0

0
0

文字

分享

0
0
0

古騰堡聖經首次印刷出版|科學史上的今天:2/23

張瑞棋_96
・2015/02/23 ・1081字 ・閱讀時間約 2 分鐘 ・SR值 502 ・六年級

1987 年的一場佳士得拍賣會上,一本古書以五百四十萬美元的天價售出。甚麼樣的書如此價值連城?這是厚達 1,286 頁、分成上下兩冊,超過五百年歷史的聖經;首批印刷出版的一百八十本中,至今只有 49 本保存下來。它的價值不僅在於物以稀為貴,更重要的在於其歷史意義:這是西方歷史上首次以活版印刷出版 的書,標誌了西方文明進展的一個轉捩點——由德國出版商古騰堡(Johannes Gutenberg, 1398–1486)開啟的「古騰堡革命」。

古騰堡。圖/Wikipedia

在古騰堡發明活版印刷術之前,雖然就已經有木刻印刷,但主要是用來印製版畫,而非書籍,畢竟要一頁一頁的刻製出密密麻麻的字實在是工程浩大、曠日廢時。書籍的製作仍是靠人工一字一字的抄寫,因此數量有限又價格昂貴,只有富人、教會與大學有能力擁有書籍,一般人根本一書難求。知識掌握在少數人手上,無法廣為散布流傳,人類文明的進展自然就停滯不前。

古騰堡倒不是先天下之憂而憂才投入印刷業,他只是看出這是一門生意。出身金屬加工業的他想到利用鑄模的方式大量生產鉛字,如此只要根據書籍內容將鉛字排列妥當,就能大量印刷,製作書本又快又便宜,而且品質一致,絕不會有人工抄寫以致內容不一的問題。更棒的是,這些鉛字印完後都還能重複使用於印製其它書籍,出版商無須再耗費鉅資製版。

古騰堡不只光想出這點子,他找出最適當的合金比例,鑄造出堅固耐用的鉛字、發明油性印刷墨水、改變印刷方式、設計全新的印刷機。1455 年的今天,古騰堡用活版印刷術印製的第一批書出版問世——當然是聖經,因為市場需求最大。五十年內,歐洲超過 270 個城市都有印刷廠,印製了至少兩千萬本書,遠遠超過過去人類歷史所有書的數量。書本普及化後,識字率與教育程度也跟著提高,而柏拉圖、亞里斯多德、阿基米德、……等先哲的典籍與當代思想家的著作得以廣為流傳,更是促進了許多觀念革命。

-----廣告,請繼續往下閱讀-----

雖然宋朝的畢昇比古騰堡還要早一百年就發明了活版印刷術,但知識的力量還是取決於內容本身,畢昇的發明無助於改變中國獨尊儒術的傳統,相對地,古騰堡的發明卻帶動了西方思潮的百花齊放,加速科學文明的進展。也難怪古騰堡屢屢在票選對文明進展影響最大的人物中名列前茅。

本文同時收錄於《科學史上的今天:歷史的瞬間,改變世界的起點》,由究竟出版社出版。
-----廣告,請繼續往下閱讀-----
文章難易度
張瑞棋_96
423 篇文章 ・ 1016 位粉絲
1987年清華大學工業工程系畢業,1992年取得美國西北大學工業工程碩士。浮沉科技業近二十載後,退休賦閒在家,當了中年大叔才開始寫作,成為泛科學專欄作者。著有《科學史上的今天》一書;個人臉書粉絲頁《科學棋談》。

0

1
0

文字

分享

0
1
0
從認證到實踐:以智慧綠建築三大標章邁向淨零
鳥苷三磷酸 (PanSci Promo)_96
・2024/11/15 ・4487字 ・閱讀時間約 9 分鐘

本文由 建研所 委託,泛科學企劃執行。 


當你走進一棟建築,是否能感受到它對環境的友善?或許不是每個人都意識到,但現今建築不只提供我們居住和工作的空間,更是肩負著重要的永續節能責任。

綠建築標準的誕生,正是為了應對全球氣候變遷與資源匱乏問題,確保建築設計能夠減少資源浪費、降低污染,同時提升我們的生活品質。然而,要成為綠建築並非易事,每一棟建築都需要通過層層關卡,才能獲得標章認證。

為推動環保永續的建築環境,政府自 1999 年起便陸續著手推動「綠建築標章」、「智慧建築標章」以及「綠建材標章」的相關政策。這些標章的設立,旨在透過標準化的建築評估系統,鼓勵建築設計融入生態友善、能源高效及健康安全的原則。並且政府在政策推動時,為鼓勵業界在規劃設計階段即導入綠建築手法,自 2003 年特別辦理優良綠建築作品評選活動。截至 2024 年為止,已有 130 件優良綠建築、31 件優良智慧建築得獎作品,涵蓋學校、醫療機構、公共住宅等各類型建築,不僅提升建築物的整體性能,也彰顯了政府對綠色、智慧建築的重視。

-----廣告,請繼續往下閱讀-----

說這麼多,你可能還不明白建築要變「綠」、變「聰明」的過程,要經歷哪些標準與挑戰?

