0

0
0

文字

分享

0
0
0

古騰堡聖經首次印刷出版|科學史上的今天:2/23

張瑞棋_96
・2015/02/23 ・1081字 ・閱讀時間約 2 分鐘 ・SR值 502 ・六年級

-----廣告,請繼續往下閱讀-----

1987 年的一場佳士得拍賣會上,一本古書以五百四十萬美元的天價售出。甚麼樣的書如此價值連城?這是厚達 1,286 頁、分成上下兩冊,超過五百年歷史的聖經;首批印刷出版的一百八十本中,至今只有 49 本保存下來。它的價值不僅在於物以稀為貴,更重要的在於其歷史意義:這是西方歷史上首次以活版印刷出版 的書,標誌了西方文明進展的一個轉捩點——由德國出版商古騰堡(Johannes Gutenberg, 1398–1486)開啟的「古騰堡革命」。

古騰堡。圖/Wikipedia

在古騰堡發明活版印刷術之前,雖然就已經有木刻印刷,但主要是用來印製版畫,而非書籍,畢竟要一頁一頁的刻製出密密麻麻的字實在是工程浩大、曠日廢時。書籍的製作仍是靠人工一字一字的抄寫,因此數量有限又價格昂貴,只有富人、教會與大學有能力擁有書籍,一般人根本一書難求。知識掌握在少數人手上,無法廣為散布流傳,人類文明的進展自然就停滯不前。

古騰堡倒不是先天下之憂而憂才投入印刷業,他只是看出這是一門生意。出身金屬加工業的他想到利用鑄模的方式大量生產鉛字,如此只要根據書籍內容將鉛字排列妥當,就能大量印刷,製作書本又快又便宜,而且品質一致,絕不會有人工抄寫以致內容不一的問題。更棒的是,這些鉛字印完後都還能重複使用於印製其它書籍,出版商無須再耗費鉅資製版。

古騰堡不只光想出這點子,他找出最適當的合金比例,鑄造出堅固耐用的鉛字、發明油性印刷墨水、改變印刷方式、設計全新的印刷機。1455 年的今天,古騰堡用活版印刷術印製的第一批書出版問世——當然是聖經,因為市場需求最大。五十年內,歐洲超過 270 個城市都有印刷廠,印製了至少兩千萬本書,遠遠超過過去人類歷史所有書的數量。書本普及化後,識字率與教育程度也跟著提高,而柏拉圖、亞里斯多德、阿基米德、……等先哲的典籍與當代思想家的著作得以廣為流傳,更是促進了許多觀念革命。

-----廣告,請繼續往下閱讀-----

雖然宋朝的畢昇比古騰堡還要早一百年就發明了活版印刷術,但知識的力量還是取決於內容本身,畢昇的發明無助於改變中國獨尊儒術的傳統,相對地,古騰堡的發明卻帶動了西方思潮的百花齊放,加速科學文明的進展。也難怪古騰堡屢屢在票選對文明進展影響最大的人物中名列前茅。

本文同時收錄於《科學史上的今天:歷史的瞬間,改變世界的起點》,由究竟出版社出版。
文章難易度
張瑞棋_96
423 篇文章 ・ 998 位粉絲
1987年清華大學工業工程系畢業,1992年取得美國西北大學工業工程碩士。浮沉科技業近二十載後,退休賦閒在家,當了中年大叔才開始寫作,成為泛科學專欄作者。著有《科學史上的今天》一書;個人臉書粉絲頁《科學棋談》。

0

3
3

文字

分享

0
3
3
圖形處理單元與人工智慧
賴昭正_96
・2024/06/24 ・6944字 ・閱讀時間約 14 分鐘

  • 作者/賴昭正|前清大化學系教授、系主任、所長;合創科學月刊

我擔心人工智慧可能會完全取代人類。如果人們能設計電腦病毒,那麼就會有人設計出能夠自我改進和複製的人工智慧。 這將是一種超越人類的新生命形式。

——史蒂芬.霍金(Stephen Hawking) 英國理論物理學家

大約在八十年前,當第一台數位計算機出現時,一些電腦科學家便一直致力於讓機器具有像人類一樣的智慧;但七十年後,還是沒有機器能夠可靠地提供人類程度的語言或影像辨識功能。誰又想到「人工智慧」(Artificial Intelligent,簡稱 AI)的能力最近十年突然起飛,在許多(所有?)領域的測試中擊敗了人類,正在改變各個領域——包括假新聞的製造與散佈——的生態。

圖形處理單元(graphic process unit,簡稱 GPU)是這場「人工智慧」革命中的最大助手。它的興起使得九年前還是個小公司的 Nvidia(英偉達)股票從每股不到 $5,上升到今天(5 月 24 日)每股超過 $1000(註一)的全世界第三大公司,其創辦人(之一)兼首席執行官、出生於台南的黃仁勳(Jenson Huang)也一躍成為全世界排名 20 內的大富豪、台灣家喻戶曉的名人!可是多少人了解圖形處理單元是什麼嗎?到底是時勢造英雄,還是英雄造時勢?

