running Times)2012 年的一篇文章指出的,實情是只有一個女子選手在終點線倒下,其餘三名都打破了先前的世界紀錄。據稱人在現場的《紐約郵報》記者寫道,「11 位淒慘的女性」當中有 5 人沒有跑完,5 人在跑過終點線後倒下。《跑步時代》報導說,參賽的女運動員只有 9 個,而且全部跑完。
  2. 過去普遍認為,隨著比賽距離拉長,女子賽跑選手會超越男子選手。這是克里斯多福.麥杜格(Christopher McDougall)在《天生就會跑》這本很吸引人的書裡談到的主題,但不完全正確。成績非常優秀的跑者之間的 11% 差距,在最長距離和最短距離同樣穩固存在。儘管如此,南非生理學家卻發現,當一男一女的馬拉松完賽時間不相上下,那個男士在距離短於馬拉松的比賽中通常會贏過那個女士,但如果競賽距離加長到 64 公里,女士就會跑贏。他們報告說,這是因為男性通常比較高又比較重,比賽距離越長,這就會變成很大的缺點。然而在世界頂尖超馬選手當中,男女體型差異比一般群體中的差異小,而 11% 的成績差距,也存在於超級長距離的最優秀男女選手之間。

——本文摘自 大衛・艾普斯坦(David Epstein)運動基因:頂尖運動表現背後的科學》,2020 年 12 月,行路出版,未經同意請勿轉載

-----廣告,請繼續往下閱讀-----

討論功能關閉中。

行路出版_96
21 篇文章 ・ 8 位粉絲
行路為「讀書共和國」出版集團旗下新創的出版社,出版知識類且富科普或哲普內涵的書籍,科學類中尤其將長期耕耘「心理學+腦科學」領域重要、具時代意義,足以當教材的出版品。 行路臉書專頁:https://www.facebook.com/WalkPublishing

1

8
1

文字

分享

1
8
1
侏羅紀公園的場景可能真實發生?生物複製技術有哪些發展?複製人要出現了嗎?
PanSci_96
・2024/06/15 ・5062字 ・閱讀時間約 10 分鐘

如果用我們的基因製造複製人,可以代替我們上班上課嗎?想像一下,如果世界上每個人都有一個雙胞胎分身?或者,如果我們可以克隆出已故的名人?甚至複製已故的寵物或親人?

當然,這些都是幻想,但複製生物技術的發展正在讓這個幻想漸漸變為現實⋯⋯

科幻小說的故事照進現實,在技術層面上有哪些困難?道德上又會引發哪些問題呢?

讓我們一起探索這項驚人技術的曲折歷程吧!

-----廣告,請繼續往下閱讀-----

今天的文章將會回答以下問題:

  1. 複製生物技術的早期實驗有哪些?又帶來什麼影響?
  2. 基因複製技術最大的困難是什麼?
  3. 複製技術面臨哪些主要挑戰和倫理道德問題呢?
  4. 複製生物技術除了複製生物還能有哪些應用?

克隆實驗早期的探索與突破?

複製生物技術的發展是一個漫長而曲折的過程,從 19 世紀末的早期實驗,到 20 世紀中葉的技術突破,再到 21 世紀的應用與挑戰。

胚胎實驗的歷史可以追溯到 19 世紀末,當時德國生物學家杜里舒(Hans Driesch,1867-1941)進行了一項開創性的實驗。他通過搖晃的方式將四個海膽胚胎細胞分離,並觀察到每個分離的細胞都能發育成完整的幼體,儘管體型較小。這一實驗證明了早期胚胎細胞具有全能性(totipotency),即早期胚胎的每個細胞都能發展成完整個體,這為後來的細胞核移植技術奠定了基礎。

圖/giphy

在 20 世紀初,植物學家發現通過嫁接和分裂植物組織可以產生與母體相同的植物。奧地利植物學家戈特利・哈伯蘭特(Gottlieb Haberlandt,1854-1945)提出了「植物細胞全能性」(totipotency)的概念,即每個植物細胞都具有發育成完整植物的潛力。哈伯蘭特的實驗主要是通過無菌技術培養植物細胞,雖然當時他並未成功培育出完整的植物,但他的理論和研究為後來的植物組織培養和克隆技術奠定了基礎。