綠建築標章智慧建築標章綠建材標章
來源:內政部建築研究所

第一招:依循 EEWH 標準,打造綠建築典範

環境友善和高效率運用資源,是綠建築(green building)的核心理念,但這樣的概念不僅限於外觀或用材這麼簡單,而是涵蓋建築物的整個生命週期,也就是包括規劃、設計、施工、營運和維護階段在內,都要貼合綠建築的價值。

關於綠建築的標準,讓我們先回到 1990 年,當時英國建築研究機構(BRE)首次發布有關「建築研究發展環境評估工具(Building Research Establishment Environmental Assessment Method,BREEAM®)」,是世界上第一個建築永續評估方法。美國則在綠建築委員會成立後,於 1998 年推出「能源與環境設計領導認證」(Leadership in Energy and Environmental Design, LEED)這套評估系統,加速推動了全球綠建築行動。

臺灣在綠建築的制訂上不落人後。由於臺灣地處亞熱帶,氣溫高,濕度也高,得要有一套我們自己的評分規則——臺灣綠建築評估系統「EEWH」應運而生,四個英文字母分別為 Ecology(生態)、Energy saving(節能)、Waste reduction(減廢)以及 Health(健康),分成「合格、銅、銀、黃金和鑽石」共五個等級,設有九大評估指標。

-----廣告,請繼續往下閱讀-----

我們就以「台江國家公園」為例,看它如何躍過一道道指標,成為「鑽石級」綠建築的國家公園!

位於臺南市四草大橋旁的「台江國家公園」是臺灣第8座國家公園,也是臺灣唯一的濕地型的國家公園。同時,還是南部行政機關第一座鑽石級的綠建築,其外觀採白色系列,從高空俯瞰,就像在一座小島上座落了許多白色建築群的聚落;從地面看則有臺南鹽山的意象。

因其地形與地理位置的特殊,生物多樣性的保護則成了台江國家公園的首要考量。園區利用既有的魚塭結構,設計自然護岸,保留基地既有的雜木林和灌木草原,並種植原生與誘鳥誘蟲等多樣性植物,採用複層雜生混種綠化。以石籠作為擋土護坡與卵石回填增加了多孔隙,不僅強化了環境的保護力,也提供多樣的生物棲息環境,使這裡成為動植物共生的美好棲地。

台江國家公園是南部行政機關第一座鑽石級的綠建築。圖/內政部建築研究所

第二招:想成綠建築,必用綠建材

要成為一幢優秀好棒棒的綠建築,使用在原料取得、產品製造、應用過程和使用後的再生利用循環中,對地球環境負荷最小、對人類身體健康無害的「綠建材」非常重要。

-----廣告,請繼續往下閱讀-----

這種建材最早是在 1988 年國際材料科學研究會上被提出,一路到今日,國際間對此一概念的共識主要包括再使用(reuse)、再循環(recycle)、廢棄物減量(reduce)和低污染(low emission materials)等特性,從而減少化學合成材料產生的生態負荷和能源消耗。同時,使用自然材料與低 VOC(Volatile Organic Compounds,揮發性有機化合物)建材,亦可避免對人體產生危害。

在綠建築標章後,內政部建築研究所也於 2004 年 7 月正式推行綠建材標章制度,以建材生命週期為主軸,提出「健康、生態、高性能、再生」四大方向。舉例來說,為確保室內環境品質,建材必須符合低逸散、低污染、低臭氣等條件;為了防溫室效應的影響,須使用本土材料以節省資源和能源;使用高性能與再生建材,不僅要經久耐用、具高度隔熱和防音等特性,也強調材料本身的再利用性。


在台江國家公園內,綠建材的應用是其獲得 EEWH 認證的重要部分。其不僅在設計結構上體現了生態理念,更在材料選擇上延續了對環境的關懷。園區步道以當地的蚵殼磚鋪設,並利用蚵殼作為建築格柵的填充材料,為鳥類和小生物營造棲息空間,讓「蚵殼磚」不再只是建材,而是與自然共生的橋樑。園區的內部裝修選用礦纖維天花板、矽酸鈣板、企口鋁板等符合綠建材標準的系統天花。牆面則粉刷乳膠漆,整體綠建材使用率為 52.8%。