黃仁勳出席2016年台北國際電腦展
Nvidia 的崛起究竟是時勢造英雄,還是英雄造時勢?圖/wikimedia

在回答這問題之前,筆者得先聲明筆者不是學電腦的,因此在這裡所能談的只是與電腦設計細節無關的基本原理。筆者認為將原理轉成實用工具是專家的事,不是我們外行人需要了解的;但作為一位現在的知識分子或公民,了解基本原理則是必備的條件:例如了解「能量不滅定律」就可以不用仔細分析,即可判斷永動機是騙人的;又如現在可攜帶型冷氣機充斥市面上,它們不用往室外排廢熱氣,就可以提供屋內冷氣,讀者買嗎?

CPU 與 GPU

不管是大型電腦或個人電腦都需具有「中央處理單元」(central process unit,簡稱 CPU)。CPU 是電腦的「腦」,其電子電路負責處理所有軟體正確運作所需的所有任務,如算術、邏輯、控制、輸入和輸出操作等等。雖然早期的設計即可以讓一個指令同時做兩、三件不同的工作;但為了簡單化,我們在這裡所談的工作將只是執行算術和邏輯運算的工作(arithmetic and logic unit,簡稱 ALU),如將兩個數加在一起。在這一簡化的定義下,CPU 在任何一個時刻均只能執行一件工作而已。

-----廣告,請繼續往下閱讀-----

在個人電腦剛出現只能用於一般事物的處理時,CPU 均能非常勝任地完成任務。但電腦圖形和動畫的出現帶來了第一批運算密集型工作負載後,CPU 開始顯示心有餘而力不足:例如電玩動畫需要應用程式處理數以萬計的像素(pixel),每個像素都有自己的顏色、光強度、和運動等, 使得 CPU 根本沒辦法在短時間內完成這些工作。於是出現了主機板上之「顯示插卡」來支援補助 CPU。

1999 年,英偉達將其一「具有集成變換、照明、三角形設定/裁剪、和透過應用程式從模型產生二維或三維影像的單晶片處理器」(註二)定位為「世界上第一款 GPU」,「GPU」這一名詞於焉誕生。不像 CPU,GPU 可以在同一個時刻執行許多算術和邏輯運算的工作,快速地完成圖形和動畫的變化。

依序計算和平行計算

一部電腦 CPU 如何計算 7×5+6/3 呢?因每一時刻只能做一件事,所以其步驟為:

  • 計算 7×5;
  • 計算 6/3;
  • 將結果相加。

總共需要 3 個運算時間。但如果我們有兩個 CPU 呢?很多工作便可以同時(平行)進行:

-----廣告,請繼續往下閱讀-----
  • 同時計算 7×5 及 6/3;
  • 將結果相加。

只需要 2 個運算時間,比單獨的 CPU 減少了一個。這看起來好像沒節省多少時間,但如果我們有 16 對 a×b 要相加呢?單獨的 CPU 需要 31 個運算的時間(16 個 × 的運算時間及 15 個 + 的運算時間),而有 16 個小 CPU 的 GPU 則只需要 5 個運算的時間(1 個 × 的運算時間及 4 個 + 的運算時間)!

現在就讓我們來看看為什麼稱 GPU 為「圖形」處理單元。圖一左圖《我愛科學》一書擺斜了,如何將它擺正成右圖呢? 一句話:「將整個圖逆時針方向旋轉 θ 即可」。但因為左圖是由上百萬個像素點(座標 x, y)組成的,所以這句簡單的話可讓 CPU 忙得不亦樂乎了:每一點的座標都必須做如下的轉換

x’ = x cosθ + y sinθ

y’ = -x sinθ+ y cosθ

-----廣告,請繼續往下閱讀-----

即每一點均需要做四個 × 及兩個 + 的運算!如果每一運算需要 10-6 秒,那麼讓《我愛科學》一書做個簡單的角度旋轉,便需要 6 秒,這豈是電動玩具畫面變化所能接受的?

圖形處理的例子

人類的許多發明都是基於需要的關係,因此電腦硬件設計家便開始思考:這些點轉換都是獨立的,為什麼我們不讓它們同時進行(平行運算,parallel processing)呢?於是專門用來處理「圖形」的處理單元出現了——就是我們現在所知的 GPU。如果一個 GPU 可以同時處理 106 運算,那上圖的轉換只需 10-6 秒鐘!

