0

1
2

文字

分享

0
1
2

內地核是固態還是液態?何不問問地震波!——幫地球照一張 X 光(2)

震識:那些你想知道的震事_96
・2017/09/26 ・2653字 ・閱讀時間約 5 分鐘 ・SR值 527 ・七年級

文/洪瑞駿|國立中央大學地球科學學系-地球物理研究所碩士,對地球科學充滿好奇與想像的南部仔,因為 2006 屏東雙主震搖起對地震學的熱誠,目前在地震源與構造實驗室當個快樂的研究助理,夢想是當科學家(菸)。

編按:在前篇要怎麼知道地球的內部構造?何不問問神奇地震波!——幫地球照一張 X 光(1)一文中,提到人們開始利用地震儀探索地球內部構造,在這數十年的歲月中,又有哪些突破性的進展呢?讓我們繼~~續~~看~~下~~去!

圖/BY Apollo 17 @ wikimedia commons

「消失」的震波

如果我們將地震儀繞著地球一圈擺放,便可發現,在震央距(註 1) 某些範圍沒有 S 波訊號,僅有微弱的 P 波通過,而且震波抵達的時間比預期慢(圖ㄧ)。這便引起地震學家的注意了,畢竟如果地球內部若是均勻一致,S 波又怎麼會消失?到時(波傳到的時間)又怎麼會變慢?

對科學家而言,往往最感興趣的就是調查「不合理」的事物。1914 年,古騰堡(Beno Gutenberg)從這樣的觀測結果,推測地球內部應該有個「地核」(就如同蛋的蛋黃般)存在,使震波紀錄在地函-地核交界處出現不連續(命名為古氏不連續面,以紀念古騰堡,註 2)。從下方圖一右邊的震波走時曲線(詳見上篇介紹)可以清楚看到這個不連續的位置,筆者以紅色箭頭標示出這個異常位置,可以發現在震央距 143˚~180 ˚ 位置抵達的 P 波到時比預期晚,而且 S 波消失了,這意味著震波通過了另一個構造(事實上就是穿過了地核,當時古騰堡用 P’ 來表示)。遲到的 P 波,代表的是通過地核時「波速變慢」嗎?從觀測結果來說似乎是對的,但也不完全正確,因為介質的變化太大了,事情其實頗為複雜。

-----廣告,請繼續往下閱讀-----
圖一、若將地震儀繞地球一圈放,在各地的震波紀錄,可以清楚看到P波及S波傳遞的情形,其中在103˚~143˚圖中灰色範圍)直達的 波和 波都消失(綠色波)。圖/作者修改自IRIS

至於「S 波消失」這件事,很明顯的外核(當時認為是地核)是種「S 波無法穿透的物質」。從震央距 103˚ 開始,P 波和 S 波就會打到地核,S 波無法穿過地核而無法被接收;此外根據物理定律,P 波也因為入射角/出射角的偏離而無法被清楚記錄。直到143˚ 出現穿越地球而過的 P 波,我們稱這段範圍為陰影帶(沒有直接傳遞的 P 和 S 波),只會有些許的繞射波(註 2)被記錄到(圖三)。根據古騰堡當時的估算,這個核的深度大概是 2,900 公里,這與現代認為的 2,889 公里,僅有些微的差距。

圖二、左:若按照過去的液態地核模型,則在 103˚~143˚會出現所謂『陰影帶』,地震波無法到達這個位置。右:萊曼發現的幾個出現在陰影帶內的反射波(紅色箭頭),暗示應該有一個介面在地球深處,把震波彈回地表(Lehmann, 1936)。

「漏看」的震波

接著,在發現地核後,一直到 1930 年代前,科學家們認為有著一層地殼、地函、和液態地核。然而,進一步的發現則要等到約30 年後的 1929 年,紐西蘭的強震說起。當另一端南半球的震波穿越地球到達歐洲,丹麥地震學家萊曼(Inge Lehmann)發現到另一種不同的波相,她推測這個這個波是從震源一路穿過地球核心而來,且震波速度又與古騰堡發現的P’不盡相同。這個波相過去被視為是繞射波,然而從頻率、震幅等幾個特性暗示它與繞射波有所不同(萊曼因此稱為 P3’)。