被建築實體圍塑出的中庭廣場,牆面設計有蚵殼格柵。圖/內政部建築研究所

在日常節能方面,台江國家公園也做了相當細緻的設計。例如,引入樓板下的水面蒸散低溫外氣,屋頂下設置通風空氣層,高處設置排風窗讓熱空氣迅速排出,廊道還配備自動控制的微噴霧系統來降溫。屋頂採用蚵殼與漂流木創造生態棲地,創造空氣層及通風窗引入水面低溫外企,如此一來就能改善事內外氣溫及熱空氣的通風對流,不僅提升了隔熱效果,減少空調需求,讓建築如同「與海共舞」,在減廢與健康方面皆表現優異,展示出綠建築在地化的無限可能。

-----廣告,請繼續往下閱讀-----
島式建築群分割後所形成的巷道與水道。圖/內政部建築研究所

在綠建材的部分,另外補充獲選為 2023 年優良綠建築的臺南市立九份子國民中小學新建工程,其採用生產過程中二氧化碳排放量較低的建材,比方提高高爐水泥(具高強度、耐久、緻密等特性,重點是發熱量低)的量,並使用能提高混凝土晚期抗壓性、降低混凝土成本與建物碳足跡的「爐石粉」,還用再生透水磚做人行道鋪面。

2023 年優良綠建築的臺南市立九份子國民中小學。圖/內政部建築研究所
2023 年優良綠建築的臺南市立九份子國民中小學。圖/內政部建築研究所

同樣入選 2023 年綠建築的還有雲林豐泰文教基金會的綠園區,首先,他們捨棄金屬建材,讓高爐水泥使用率達 100%。別具心意的是,他們也將施工開挖的土方做回填,將有高地差的荒地恢復成平坦綠地,本來還有點「工業風」的房舍告別荒蕪,無痛轉綠。

雲林豐泰文教基金會的綠園區。圖/內政部建築研究所

等等,這樣看來建築夠不夠綠的命運,似乎在建材選擇跟設計環節就決定了,是這樣嗎?當然不是,建築是活的,需要持續管理–有智慧的管理。

第三招:智慧管理與科技應用

我們對生態的友善性與資源運用的效率,除了從建築設計與建材的使用等角度介入,也須適度融入「智慧建築」(intelligent buildings)的概念,即運用資通訊科技來提升建築物效能、舒適度與安全性,使空間更人性化。像是透過建築物佈建感測器,用於蒐集環境資料和使用行為,並作為空調、照明等設備、設施運轉操作之重要參考。

-----廣告,請繼續往下閱讀-----

為了推動建築與資通訊產業的整合,內政部建築研究所於 2004 年建立了「智慧建築標章」制度,為消費者提供判斷建築物是否善用資通訊感知技術的標準。評估指標經多次修訂,目前是以「基礎設施、維運管理、安全防災、節能管理、健康舒適、智慧創新」等六大項指標作為評估基準。
以節能管理指標為例,為了掌握建築物生命週期中的能耗,需透過系統設備和技術的主動控制來達成低耗與節能的目標,評估重點包含設備效率、節能技術和能源管理三大面向。在健康舒適方面,則在空間整體環境、光環境、溫熱環境、空氣品質、水資源等物理環境,以及健康管理系統和便利服務上進行評估。

樹林藝文綜合大樓在設計與施工過程中,充分展現智慧建築應用綜合佈線、資訊通信、系統整合、設施管理、安全防災、節能管理、健康舒適及智慧創新 8 大指標先進技術,來達成兼顧環保和永續發展的理念,也是利用建築資訊模型(BIM)技術打造的指標性建築,受到國際矚目。

樹林藝文綜合大樓。圖/內政部建築研究所「111年優良智慧建築專輯」(新北市政府提供)

在興建階段,為了保留基地內 4 棵原有老樹,團隊透過測量儀器對老樹外觀進行精細掃描,並將大小等比例匯入 BIM 模型中,讓建築師能清晰掌握樹木與建築物之間的距離,確保施工過程不影響樹木健康。此外,在大樓啟用後,BIM 技術被運用於「電子維護管理系統」,透過 3D 建築資訊模型,提供大樓內設備位置及履歷資料的即時讀取。系統可進行設備的監測和維護,包括保養計畫、異常修繕及耗材管理,讓整棟大樓的全生命週期狀況都能得到妥善管理。