GPU 的興起

GPU 可分成兩種:

  • 整合式圖形「卡」(integrated graphics)是內建於 CPU 中的 GPU,所以不是插卡,它與 CPU 共享系統記憶體,沒有單獨的記憶體組來儲存圖形/視訊,主要用於大部分的個人電腦及筆記型電腦上;早期英特爾(Intel)因為不讓插卡 GPU 侵蝕主機的地盤,在這方面的研發佔領先的地位,約佔 68% 的市場。
  • 獨立顯示卡(discrete graphics)有不與 CPU 共享的自己專用內存;由於與處理器晶片分離,它會消耗更多電量並產生大量熱量;然而,也正是因為有自己的記憶體來源和電源,它可以比整合式顯示卡提供更高的效能。

2007 年,英偉達發布了可以在獨立 GPU 上進行平行處理的軟體層後,科學家發現獨立 GPU 不但能夠快速處理圖形變化,在需要大量計算才能實現特定結果的任務上也非常有效,因此開啟了為計算密集型的實用題目編寫 GPU 程式的領域。如今獨立 GPU 的應用範圍已遠遠超出當初圖形處理,不但擴大到醫學影像和地震成像等之複雜圖像和影片編輯及視覺化,也應用於駕駛、導航、天氣預報、大資料庫分析、機器學習、人工智慧、加密貨幣挖礦、及分子動力學模擬(註三)等其它領域。獨立 GPU 已成為人工智慧生態系統中不可或缺的一部分,正在改變我們的生活方式及許多行業的遊戲規則。英特爾在這方面發展較遲,遠遠落在英偉達(80%)及超微半導體公司(Advance Micro Devices Inc.,19%,註四)之後,大約只有 1% 的市場。

-----廣告,請繼續往下閱讀-----
典型的CPU與GPU架構

事實上現在的中央處理單元也不再是真正的「單元」,而是如圖二可含有多個可以同時處理運算的核心(core)單元。GPU 犧牲大量快取和控制單元以獲得更多的處理核心,因此其核心功能不如 CPU 核心強大,但它們能同時高速執行大量相同的指令,在平行運算中發揮強大作用。現在電腦通常具有 2 到 64 個核心;GPU 則具有上千、甚至上萬的核心。

結論

我們一看到《我愛科學》這本書,不需要一點一點地從左上到右下慢慢掃描,即可瞬間知道它上面有書名、出版社等,也知道它擺斜了。這種「平行運作」的能力不僅限於視覺,它也延伸到其它感官和認知功能。例如筆者在清華大學授課時常犯的一個毛病是:嘴巴在講,腦筋思考已經不知往前跑了多少公里,常常為了追趕而越講越快,將不少學生拋到腦後!這不表示筆者聰明,因為研究人員發現我們的大腦具有同時處理和解釋大量感官輸入的能力。

人工智慧是一種讓電腦或機器能夠模擬人類智慧和解決問題能力的科技,因此必須如人腦一樣能同時並行地處理許多資料。學過矩陣(matrix)的讀者應該知道,如果用矩陣和向量(vector)表達,上面所談到之座標轉換將是非常簡潔的(註五)。而矩陣和向量計算正是機器學習(machine learning)演算法的基礎!也正是獨立圖形處理單元最強大的功能所在!因此我們可以了解為什麼 GPU 會成為人工智慧開發的基石:它們的架構就是充分利用並行處理,來快速執行多個操作,進行訓練電腦或機器以人腦之思考與學習的方式處理資料——稱為「深度學習」(deep learning)。

黃仁勳在 5 月 22 日的發布業績新聞上謂:「下一次工業革命已經開始了:企業界和各國正與英偉達合作,將價值數萬億美元的傳統資料中心轉變為加速運算及新型資料中心——人工智慧工廠——以生產新商品『人工智慧』。人工智慧將為每個產業帶來顯著的生產力提升,幫助企業降低成本和提高能源效率,同時擴大收入機會。」

附錄

人工智慧的實用例子:下面一段是微軟的「copilot」代書、谷歌的「translate」代譯之「one paragraph summary of GPU and AI」。讀完後,讀者是不是認為筆者該退休了?

-----廣告,請繼續往下閱讀-----

GPU(圖形處理單元)和 AI(人工智慧)之間的協同作用徹底改變了高效能運算領域。GPU 具有平行處理能力,特別適合人工智慧和機器學習所需的複雜資料密集運算。這導致了影像和視訊處理等領域的重大進步,使自動駕駛和臉部辨識等技術變得更加高效和可靠。NVIDIA 開發的平行運算平台 CUDA 進一步提高了 GPU 的效率,使開發人員能夠透過將人工智慧問題分解為更小的、可管理的、可同時處理的任務來解決這些問題。這不僅加快了人工智慧研究的步伐,而且使其更具成本效益,因為 GPU 可以在很短的時間內執行與多個 CPU 相同的任務。隨著人工智慧的不斷發展,GPU 的角色可能會變得更加不可或缺,推動各產業的創新和新的可能性。大腦透過神經元網路實現這一目標,這些神經元網路可以獨立但有凝聚力地工作,使我們能夠執行複雜的任務,例如駕駛、導航、觀察交通信號、聽音樂並同時規劃我們的路線。此外,研究表明,與非人類動物相比,人類大腦具有更多平行通路,這表明我們的神經處理具有更高的複雜性。這個複雜的系統證明了我們認知功能的卓越適應性和效率。我們可以一邊和朋友聊天一邊走在街上,一邊聽音樂一邊做飯,或一邊聽講座一邊做筆記。人工智慧是模擬人類腦神經網路的科技,因此必須能同時並行地來處理許多資料。研究人員發現了人腦通訊網路具有一個在獼猴或小鼠中未觀察獨特特徵:透過多個並行路徑傳輸訊息,因此具有令人難以置信的多任務處理能力。