-----廣告,請繼續往下閱讀-----

1914 年,德國生物學家漢斯・斯佩(Hans Speman,1869-1941)進行了另一個具有里程碑意義的實驗。他利用了一根嬰兒頭髮製作的環狀結,將其繫在受精的蠑螈卵細胞上,並將細胞核推到一側。當細胞核所在的一側開始分裂成多個細胞後,他鬆開結讓一個細胞核滑回未分裂的細胞一側,從而產生了兩個獨立的細胞群,這些細胞群最後發育成了兩個完整的胚胎。這是最早的核移植(nuclear transfer)實驗,顯示了細胞核在胚胎發育中的重要性​。

20 世紀中葉,科學家們進一步推動了克隆技術的發展。1952 年,美國科學家羅伯特・布里格斯(Robert Briggs,1911-1983)和湯瑪斯・金恩(Thomas Joseph King,1921-2000)首次成功地將青蛙胚胎細胞的細胞核移植到去核的卵細胞中,並培育出蝌蚪,雖然這些克隆青蛙無法存活至成年,但這實驗證明了細胞核可以在去核卵母細胞中重新編程,進而發育成新個體。

圖/giphy

桃莉羊的誕生:克隆技術的重要里程碑

克隆技術的重大突破出現在 1996 年,當時英國羅斯林研究所的伊恩・威爾穆特(Ian Wilmut,1944-2023)和基思·坎貝爾(Keith Campbell,1954-2012)成功地克隆了第一個成年哺乳動物,也就是廣為人知的——桃莉羊(Dolly)。他們使用的是一隻成年綿羊的乳腺細胞核,將其移植到一個去核的卵細胞中,最終培育出桃莉。這一成就震驚了全世界,因為它證明了成體細胞的基因信息可以被重置為胚胎狀態,並成功發育成為一個完整的生物體,標誌著克隆技術的一個重要里程碑​。

1996 年,成功地克隆了第一個成年哺乳動物,也就是廣為人知的——桃莉羊(Dolly)。圖/wikipedia

桃莉羊的誕生引發了廣泛的科學和倫理討論。一方面,科學家看到了複製技術在醫學研究、保護瀕危物種以及農業中的潛力。另一方面,社會各界對複製技術的倫理問題表示擔憂,特別是人類複製的可能性。

-----廣告,請繼續往下閱讀-----

桃莉羊的成功開啟了克隆技術的新篇章,此後,小鼠、牛、山羊等多種哺乳動物相繼被成功複製,展示了這一技術的廣泛應用潛力。同時,科學家們將目光投向了更為複雜的靈長類動物。

靈長類動物的複製技術在 21 世紀取得了進一步的突破。2018年,中國科學家成功利用與桃莉羊相同的「體細胞核轉植」技術複製出兩隻有相同基因的長尾彌猴「中中」和「華華」,標誌著克隆技術的又一個突破​。2020年中國又成功複製了恆河猴,並取名為「ReTro」,不同於印象中印象中複製動物壽命都很短或是飽受疾病之苦,ReTro 在今年(2024年)已經要滿四歲了,是首隻平安長大成年的複製恆河猴。

複製技術的挑戰?

儘管克隆技術在基因層面上已經相對成熟,但要複製出健康的個體仍然面臨巨大挑戰。許多克隆動物都表現出健康問題,如免疫系統缺陷、心血管問題、早衰、壽命縮短或在在肝、腎、肺、大腦、關節等地方產生發育上的缺陷,也有部分出現體型異常巨大的問題​​。例如綿羊的正常壽命約在 12 年左右,但桃莉羊在 6 歲時,就因關節炎與肺部感染而去世。

這主要是因為,細胞核在卵細胞中的重新啟動過程容易出現問題,導致克隆個體可能存在基因表達異常。即便是中國科學院成功複製的 ReTro 也只是難得成功的個案。

-----廣告,請繼續往下閱讀-----

基因複製出的人類會和本人完全一模一樣嗎?