智慧建築導入 BIM 技術的應用,從建造設計擴展至施工和日常管理,使建築生命周期的管理更加智慧化。以 FM 系統 ( Facility Management,簡稱 FM ) 為例,該系統可在雲端進行遠端控制,根據會議室的使用時段靈活調節空調風門,會議期間開啟通往會議室的風門以加強換氣,而非使用時段則可根據二氧化碳濃度調整外氣空調箱的運轉頻率,保持低頻運作,實現節能效果。透過智慧管理提升了節能效益、建築物的維護效率和公共安全管理。

-----廣告,請繼續往下閱讀-----

總結

綠建築、綠建材與智慧建築這三大標章共同構建了邁向淨零碳排、居住健康和環境永續的基礎。綠建築標章強調設計與施工的生態友善與節能表現,從源頭減少碳足跡;綠建材標章則確保建材從生產到廢棄的全生命週期中對環境影響最小,並保障居民的健康;智慧建築標章運用科技應用,實現能源的高效管理和室內環境的精準調控,增強了居住的舒適性與安全性。這些標章的綜合應用,讓建築不僅是滿足基本居住需求,更成為實現淨零、促進健康和支持永續的具體實踐。

建築物於魚塭之上,採高腳屋的構造形式,尊重自然地貌。圖/內政部建築研究所

-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

鳥苷三磷酸 (PanSci Promo)_96
211 篇文章 ・ 312 位粉絲
充滿能量的泛科學品牌合作帳號!相關行銷合作請洽:contact@pansci.asia

0

1
2

文字

分享

0
1
2
內地核是固態還是液態?何不問問地震波!——幫地球照一張 X 光(2)
震識:那些你想知道的震事_96
・2017/09/26 ・2653字 ・閱讀時間約 5 分鐘 ・SR值 527 ・七年級

文/洪瑞駿|國立中央大學地球科學學系-地球物理研究所碩士,對地球科學充滿好奇與想像的南部仔,因為 2006 屏東雙主震搖起對地震學的熱誠,目前在地震源與構造實驗室當個快樂的研究助理,夢想是當科學家(菸)。

編按:在前篇要怎麼知道地球的內部構造?何不問問神奇地震波!——幫地球照一張 X 光(1)一文中,提到人們開始利用地震儀探索地球內部構造,在這數十年的歲月中,又有哪些突破性的進展呢?讓我們繼~~續~~看~~下~~去!

圖/BY Apollo 17 @ wikimedia commons

「消失」的震波

如果我們將地震儀繞著地球一圈擺放,便可發現,在震央距(註 1) 某些範圍沒有 S 波訊號,僅有微弱的 P 波通過,而且震波抵達的時間比預期慢(圖ㄧ)。這便引起地震學家的注意了,畢竟如果地球內部若是均勻一致,S 波又怎麼會消失?到時(波傳到的時間)又怎麼會變慢?

-----廣告,請繼續往下閱讀-----

對科學家而言,往往最感興趣的就是調查「不合理」的事物。1914 年,古騰堡(Beno Gutenberg)從這樣的觀測結果,推測地球內部應該有個「地核」(就如同蛋的蛋黃般)存在,使震波紀錄在地函-地核交界處出現不連續(命名為古氏不連續面,以紀念古騰堡,註 2)。從下方圖一右邊的震波走時曲線(詳見上篇介紹)可以清楚看到這個不連續的位置,筆者以紅色箭頭標示出這個異常位置,可以發現在震央距 143˚~180 ˚ 位置抵達的 P 波到時比預期晚,而且 S 波消失了,這意味著震波通過了另一個構造(事實上就是穿過了地核,當時古騰堡用 P’ 來表示)。遲到的 P 波,代表的是通過地核時「波速變慢」嗎?從觀測結果來說似乎是對的,但也不完全正確,因為介質的變化太大了,事情其實頗為複雜。

圖一、若將地震儀繞地球一圈放,在各地的震波紀錄,可以清楚看到P波及S波傳遞的情形,其中在103˚~143˚圖中灰色範圍)直達的 波和 波都消失(綠色波)。圖/作者修改自IRIS

至於「S 波消失」這件事,很明顯的外核(當時認為是地核)是種「S 波無法穿透的物質」。從震央距 103˚ 開始,P 波和 S 波就會打到地核,S 波無法穿過地核而無法被接收;此外根據物理定律,P 波也因為入射角/出射角的偏離而無法被清楚記錄。直到143˚ 出現穿越地球而過的 P 波,我們稱這段範圍為陰影帶(沒有直接傳遞的 P 和 S 波),只會有些許的繞射波(註 2)被記錄到(圖三)。根據古騰堡當時的估算,這個核的深度大概是 2,900 公里,這與現代認為的 2,889 公里,僅有些微的差距。