註解

(註一)當讀者看到此篇文章時,其股票已一股換十股,現在每一股約在 $100 左右。

(註二)組裝或升級過個人電腦的讀者或許還記得「英偉達精視 256」(GeForce 256)插卡吧?

(註三)筆者於 1984 年離開清華大學到 IBM 時,就是參加了被認為全世界使用電腦時間最多的量子化學家、IBM「院士(fellow)」Enrico Clementi 的團隊:因為當時英偉達還未有可以在 GPU 上進行平行處理的軟體層,我們只能自己寫軟體將 8 台中型電腦(非 IBM 品牌!)與一大型電腦連接來做平行運算,進行分子動力學模擬等的科學研究。如果晚生 30 年或許就不會那麼辛苦了?

-----廣告,請繼續往下閱讀-----

(註四)補助個人電腦用的 GPU 品牌到 2000 年時只剩下兩大主導廠商:英偉達及 ATI(Array Technology Inc.)。後者是出生於香港之四位中國人於 1985 年在加拿大安大略省成立,2006 年被超微半導體公司收購,品牌於 2010 年被淘汰。超微半導體公司於 2014 年 10 月提升台南出生之蘇姿豐(Lisa Tzwu-Fang Su)博士為執行長後,股票從每股 $4 左右,上升到今天每股超過 $160,其市值已經是英特爾的兩倍,完全擺脫了在後者陰影下求生存的小眾玩家角色,正在挑戰英偉達的 GPU 市場。順便一題:超微半導體公司現任總裁(兼 AI 策略負責人)為出生於台北的彭明博(Victor Peng);與黃仁勳及蘇姿豐一樣,也是小時候就隨父母親移居到美國。

(註五)

延伸閱讀

  • 熱力學與能源利用」,《科學月刊》,1982 年 3 月號;收集於《我愛科學》(華騰文化有限公司,2017 年 12 月出版),轉載於「嘉義市政府全球資訊網」。
  • 網路安全技術與比特幣」,《科學月刊》,2020 年 11 月號;轉載於「善科教育基金會」的《科技大補帖》專欄。
文章難易度

討論功能關閉中。

賴昭正_96
43 篇文章 ・ 56 位粉絲
成功大學化學工程系學士,芝加哥大學化學物理博士。在芝大時與一群留學生合創「科學月刊」。一直想回國貢獻所學,因此畢業後不久即回清大化學系任教。自認平易近人,但教學嚴謹,因此穫有「賴大刀」之惡名!於1982年時當選爲 清大化學系新一代的年青首任系主任兼所長;但壯志難酬,兩年後即辭職到美留浪。晚期曾回台蓋工廠及創業,均應「水土不服」而鎩羽而歸。正式退休後,除了開始又爲科學月刊寫文章外,全職帶小孫女(半歲起);現已成七歲之小孫女的BFF(2015)。首先接觸到泛科學是因爲科學月刊將我的一篇文章「愛因斯坦的最大的錯誤一宇宙論常數」推薦到泛科學重登。

0

1
2

文字

分享

0
1
2
內地核是固態還是液態?何不問問地震波!——幫地球照一張 X 光(2)
震識:那些你想知道的震事_96
・2017/09/26 ・2653字 ・閱讀時間約 5 分鐘 ・SR值 527 ・七年級

-----廣告,請繼續往下閱讀-----

文/洪瑞駿|國立中央大學地球科學學系-地球物理研究所碩士,對地球科學充滿好奇與想像的南部仔,因為 2006 屏東雙主震搖起對地震學的熱誠,目前在地震源與構造實驗室當個快樂的研究助理,夢想是當科學家(菸)。

編按:在前篇要怎麼知道地球的內部構造?何不問問神奇地震波!——幫地球照一張 X 光(1)一文中,提到人們開始利用地震儀探索地球內部構造,在這數十年的歲月中,又有哪些突破性的進展呢?讓我們繼~~續~~看~~下~~去!

圖/BY Apollo 17 @ wikimedia commons

「消失」的震波

如果我們將地震儀繞著地球一圈擺放,便可發現,在震央距(註 1) 某些範圍沒有 S 波訊號,僅有微弱的 P 波通過,而且震波抵達的時間比預期慢(圖ㄧ)。這便引起地震學家的注意了,畢竟如果地球內部若是均勻一致,S 波又怎麼會消失?到時(波傳到的時間)又怎麼會變慢?