克隆技術,特別是克隆人類,涉及複雜的倫理和道德問題。一方面,克隆技術可能會被用來治療某些疾病,或是用於治療遺傳疾病和器官移植,甚至延長壽命;但另一方面,它也可能被濫用,導致倫理危機。例如,克隆人類可能引發身份認同問題,並挑戰現有的社會和家庭結構​,反對者擔心擔心這樣的技術會對社會和人類本質造成不可預見的影響。

如果突破細胞核重新啟動的困境,複製出來的克隆人會和本人完全一樣嗎?

答案是:「不會」。

圖/imdb

美國演化生物學家阿亞拉(Francisco J. Ayala,1934-2023)在《美國國家科學院院刊》上提出,我們目前進行的生物複製實驗複製的只是「基因型」而非「表現型」。基因型指的是基因組成;而表現型指的是包含個體外表、解剖結構、生理機能以及智力、道德觀、審美、宗教價值觀等行為傾向和屬性,還有透過經驗、模仿、學習所獲得的特徵。表現型是基因與環境間複雜作用下的產物。基因型的複製就像是同卵雙胞胎,就算長得再像,他們怎麼樣都不會是「同一個人」。透過生物複製技術基因複製出的克隆人,其實也只不過是跟你擁有相同基因的雙胞胎而已。

-----廣告,請繼續往下閱讀-----

不過目前世界上也存在一種能複製表現型的技術,那就是——「AI」。

隨著人工智能技術的進步,模擬人類個性和行為變得越來越現實。例如,AI 可以通過學習大量數據來模擬特定個體的行為模式,甚至在某些情況下,AI 克隆可能會比生物克隆更具實用性。然而,這也帶來了新的風險,包括隱私泄露、數據濫用等​​。

複製技術在生物醫學領域來能有哪些應用?

複製技術的應用範圍廣泛,涵蓋了醫學研究、農業、生態保護等多個領域。

複製技術在生物醫學領域具有巨大的潛力。幹細胞治療可以利用克隆技術培育出患者自身的幹細胞,從而避免免疫排斥反應。製藥公司可以利用克隆動物來進行藥物測試,提高藥物研發的效率和準確性​。科學家也可以生產出大量具有相同基因組的細胞,用於研究疾病機制和開發新藥。克隆技術被用於創建動物模型,這些模型有助於研究人類疾病的機制和治療方法。例如,科學家利用克隆技術創建了患有阿爾茨海默症和帕金森症的動物模型,這些模型為藥物開發和治療策略的研究提供了重要的工具。

-----廣告,請繼續往下閱讀-----

在農業領域,複製技術被用於繁殖優良品種,增加牲畜的生產力和抗病能力。通過克隆優秀的畜禽個體,農民可以提高產量,降低疾病風險,從而提高農業生產的效益。

此外,複製技術在生態保護方面也有重要的應用。許多瀕危物種由於種群數量減少,面臨滅絕的危險。科學家們利用複製技術試圖保護這些物種,例如,已經有研究成功克隆了瀕危的野生動物,為保護生物多樣性提供了新的方法。

圖/imdb

結論

總結而言,複製生物技術的發展歷程充滿了挑戰和機遇。從早期的胚胎細胞分離實驗,到 20 世紀中葉的核移植技術,再到 1996 年桃莉羊的成功,科學家們在不斷探索和突破。儘管技術上取得了許多進展,但複製健康個體的挑戰仍然存在。此外,倫理和道德問題也不容忽視。未來,隨著技術的不斷進步,克隆技術在生物醫學領域的應用將更加廣泛,但我們也必須謹慎對待其可能帶來的社會和倫理影響,我們需要謹慎管理這項強大的技術,在發揮其潛力的同時,避免可能帶來的社會和倫理風險。

歡迎訂閱 Pansci Youtube 頻道 獲取更多深入淺出的科學知識!

-----廣告,請繼續往下閱讀-----
所有討論 1