圖二、左:若按照過去的液態地核模型,則在 103˚~143˚會出現所謂『陰影帶』,地震波無法到達這個位置。右:萊曼發現的幾個出現在陰影帶內的反射波(紅色箭頭),暗示應該有一個介面在地球深處,把震波彈回地表(Lehmann, 1936)。

-----廣告,請繼續往下閱讀-----

「漏看」的震波

接著,在發現地核後,一直到 1930 年代前,科學家們認為有著一層地殼、地函、和液態地核。然而,進一步的發現則要等到約30 年後的 1929 年,紐西蘭的強震說起。當另一端南半球的震波穿越地球到達歐洲,丹麥地震學家萊曼(Inge Lehmann)發現到另一種不同的波相,她推測這個這個波是從震源一路穿過地球核心而來,且震波速度又與古騰堡發現的P’不盡相同。這個波相過去被視為是繞射波,然而從頻率、震幅等幾個特性暗示它與繞射波有所不同(萊曼因此稱為 P3’)。

此外,從記錄中看到在 103˚~143˚ 這段陰影帶內,其實藏著清楚的反射波,這暗示有一個介面,把震波從地核彈回地表(圖三),然而這在古騰堡發表的走時圖中並未加以討論。萊曼試著解釋這個波相,她曾在這篇 1936 年經典的文獻中寫道:

An explanation o f the P 3 ‘ wave is required, since now it can hardly be considered probable that it is due to diffraction. A hypothesis will be here suggested which seems to hold some probability, although it cannot be proved from the data at hand. We take it . . . that inside the core there is an inner core in which the velocity is larger than the outer core.

(譯)既然了解不太可能是繞射效應造成,我們便需要解釋 P3’ 波。在此提出了一個假說,雖然現在尚缺乏有力的資料證明,但我們認為…在地球核心裡面還從在一個速度更快的內核。

萊曼大膽假設,如果這個核裡面還有一個內核的話,就可以解釋她看到的現象,她假設地函 10 km/s 每秒以及地外核 8 km/s,再放入一個速度較快的內地核(圖三)。當時她僅利用直線與三角函數來計算,卻已經可以完美解釋大部分的現象!她於 1936 年發表了內地核的看法。不過,當這樣的假設通過驗證後,萊曼並沒有近一步推算更多參數(例如確切的地內核速度、大小、組成等)。後來在 1938 年當古騰堡與芮克特重新檢驗這個模型後,基本上也同意內地核的想法。

接著經過幾年的驗證與討論後,越來越多的地震學者支持這樣的模型,1939 年傑佛瑞斯和布林提出了地球速度模型時(著名的 Jeffreys-Bullen Velocity Table),也將固態內地核列入考慮。

-----廣告,請繼續往下閱讀-----

圖三、萊曼所提出的包含地內核的地球模型,能解釋陰影帶內(灰色區域)出現的反射波以及P3’(紅色箭頭)。修改自Lehmann, 1936。

由於儀器進步、日益廣泛運用,以及科學家們的細心觀察,加上時有大膽的假設與嚴謹求證。短短數十年的光景,人類已經逐漸「摸透」地球內部的主要構造。然而,並非所有研究發展都如此順遂。回溯到 1910 年代左右的時間點,除了地震學的發展外,還有個剛起步萌芽的假說:韋格納(Alfred Lothar Wegener)提出大陸會移動的想法。可惜當時人們無法解釋驅動大陸運動的成因,他的假說便被束之高閣,等到二次世界大戰後,海洋探勘的興起才能將這塊拼圖湊齊,加上地震學對於地球內部的掌握,進一步發展起板塊學說(Tectonics)以及地體動力學(Geodynamics),以至於現代,我們才能對地球有個初步的認識。

註解

  1. 震央距係指從震央開始為起點計算與測站的距離。由於地球很大,我們改用圓周角度來表示。因此通常將地球圓周分為360˚來表示距離(類似經度的概念)。
  2. 最早將此介面命名為「古氏不連續面」的典故雖已不得而知。一般在學術界也多以「核-函邊界」予以稱呼。考慮到此為科普文章,且台灣的地科教科書也多以古氏不連續面作為介紹,故本文還是用此稱呼來表示核函邊界(可參考龔慧貞老師在科學月刊 552 期的說明)。