-----廣告,請繼續往下閱讀-----

對科學家而言,往往最感興趣的就是調查「不合理」的事物。1914 年,古騰堡(Beno Gutenberg)從這樣的觀測結果,推測地球內部應該有個「地核」(就如同蛋的蛋黃般)存在,使震波紀錄在地函-地核交界處出現不連續(命名為古氏不連續面,以紀念古騰堡,註 2)。從下方圖一右邊的震波走時曲線(詳見上篇介紹)可以清楚看到這個不連續的位置,筆者以紅色箭頭標示出這個異常位置,可以發現在震央距 143˚~180 ˚ 位置抵達的 P 波到時比預期晚,而且 S 波消失了,這意味著震波通過了另一個構造(事實上就是穿過了地核,當時古騰堡用 P’ 來表示)。遲到的 P 波,代表的是通過地核時「波速變慢」嗎?從觀測結果來說似乎是對的,但也不完全正確,因為介質的變化太大了,事情其實頗為複雜。

圖一、若將地震儀繞地球一圈放,在各地的震波紀錄,可以清楚看到P波及S波傳遞的情形,其中在103˚~143˚圖中灰色範圍)直達的 波和 波都消失(綠色波)。圖/作者修改自IRIS

至於「S 波消失」這件事,很明顯的外核(當時認為是地核)是種「S 波無法穿透的物質」。從震央距 103˚ 開始,P 波和 S 波就會打到地核,S 波無法穿過地核而無法被接收;此外根據物理定律,P 波也因為入射角/出射角的偏離而無法被清楚記錄。直到143˚ 出現穿越地球而過的 P 波,我們稱這段範圍為陰影帶(沒有直接傳遞的 P 和 S 波),只會有些許的繞射波(註 2)被記錄到(圖三)。根據古騰堡當時的估算,這個核的深度大概是 2,900 公里,這與現代認為的 2,889 公里,僅有些微的差距。

圖二、左:若按照過去的液態地核模型,則在 103˚~143˚會出現所謂『陰影帶』,地震波無法到達這個位置。右:萊曼發現的幾個出現在陰影帶內的反射波(紅色箭頭),暗示應該有一個介面在地球深處,把震波彈回地表(Lehmann, 1936)。

-----廣告,請繼續往下閱讀-----

「漏看」的震波

接著,在發現地核後,一直到 1930 年代前,科學家們認為有著一層地殼、地函、和液態地核。然而,進一步的發現則要等到約30 年後的 1929 年,紐西蘭的強震說起。當另一端南半球的震波穿越地球到達歐洲,丹麥地震學家萊曼(Inge Lehmann)發現到另一種不同的波相,她推測這個這個波是從震源一路穿過地球核心而來,且震波速度又與古騰堡發現的P’不盡相同。這個波相過去被視為是繞射波,然而從頻率、震幅等幾個特性暗示它與繞射波有所不同(萊曼因此稱為 P3’)。

此外,從記錄中看到在 103˚~143˚ 這段陰影帶內,其實藏著清楚的反射波,這暗示有一個介面,把震波從地核彈回地表(圖三),然而這在古騰堡發表的走時圖中並未加以討論。萊曼試著解釋這個波相,她曾在這篇 1936 年經典的文獻中寫道:

An explanation o f the P 3 ‘ wave is required, since now it can hardly be considered probable that it is due to diffraction. A hypothesis will be here suggested which seems to hold some probability, although it cannot be proved from the data at hand. We take it . . . that inside the core there is an inner core in which the velocity is larger than the outer core.

(譯)既然了解不太可能是繞射效應造成,我們便需要解釋 P3’ 波。在此提出了一個假說,雖然現在尚缺乏有力的資料證明,但我們認為…在地球核心裡面還從在一個速度更快的內核。

萊曼大膽假設,如果這個核裡面還有一個內核的話,就可以解釋她看到的現象,她假設地函 10 km/s 每秒以及地外核 8 km/s,再放入一個速度較快的內地核(圖三)。當時她僅利用直線與三角函數來計算,卻已經可以完美解釋大部分的現象!她於 1936 年發表了內地核的看法。不過,當這樣的假設通過驗證後,萊曼並沒有近一步推算更多參數(例如確切的地內核速度、大小、組成等)。後來在 1938 年當古騰堡與芮克特重新檢驗這個模型後,基本上也同意內地核的想法。

接著經過幾年的驗證與討論後,越來越多的地震學者支持這樣的模型,1939 年傑佛瑞斯和布林提出了地球速度模型時(著名的 Jeffreys-Bullen Velocity Table),也將固態內地核列入考慮。