此外,從記錄中看到在 103˚~143˚ 這段陰影帶內,其實藏著清楚的反射波,這暗示有一個介面,把震波從地核彈回地表(圖三),然而這在古騰堡發表的走時圖中並未加以討論。萊曼試著解釋這個波相,她曾在這篇 1936 年經典的文獻中寫道:

An explanation o f the P 3 ‘ wave is required, since now it can hardly be considered probable that it is due to diffraction. A hypothesis will be here suggested which seems to hold some probability, although it cannot be proved from the data at hand. We take it . . . that inside the core there is an inner core in which the velocity is larger than the outer core.

(譯)既然了解不太可能是繞射效應造成,我們便需要解釋 P3’ 波。在此提出了一個假說,雖然現在尚缺乏有力的資料證明,但我們認為…在地球核心裡面還從在一個速度更快的內核。

萊曼大膽假設,如果這個核裡面還有一個內核的話,就可以解釋她看到的現象,她假設地函 10 km/s 每秒以及地外核 8 km/s,再放入一個速度較快的內地核(圖三)。當時她僅利用直線與三角函數來計算,卻已經可以完美解釋大部分的現象!她於 1936 年發表了內地核的看法。不過,當這樣的假設通過驗證後,萊曼並沒有近一步推算更多參數(例如確切的地內核速度、大小、組成等)。後來在 1938 年當古騰堡與芮克特重新檢驗這個模型後,基本上也同意內地核的想法。

-----廣告,請繼續往下閱讀-----

接著經過幾年的驗證與討論後,越來越多的地震學者支持這樣的模型,1939 年傑佛瑞斯和布林提出了地球速度模型時(著名的 Jeffreys-Bullen Velocity Table),也將固態內地核列入考慮。

圖三、萊曼所提出的包含地內核的地球模型,能解釋陰影帶內(灰色區域)出現的反射波以及P3’(紅色箭頭)。修改自Lehmann, 1936。

由於儀器進步、日益廣泛運用,以及科學家們的細心觀察,加上時有大膽的假設與嚴謹求證。短短數十年的光景,人類已經逐漸「摸透」地球內部的主要構造。然而,並非所有研究發展都如此順遂。回溯到 1910 年代左右的時間點,除了地震學的發展外,還有個剛起步萌芽的假說:韋格納(Alfred Lothar Wegener)提出大陸會移動的想法。可惜當時人們無法解釋驅動大陸運動的成因,他的假說便被束之高閣,等到二次世界大戰後,海洋探勘的興起才能將這塊拼圖湊齊,加上地震學對於地球內部的掌握,進一步發展起板塊學說(Tectonics)以及地體動力學(Geodynamics),以至於現代,我們才能對地球有個初步的認識。

註解

  1. 震央距係指從震央開始為起點計算與測站的距離。由於地球很大,我們改用圓周角度來表示。因此通常將地球圓周分為360˚來表示距離(類似經度的概念)。
  2. 最早將此介面命名為「古氏不連續面」的典故雖已不得而知。一般在學術界也多以「核-函邊界」予以稱呼。考慮到此為科普文章,且台灣的地科教科書也多以古氏不連續面作為介紹,故本文還是用此稱呼來表示核函邊界(可參考龔慧貞老師在科學月刊 552 期的說明)。

參考文獻

  • Bolt, B. A. (1987) 50 years of studies on the inner core. EOS., Vol. 68, 6.
  • Bolt, B. A. & E. Hjortenberg (1994) Memorial Essay Inge Lehmann (1888-1993) Bull. Seismol. Soc. Am. Vol. 84, 1.
  • Lehmann, I. (1936) P’, Publ. Bur. Cent. Seismol. Int. Trav. Sci. Ser. A, 14, 87.
  • Lehmann, I. (1987) Seismology in the days of old. EOS., Vol. 68,3.
  • 龔慧貞,2015。談談「古氏」與「雷氏」不連續面。科學月刊 552 期。