參考文獻

  • Bolt, B. A. (1987) 50 years of studies on the inner core. EOS., Vol. 68, 6.
  • Bolt, B. A. & E. Hjortenberg (1994) Memorial Essay Inge Lehmann (1888-1993) Bull. Seismol. Soc. Am. Vol. 84, 1.
  • Lehmann, I. (1936) P’, Publ. Bur. Cent. Seismol. Int. Trav. Sci. Ser. A, 14, 87.
  • Lehmann, I. (1987) Seismology in the days of old. EOS., Vol. 68,3.
  • 龔慧貞,2015。談談「古氏」與「雷氏」不連續面。科學月刊 552 期。

本文轉載自震識:那些你想知道的震事,原文為《幫地球照一張 X 光 (II)地震學家如何用地震波了解地球構造?》,也歡迎追蹤粉絲頁震識:那些你想知道的震事了解更多地震事。

-----廣告,請繼續往下閱讀-----
-----廣告,請繼續往下閱讀-----
震識:那些你想知道的震事_96
38 篇文章 ・ 9 位粉絲
《震識:那些你想知道的震事》由中央大學馬國鳳教授與科普作家潘昌志(阿樹)共同成立的地震知識部落格。我們希望透過淺顯易懂的文字,讓地震知識走入日常生活中,同時也會藉由分享各種地震的歷史或生活故事,讓地震知識也充滿人文的溫度。

0

0
1

文字

分享

0
0
1
地震大小誰說了算?Part II :更「先進」的地震規模算法?
震識:那些你想知道的震事_96
・2017/06/30 ・4408字 ・閱讀時間約 9 分鐘 ・SR值 513 ・六年級

文/潘昌志|「你地質系的?」不,但我待過地質所,而且還是海研所的碩士。無論在氣象局、小牛頓…都一樣熱愛地科與科普。現在從事試題研發工作,並持續在《地球故事書》、《泛科學》、《國語日報》等專欄分享地科的各種知識,想以科普寫作喚醒人們對地球的愛。

規模計算方法七十二變,變的原來是我們對地震與斷層的看法

記得我以前學到的知識是「地震規模只有一個」,我也一直都相信這件事。不過在接觸實務的地震定位和規模計算後,卻發現一件有趣的事,那就是「原來計算上的規模值可能不止一個!」由於當初在求地震規模時,使用的參數是儀器的最大振幅值,但因為每一個地震測站所在地的地質特性不一,而造成計算結果不同。而我們對地底下的地質變化了解的尺度其實頗為粗糙,所以要把結果不同的誤差完全修正,幾乎是不可能的。

普遍大眾都用芮氏規模,也以為只有一個指標,但其實還有其他的!圖/中央氣象局

這問題芮克特也是有想過的,但規模是用來描述地震本身的大小,定義上本來也只能有一個值,所以求出震源位置、計算規模時,實務上會把各地測站求得的規模值作平均,這也是為什麼地震規模只會到小數點後一位,因為精度是有限的。以現今的地震站密度以及我們對地下構造的了解,大多時候如果增加了數個測站後,還需要修正的地震規模值,大概頂多只差個 0.1、0.2 左右,所以下次你看到事後有修正規模值或是不同單位的結果不同,也不需要太意外了!

-----廣告,請繼續往下閱讀-----

從前從前,芮氏規模背後有個偉大的男人

在之前的文章《地震大小誰說了算?Part I:課本沒教的芮氏震規模》中,有提到了最早設計規模的人是芮克特和古騰堡,好像我們都忘了後面那位厲害的科學家,連名字都忘了放上去,但他其實也做了某程度的貢獻。他和芮克特發現芮氏規模會有「飽合」的問題,簡單來說就是明明規模應該是遠大於 6.0 很多的地震,用芮氏規模的計算方式,怎麼樣都只有 6.0 ~ 6.5 不等。

(以下為對白部分純屬想像,不代表真實故事)

「這其中一定是有什麼誤會!」古騰堡表示。

「這很麻煩,其實扣除那些大地震,我們的方法還是很好用啊!」芮克特不想改變這套計算系統。

-----廣告,請繼續往下閱讀-----

「不然,我們調整一下做法好了,看能不能調整公式,或是把不同類型的波分別處理(文末註 1)?」

所以後來古騰堡又發明了不同規模的計算方式,包括只利用實體波(P 波、S 波)的「體波規模」mb,還有另一種專門可以用在大地震上的「表面波規模」Ms,正好銜接上原先規模的計算上限。

所以最後我們現今常用的芮氏規模之所以可以算出大於規模 7 的值,也是因為後來古騰堡改良了原先規模太大會達飽和的問題。而與其說我們的規模是用芮氏規模,不如說它是「近震規模」,其標示 ML 的下標 L,本來就是指 local magnitude 的意思!