-----廣告,請繼續往下閱讀-----

圖三、萊曼所提出的包含地內核的地球模型,能解釋陰影帶內(灰色區域)出現的反射波以及P3’(紅色箭頭)。修改自Lehmann, 1936。

由於儀器進步、日益廣泛運用,以及科學家們的細心觀察,加上時有大膽的假設與嚴謹求證。短短數十年的光景,人類已經逐漸「摸透」地球內部的主要構造。然而,並非所有研究發展都如此順遂。回溯到 1910 年代左右的時間點,除了地震學的發展外,還有個剛起步萌芽的假說:韋格納(Alfred Lothar Wegener)提出大陸會移動的想法。可惜當時人們無法解釋驅動大陸運動的成因,他的假說便被束之高閣,等到二次世界大戰後,海洋探勘的興起才能將這塊拼圖湊齊,加上地震學對於地球內部的掌握,進一步發展起板塊學說(Tectonics)以及地體動力學(Geodynamics),以至於現代,我們才能對地球有個初步的認識。

註解

  1. 震央距係指從震央開始為起點計算與測站的距離。由於地球很大,我們改用圓周角度來表示。因此通常將地球圓周分為360˚來表示距離(類似經度的概念)。
  2. 最早將此介面命名為「古氏不連續面」的典故雖已不得而知。一般在學術界也多以「核-函邊界」予以稱呼。考慮到此為科普文章,且台灣的地科教科書也多以古氏不連續面作為介紹,故本文還是用此稱呼來表示核函邊界(可參考龔慧貞老師在科學月刊 552 期的說明)。

參考文獻

  • Bolt, B. A. (1987) 50 years of studies on the inner core. EOS., Vol. 68, 6.
  • Bolt, B. A. & E. Hjortenberg (1994) Memorial Essay Inge Lehmann (1888-1993) Bull. Seismol. Soc. Am. Vol. 84, 1.
  • Lehmann, I. (1936) P’, Publ. Bur. Cent. Seismol. Int. Trav. Sci. Ser. A, 14, 87.
  • Lehmann, I. (1987) Seismology in the days of old. EOS., Vol. 68,3.
  • 龔慧貞,2015。談談「古氏」與「雷氏」不連續面。科學月刊 552 期。

本文轉載自震識:那些你想知道的震事,原文為《幫地球照一張 X 光 (II)地震學家如何用地震波了解地球構造?》,也歡迎追蹤粉絲頁震識:那些你想知道的震事了解更多地震事。

-----廣告,請繼續往下閱讀-----
震識:那些你想知道的震事_96
38 篇文章 ・ 9 位粉絲
《震識:那些你想知道的震事》由中央大學馬國鳳教授與科普作家潘昌志(阿樹)共同成立的地震知識部落格。我們希望透過淺顯易懂的文字,讓地震知識走入日常生活中,同時也會藉由分享各種地震的歷史或生活故事,讓地震知識也充滿人文的溫度。

0

0
1

文字

分享

0
0
1
地震大小誰說了算?Part II :更「先進」的地震規模算法?
震識:那些你想知道的震事_96
・2017/06/30 ・4408字 ・閱讀時間約 9 分鐘 ・SR值 513 ・六年級

-----廣告,請繼續往下閱讀-----

文/潘昌志|「你地質系的?」不,但我待過地質所,而且還是海研所的碩士。無論在氣象局、小牛頓…都一樣熱愛地科與科普。現在從事試題研發工作,並持續在《地球故事書》、《泛科學》、《國語日報》等專欄分享地科的各種知識,想以科普寫作喚醒人們對地球的愛。

規模計算方法七十二變,變的原來是我們對地震與斷層的看法

記得我以前學到的知識是「地震規模只有一個」,我也一直都相信這件事。不過在接觸實務的地震定位和規模計算後,卻發現一件有趣的事,那就是「原來計算上的規模值可能不止一個!」由於當初在求地震規模時,使用的參數是儀器的最大振幅值,但因為每一個地震測站所在地的地質特性不一,而造成計算結果不同。而我們對地底下的地質變化了解的尺度其實頗為粗糙,所以要把結果不同的誤差完全修正,幾乎是不可能的。

普遍大眾都用芮氏規模,也以為只有一個指標,但其實還有其他的!圖/中央氣象局

這問題芮克特也是有想過的,但規模是用來描述地震本身的大小,定義上本來也只能有一個值,所以求出震源位置、計算規模時,實務上會把各地測站求得的規模值作平均,這也是為什麼地震規模只會到小數點後一位,因為精度是有限的。以現今的地震站密度以及我們對地下構造的了解,大多時候如果增加了數個測站後,還需要修正的地震規模值,大概頂多只差個 0.1、0.2 左右,所以下次你看到事後有修正規模值或是不同單位的結果不同,也不需要太意外了!