本文轉載自震識:那些你想知道的震事,原文為《幫地球照一張 X 光 (II)地震學家如何用地震波了解地球構造?》,也歡迎追蹤粉絲頁震識:那些你想知道的震事了解更多地震事。

-----廣告,請繼續往下閱讀-----
文章難易度
震識:那些你想知道的震事_96
38 篇文章 ・ 9 位粉絲
《震識:那些你想知道的震事》由中央大學馬國鳳教授與科普作家潘昌志(阿樹)共同成立的地震知識部落格。我們希望透過淺顯易懂的文字,讓地震知識走入日常生活中,同時也會藉由分享各種地震的歷史或生活故事,讓地震知識也充滿人文的溫度。

0

3
3

文字

分享

0
3
3
圖形處理單元與人工智慧
賴昭正_96
・2024/06/24 ・6944字 ・閱讀時間約 14 分鐘

-----廣告,請繼續往下閱讀-----

  • 作者/賴昭正|前清大化學系教授、系主任、所長;合創科學月刊

我擔心人工智慧可能會完全取代人類。如果人們能設計電腦病毒,那麼就會有人設計出能夠自我改進和複製的人工智慧。 這將是一種超越人類的新生命形式。

——史蒂芬.霍金(Stephen Hawking) 英國理論物理學家

大約在八十年前,當第一台數位計算機出現時,一些電腦科學家便一直致力於讓機器具有像人類一樣的智慧;但七十年後,還是沒有機器能夠可靠地提供人類程度的語言或影像辨識功能。誰又想到「人工智慧」(Artificial Intelligent,簡稱 AI)的能力最近十年突然起飛,在許多(所有?)領域的測試中擊敗了人類,正在改變各個領域——包括假新聞的製造與散佈——的生態。

圖形處理單元(graphic process unit,簡稱 GPU)是這場「人工智慧」革命中的最大助手。它的興起使得九年前還是個小公司的 Nvidia(英偉達)股票從每股不到 $5,上升到今天(5 月 24 日)每股超過 $1000(註一)的全世界第三大公司,其創辦人(之一)兼首席執行官、出生於台南的黃仁勳(Jenson Huang)也一躍成為全世界排名 20 內的大富豪、台灣家喻戶曉的名人!可是多少人了解圖形處理單元是什麼嗎?到底是時勢造英雄,還是英雄造時勢?

黃仁勳出席2016年台北國際電腦展
Nvidia 的崛起究竟是時勢造英雄,還是英雄造時勢?圖/wikimedia

在回答這問題之前,筆者得先聲明筆者不是學電腦的,因此在這裡所能談的只是與電腦設計細節無關的基本原理。筆者認為將原理轉成實用工具是專家的事,不是我們外行人需要了解的;但作為一位現在的知識分子或公民,了解基本原理則是必備的條件:例如了解「能量不滅定律」就可以不用仔細分析,即可判斷永動機是騙人的;又如現在可攜帶型冷氣機充斥市面上,它們不用往室外排廢熱氣,就可以提供屋內冷氣,讀者買嗎?

CPU 與 GPU

不管是大型電腦或個人電腦都需具有「中央處理單元」(central process unit,簡稱 CPU)。CPU 是電腦的「腦」,其電子電路負責處理所有軟體正確運作所需的所有任務,如算術、邏輯、控制、輸入和輸出操作等等。雖然早期的設計即可以讓一個指令同時做兩、三件不同的工作;但為了簡單化,我們在這裡所談的工作將只是執行算術和邏輯運算的工作(arithmetic and logic unit,簡稱 ALU),如將兩個數加在一起。在這一簡化的定義下,CPU 在任何一個時刻均只能執行一件工作而已。