芮氏規模後面的偉大男人。圖/Beno Gutenberg headshot, 來自 SEG Wiki

-----廣告,請繼續往下閱讀-----

但是,其實問題還是沒有完全解決呢!

不懂規模「飽和」的原因?想像一下放屁吧!

對於超大型等級的大地震(規模 8、9 以上的地震,像 2011 年東日本大地震、2004 蘇門答臘地震)的「近震規模」,即使有了表面波規模的加持,但終究還是出現「飽和」的情況,這其實反映了我們看待地震的問題。

以現今的科學角度來看,近震規模的計算方式其實有盲點。大多時候,斷層錯動釋放能量引發地震時,往往會發生在很快的一瞬間,但是斷層的尺度一旦變得很大時,那一瞬間有可能會變得相對久得多。用一個稍微不衛生但相對好懂的例子:我們用不同的工具來測量「誰放的屁較大」時,便會有不同的結果。

我們先試想兩種放屁的情境:

1、在 1 秒之內放了一個響屁。

-----廣告,請繼續往下閱讀-----

2、花 10 秒時間緩慢的放了一連串的屁,最大音量和前者接近。

如果我們僅只測量屁聲的音量來評斷屁的大小,第 2 種情況產生的屁量「容積」雖較大,但因為屁聲的分貝數相近,所以會發生低估屁量的情況。

不同「釋放方法」差很多!圖/giphy

所以,近震規模之所以飽和,代表的就是它沒辦法正確且完整的測量斷層錯動引發地震所釋放的能量。芮氏規模的計算方式僅計得了最大規模,但斷層的錯動時間可能很快,也很可能很慢,在《震識》網站上的「潛移斷層」介紹文中,提到了斷層錯動甚至可以慢到不會發生地震。

-----廣告,請繼續往下閱讀-----

如果所有的斷層面只是在一瞬間(數秒鐘左右)滑動,那麼用地震波最大振幅來估算,應該不會有太大問題,可這種情況多半只發生在規模較小的地震。當地震大到 8.0 以上,滑動就有可能花上很長的時間,近代最極致的例子,就是 2004 年蘇門答臘 Mw = 9.3 的地震,整條斷層錯動的時間花了將近 10 分鐘。至於最近一次超過規模 9 的 311 東日本大地震(Mw = 9.1),斷層錯動的時間也超過 3 分鐘,這已經算是非常快的滑動速度了!

2011 年東日本大地震時,斷層破裂與錯動情況,斜向長方形範圍代表斷層的分布(麻煩請發揮想像力,它是一個右高左低、在地底下的斜面),等值線和彩色代表它的滑動量分布,黑色箭頭代表滑動方向。紅色星號代表震央,紫紅色圓圈代表餘震的分布位置。圖/Lee, 2011.2

金森博雄教授發明的「震矩規模」

要說明解決地震規模的新發明「震矩規模」,就不得不提它的創立者,就是加州理工學院的金森博雄教授(Hiroo Kanamori,金森教授同是本站催生者馬國鳳教授的指導教授,對阿樹來說是「老師的老師」輩了XD)。金森博雄用了我們國中都稍微接觸過的物理意義來解決這個問題:斷層做的「功」,就是地震釋放的能量。

而金森博雄在計算地震能量時,便創立了一個新單位:「地震矩」,利用斷層的滑動量斷層的面積斷層面的特性(剛性係數)這三個參數算出來。由這三個參數算出的「地震矩」,一般會以 Mo 表示,它雖然像是「力矩」的概念,但也相當於地震釋放的能量。(見文末註 2)

-----廣告,請繼續往下閱讀-----

怕大家看了不熟悉的公式害怕,細節可以參考「地震矩」(Earthquake Glossary),在此就不贅述。對於細節還更有興趣的話,可能就要看當年發表的文章一文章二了(但要付費下載)。

這三個參數或是其計算結果的「地震矩」要怎麼得到呢?大地震後的地表變形,讓我們知道斷層的長度、錯動的程度和地表變形的範圍,而大地震過後的餘震也能告訴我們地底下斷層面可能的分布情形,再加上一些地震波形藏的資訊,這些都能幫我們估出地震矩。但受限於科技,早期的地震儀就像是比較低階的錄音機,能記下的震波有限,直至寬頻地震儀的問世(1988 年),我們「錄製」地震的波形能力大幅提升,現在也能藉由地震波直接估算出震矩,只要有「完整的地震波形」,就能算出地震的總能量。