-----廣告,請繼續往下閱讀-----

從前從前,芮氏規模背後有個偉大的男人

在之前的文章《地震大小誰說了算?Part I:課本沒教的芮氏震規模》中,有提到了最早設計規模的人是芮克特和古騰堡,好像我們都忘了後面那位厲害的科學家,連名字都忘了放上去,但他其實也做了某程度的貢獻。他和芮克特發現芮氏規模會有「飽合」的問題,簡單來說就是明明規模應該是遠大於 6.0 很多的地震,用芮氏規模的計算方式,怎麼樣都只有 6.0 ~ 6.5 不等。

(以下為對白部分純屬想像,不代表真實故事)

「這其中一定是有什麼誤會!」古騰堡表示。

「這很麻煩,其實扣除那些大地震,我們的方法還是很好用啊!」芮克特不想改變這套計算系統。

-----廣告,請繼續往下閱讀-----

「不然,我們調整一下做法好了,看能不能調整公式,或是把不同類型的波分別處理(文末註 1)?」

所以後來古騰堡又發明了不同規模的計算方式,包括只利用實體波(P 波、S 波)的「體波規模」mb,還有另一種專門可以用在大地震上的「表面波規模」Ms,正好銜接上原先規模的計算上限。

所以最後我們現今常用的芮氏規模之所以可以算出大於規模 7 的值,也是因為後來古騰堡改良了原先規模太大會達飽和的問題。而與其說我們的規模是用芮氏規模,不如說它是「近震規模」,其標示 ML 的下標 L,本來就是指 local magnitude 的意思!

芮氏規模後面的偉大男人。圖/Beno Gutenberg headshot, 來自 SEG Wiki

-----廣告,請繼續往下閱讀-----

但是,其實問題還是沒有完全解決呢!

不懂規模「飽和」的原因?想像一下放屁吧!

對於超大型等級的大地震(規模 8、9 以上的地震,像 2011 年東日本大地震、2004 蘇門答臘地震)的「近震規模」,即使有了表面波規模的加持,但終究還是出現「飽和」的情況,這其實反映了我們看待地震的問題。

以現今的科學角度來看,近震規模的計算方式其實有盲點。大多時候,斷層錯動釋放能量引發地震時,往往會發生在很快的一瞬間,但是斷層的尺度一旦變得很大時,那一瞬間有可能會變得相對久得多。用一個稍微不衛生但相對好懂的例子:我們用不同的工具來測量「誰放的屁較大」時,便會有不同的結果。

我們先試想兩種放屁的情境:

1、在 1 秒之內放了一個響屁。

-----廣告,請繼續往下閱讀-----

2、花 10 秒時間緩慢的放了一連串的屁,最大音量和前者接近。

如果我們僅只測量屁聲的音量來評斷屁的大小,第 2 種情況產生的屁量「容積」雖較大,但因為屁聲的分貝數相近,所以會發生低估屁量的情況。

不同「釋放方法」差很多!圖/giphy

所以,近震規模之所以飽和,代表的就是它沒辦法正確且完整的測量斷層錯動引發地震所釋放的能量。芮氏規模的計算方式僅計得了最大規模,但斷層的錯動時間可能很快,也很可能很慢,在《震識》網站上的「潛移斷層」介紹文中,提到了斷層錯動甚至可以慢到不會發生地震。

-----廣告,請繼續往下閱讀-----

如果所有的斷層面只是在一瞬間(數秒鐘左右)滑動,那麼用地震波最大振幅來估算,應該不會有太大問題,可這種情況多半只發生在規模較小的地震。當地震大到 8.0 以上,滑動就有可能花上很長的時間,近代最極致的例子,就是 2004 年蘇門答臘 Mw = 9.3 的地震,整條斷層錯動的時間花了將近 10 分鐘。至於最近一次超過規模 9 的 311 東日本大地震(Mw = 9.1),斷層錯動的時間也超過 3 分鐘,這已經算是非常快的滑動速度了!

2011 年東日本大地震時,斷層破裂與錯動情況,斜向長方形範圍代表斷層的分布(麻煩請發揮想像力,它是一個右高左低、在地底下的斜面),等值線和彩色代表它的滑動量分布,黑色箭頭代表滑動方向。紅色星號代表震央,紫紅色圓圈代表餘震的分布位置。圖/Lee, 2011.2

金森博雄教授發明的「震矩規模」

要說明解決地震規模的新發明「震矩規模」,就不得不提它的創立者,就是加州理工學院的金森博雄教授(Hiroo Kanamori,金森教授同是本站催生者馬國鳳教授的指導教授,對阿樹來說是「老師的老師」輩了XD)。金森博雄用了我們國中都稍微接觸過的物理意義來解決這個問題:斷層做的「功」,就是地震釋放的能量。

而金森博雄在計算地震能量時,便創立了一個新單位:「地震矩」,利用斷層的滑動量斷層的面積斷層面的特性(剛性係數)這三個參數算出來。由這三個參數算出的「地震矩」,一般會以 Mo 表示,它雖然像是「力矩」的概念,但也相當於地震釋放的能量。(見文末註 2)

-----廣告,請繼續往下閱讀-----

怕大家看了不熟悉的公式害怕,細節可以參考「地震矩」(Earthquake Glossary),在此就不贅述。對於細節還更有興趣的話,可能就要看當年發表的文章一文章二了(但要付費下載)。