-----廣告,請繼續往下閱讀-----

在個人電腦剛出現只能用於一般事物的處理時,CPU 均能非常勝任地完成任務。但電腦圖形和動畫的出現帶來了第一批運算密集型工作負載後,CPU 開始顯示心有餘而力不足:例如電玩動畫需要應用程式處理數以萬計的像素(pixel),每個像素都有自己的顏色、光強度、和運動等, 使得 CPU 根本沒辦法在短時間內完成這些工作。於是出現了主機板上之「顯示插卡」來支援補助 CPU。

1999 年,英偉達將其一「具有集成變換、照明、三角形設定/裁剪、和透過應用程式從模型產生二維或三維影像的單晶片處理器」(註二)定位為「世界上第一款 GPU」,「GPU」這一名詞於焉誕生。不像 CPU,GPU 可以在同一個時刻執行許多算術和邏輯運算的工作,快速地完成圖形和動畫的變化。

依序計算和平行計算

一部電腦 CPU 如何計算 7×5+6/3 呢?因每一時刻只能做一件事,所以其步驟為:

  • 計算 7×5;
  • 計算 6/3;
  • 將結果相加。

總共需要 3 個運算時間。但如果我們有兩個 CPU 呢?很多工作便可以同時(平行)進行:

-----廣告,請繼續往下閱讀-----
  • 同時計算 7×5 及 6/3;
  • 將結果相加。

只需要 2 個運算時間,比單獨的 CPU 減少了一個。這看起來好像沒節省多少時間,但如果我們有 16 對 a×b 要相加呢?單獨的 CPU 需要 31 個運算的時間(16 個 × 的運算時間及 15 個 + 的運算時間),而有 16 個小 CPU 的 GPU 則只需要 5 個運算的時間(1 個 × 的運算時間及 4 個 + 的運算時間)!

現在就讓我們來看看為什麼稱 GPU 為「圖形」處理單元。圖一左圖《我愛科學》一書擺斜了,如何將它擺正成右圖呢? 一句話:「將整個圖逆時針方向旋轉 θ 即可」。但因為左圖是由上百萬個像素點(座標 x, y)組成的,所以這句簡單的話可讓 CPU 忙得不亦樂乎了:每一點的座標都必須做如下的轉換

x’ = x cosθ + y sinθ

y’ = -x sinθ+ y cosθ

-----廣告,請繼續往下閱讀-----

即每一點均需要做四個 × 及兩個 + 的運算!如果每一運算需要 10-6 秒,那麼讓《我愛科學》一書做個簡單的角度旋轉,便需要 6 秒,這豈是電動玩具畫面變化所能接受的?

圖形處理的例子

人類的許多發明都是基於需要的關係,因此電腦硬件設計家便開始思考:這些點轉換都是獨立的,為什麼我們不讓它們同時進行(平行運算,parallel processing)呢?於是專門用來處理「圖形」的處理單元出現了——就是我們現在所知的 GPU。如果一個 GPU 可以同時處理 106 運算,那上圖的轉換只需 10-6 秒鐘!

GPU 的興起

GPU 可分成兩種:

  • 整合式圖形「卡」(integrated graphics)是內建於 CPU 中的 GPU,所以不是插卡,它與 CPU 共享系統記憶體,沒有單獨的記憶體組來儲存圖形/視訊,主要用於大部分的個人電腦及筆記型電腦上;早期英特爾(Intel)因為不讓插卡 GPU 侵蝕主機的地盤,在這方面的研發佔領先的地位,約佔 68% 的市場。
  • 獨立顯示卡(discrete graphics)有不與 CPU 共享的自己專用內存;由於與處理器晶片分離,它會消耗更多電量並產生大量熱量;然而,也正是因為有自己的記憶體來源和電源,它可以比整合式顯示卡提供更高的效能。