不過 Mo 的值既然是代表地震的總能量,那麼可想而知其值非常大,不過這個問題芮克特和古騰堡早就已經解決了,用對數(取 log 值)的方式來建立公式就可以讓它的標示單純化。說到這,阿樹也不禁感慨,原來當初念書時學的微積分、工程數學真的是有用處的啊!(笑)

地震規模算法的具像化比喻差異,不代表真實的計算方式。因為計算地震矩時會用上完整的地震波形,等於把能量釋放隨時間的變化也都考量進去,更能反映真實能量情況。圖/《震識》

-----廣告,請繼續往下閱讀-----

不同規模間的差異該怎麼辦?說清楚就好

用震矩規模的方式來計算並描述地震,既不會有飽合,小地震也都能套用,可以說是「更先進」的計算方法。但也因為它是完整的計算能量,和其它的規模計算方法間的轉換就不太好作換算,因為不同的規模的計算方法已經不是在算同樣的參數了,自然無法容易轉換。在震矩規模開始發展以前所使用的那些近震規模,就難以再轉換回來,這樣在統計過去的地震規模時,就會有單位使用不一致的情形,所以其實蠻多地區的監測單位仍使用近震(芮氏)規模來描述地震。

或許有人會認為「既然有個更先進的方式,為什麼還要用比較舊而且有缺點的方法?」不過就像前面提到的,以長期地震紀錄來看,兩者並行或許是更好的方式,當然我們現在也已經在做了,只是中央氣象局公告的資料還是以芮氏規模為主。

附帶一提,有些時候,震矩規模和芮氏規模計算結果的「差異」,也透露了一些科學訊息。有一種「慢地震」,顧名思義就是滑移速度較慢的地震,如果它的斷層類型是正斷層或逆斷層,又發生在海底時,斷層錯動造成的大規模海水波動,有可能引發大海嘯。從前面提到的計算原理來看,正因為慢地震的滑移的速度較慢,往往會讓儀器收到的振幅較小,芮氏規模因而較為低估,因此當我們發現兩者的差異很大,且又發生在海底時,就要特別當心這現象。

這樣看來,或許地震矩規模有它「先進」的地方,但並不代表芮氏規模就「不好」,畢竟芮克特和古騰堡將地震的能量計算回歸地震波形,並用對數的方式做處理表示,已經是一個劃時代的做法。而金森博雄教授再進一步的量化方式,讓我們更了解地震發生過程和能量釋放的方式,又讓地震科學再更上一層樓。我想對人們來說,只要清楚知道自己用的是什麼單位即可,就像計算容積時用「公升」還是「加侖」都行,只要講清楚、說明白,方是科學之道!

  • 註 1:地震波主要可分實體波和表面波,實體波即為 P 波、S 波,代表能穿透的震波,而表面波則是在介面(地表也是一種介面)上傳播,依運動方式不同包括雷利波和洛夫波,分類細節請參考氣象局地震百問
  • 註 2:如果忘記「功」是什麼,可以重新翻開國中自然課本,裡面有個 W = F x S 的公式,即「功」=「作用力」乘上「作用的距離」,譬如提重物走一層樓,作用距離就是一層樓的高度。不過,斷層是個塊體相對運動,另一個公式可能更能說明斷層上的情況,那就是力矩的公式:L = F x D,即「力矩」=「力」乘上「力臂」。

本文原發表於《震識:那些你想知道的震事》部落格,歡迎加入他們的粉絲專頁持續關注。將會得到最科學前緣的地震時事、最淺顯易懂的地震知識、還有最貼近人心的地震故事。

參考資料:

  1. USGS Earthquake Glossary(web):seismic moment
  2. Lee S. J., 2011, Rupture process of the 2011 Tohoku-Oki earthquake based upon joint source inversion of teleseismic and GPS data; Terr. Atmos. Ocean Sci. 23 1–7.

延伸閱讀:

-----廣告,請繼續往下閱讀-----
震識:那些你想知道的震事_96
38 篇文章 ・ 9 位粉絲
《震識:那些你想知道的震事》由中央大學馬國鳳教授與科普作家潘昌志(阿樹)共同成立的地震知識部落格。我們希望透過淺顯易懂的文字,讓地震知識走入日常生活中,同時也會藉由分享各種地震的歷史或生活故事,讓地震知識也充滿人文的溫度。