這三個參數或是其計算結果的「地震矩」要怎麼得到呢?大地震後的地表變形,讓我們知道斷層的長度、錯動的程度和地表變形的範圍,而大地震過後的餘震也能告訴我們地底下斷層面可能的分布情形,再加上一些地震波形藏的資訊,這些都能幫我們估出地震矩。但受限於科技,早期的地震儀就像是比較低階的錄音機,能記下的震波有限,直至寬頻地震儀的問世(1988 年),我們「錄製」地震的波形能力大幅提升,現在也能藉由地震波直接估算出震矩,只要有「完整的地震波形」,就能算出地震的總能量。

不過 Mo 的值既然是代表地震的總能量,那麼可想而知其值非常大,不過這個問題芮克特和古騰堡早就已經解決了,用對數(取 log 值)的方式來建立公式就可以讓它的標示單純化。說到這,阿樹也不禁感慨,原來當初念書時學的微積分、工程數學真的是有用處的啊!(笑)

地震規模算法的具像化比喻差異,不代表真實的計算方式。因為計算地震矩時會用上完整的地震波形,等於把能量釋放隨時間的變化也都考量進去,更能反映真實能量情況。圖/《震識》

-----廣告,請繼續往下閱讀-----

不同規模間的差異該怎麼辦?說清楚就好

用震矩規模的方式來計算並描述地震,既不會有飽合,小地震也都能套用,可以說是「更先進」的計算方法。但也因為它是完整的計算能量,和其它的規模計算方法間的轉換就不太好作換算,因為不同的規模的計算方法已經不是在算同樣的參數了,自然無法容易轉換。在震矩規模開始發展以前所使用的那些近震規模,就難以再轉換回來,這樣在統計過去的地震規模時,就會有單位使用不一致的情形,所以其實蠻多地區的監測單位仍使用近震(芮氏)規模來描述地震。

或許有人會認為「既然有個更先進的方式,為什麼還要用比較舊而且有缺點的方法?」不過就像前面提到的,以長期地震紀錄來看,兩者並行或許是更好的方式,當然我們現在也已經在做了,只是中央氣象局公告的資料還是以芮氏規模為主。

附帶一提,有些時候,震矩規模和芮氏規模計算結果的「差異」,也透露了一些科學訊息。有一種「慢地震」,顧名思義就是滑移速度較慢的地震,如果它的斷層類型是正斷層或逆斷層,又發生在海底時,斷層錯動造成的大規模海水波動,有可能引發大海嘯。從前面提到的計算原理來看,正因為慢地震的滑移的速度較慢,往往會讓儀器收到的振幅較小,芮氏規模因而較為低估,因此當我們發現兩者的差異很大,且又發生在海底時,就要特別當心這現象。

這樣看來,或許地震矩規模有它「先進」的地方,但並不代表芮氏規模就「不好」,畢竟芮克特和古騰堡將地震的能量計算回歸地震波形,並用對數的方式做處理表示,已經是一個劃時代的做法。而金森博雄教授再進一步的量化方式,讓我們更了解地震發生過程和能量釋放的方式,又讓地震科學再更上一層樓。我想對人們來說,只要清楚知道自己用的是什麼單位即可,就像計算容積時用「公升」還是「加侖」都行,只要講清楚、說明白,方是科學之道!

  • 註 1:地震波主要可分實體波和表面波,實體波即為 P 波、S 波,代表能穿透的震波,而表面波則是在介面(地表也是一種介面)上傳播,依運動方式不同包括雷利波和洛夫波,分類細節請參考氣象局地震百問
  • 註 2:如果忘記「功」是什麼,可以重新翻開國中自然課本,裡面有個 W = F x S 的公式,即「功」=「作用力」乘上「作用的距離」,譬如提重物走一層樓,作用距離就是一層樓的高度。不過,斷層是個塊體相對運動,另一個公式可能更能說明斷層上的情況,那就是力矩的公式:L = F x D,即「力矩」=「力」乘上「力臂」。

本文原發表於《震識:那些你想知道的震事》部落格,歡迎加入他們的粉絲專頁持續關注。將會得到最科學前緣的地震時事、最淺顯易懂的地震知識、還有最貼近人心的地震故事。

參考資料:

  1. USGS Earthquake Glossary(web):seismic moment
  2. Lee S. J., 2011, Rupture process of the 2011 Tohoku-Oki earthquake based upon joint source inversion of teleseismic and GPS data; Terr. Atmos. Ocean Sci. 23 1–7.

延伸閱讀:

震識:那些你想知道的震事_96
38 篇文章 ・ 9 位粉絲
《震識:那些你想知道的震事》由中央大學馬國鳳教授與科普作家潘昌志(阿樹)共同成立的地震知識部落格。我們希望透過淺顯易懂的文字,讓地震知識走入日常生活中,同時也會藉由分享各種地震的歷史或生活故事,讓地震知識也充滿人文的溫度。