2007 年,英偉達發布了可以在獨立 GPU 上進行平行處理的軟體層後,科學家發現獨立 GPU 不但能夠快速處理圖形變化,在需要大量計算才能實現特定結果的任務上也非常有效,因此開啟了為計算密集型的實用題目編寫 GPU 程式的領域。如今獨立 GPU 的應用範圍已遠遠超出當初圖形處理,不但擴大到醫學影像和地震成像等之複雜圖像和影片編輯及視覺化,也應用於駕駛、導航、天氣預報、大資料庫分析、機器學習、人工智慧、加密貨幣挖礦、及分子動力學模擬(註三)等其它領域。獨立 GPU 已成為人工智慧生態系統中不可或缺的一部分,正在改變我們的生活方式及許多行業的遊戲規則。英特爾在這方面發展較遲,遠遠落在英偉達(80%)及超微半導體公司(Advance Micro Devices Inc.,19%,註四)之後,大約只有 1% 的市場。

-----廣告,請繼續往下閱讀-----
典型的CPU與GPU架構

事實上現在的中央處理單元也不再是真正的「單元」,而是如圖二可含有多個可以同時處理運算的核心(core)單元。GPU 犧牲大量快取和控制單元以獲得更多的處理核心,因此其核心功能不如 CPU 核心強大,但它們能同時高速執行大量相同的指令,在平行運算中發揮強大作用。現在電腦通常具有 2 到 64 個核心;GPU 則具有上千、甚至上萬的核心。

結論

我們一看到《我愛科學》這本書,不需要一點一點地從左上到右下慢慢掃描,即可瞬間知道它上面有書名、出版社等,也知道它擺斜了。這種「平行運作」的能力不僅限於視覺,它也延伸到其它感官和認知功能。例如筆者在清華大學授課時常犯的一個毛病是:嘴巴在講,腦筋思考已經不知往前跑了多少公里,常常為了追趕而越講越快,將不少學生拋到腦後!這不表示筆者聰明,因為研究人員發現我們的大腦具有同時處理和解釋大量感官輸入的能力。

人工智慧是一種讓電腦或機器能夠模擬人類智慧和解決問題能力的科技,因此必須如人腦一樣能同時並行地處理許多資料。學過矩陣(matrix)的讀者應該知道,如果用矩陣和向量(vector)表達,上面所談到之座標轉換將是非常簡潔的(註五)。而矩陣和向量計算正是機器學習(machine learning)演算法的基礎!也正是獨立圖形處理單元最強大的功能所在!因此我們可以了解為什麼 GPU 會成為人工智慧開發的基石:它們的架構就是充分利用並行處理,來快速執行多個操作,進行訓練電腦或機器以人腦之思考與學習的方式處理資料——稱為「深度學習」(deep learning)。

黃仁勳在 5 月 22 日的發布業績新聞上謂:「下一次工業革命已經開始了:企業界和各國正與英偉達合作,將價值數萬億美元的傳統資料中心轉變為加速運算及新型資料中心——人工智慧工廠——以生產新商品『人工智慧』。人工智慧將為每個產業帶來顯著的生產力提升,幫助企業降低成本和提高能源效率,同時擴大收入機會。」

附錄

人工智慧的實用例子:下面一段是微軟的「copilot」代書、谷歌的「translate」代譯之「one paragraph summary of GPU and AI」。讀完後,讀者是不是認為筆者該退休了?

-----廣告,請繼續往下閱讀-----

GPU(圖形處理單元)和 AI(人工智慧)之間的協同作用徹底改變了高效能運算領域。GPU 具有平行處理能力,特別適合人工智慧和機器學習所需的複雜資料密集運算。這導致了影像和視訊處理等領域的重大進步,使自動駕駛和臉部辨識等技術變得更加高效和可靠。NVIDIA 開發的平行運算平台 CUDA 進一步提高了 GPU 的效率,使開發人員能夠透過將人工智慧問題分解為更小的、可管理的、可同時處理的任務來解決這些問題。這不僅加快了人工智慧研究的步伐,而且使其更具成本效益,因為 GPU 可以在很短的時間內執行與多個 CPU 相同的任務。隨著人工智慧的不斷發展,GPU 的角色可能會變得更加不可或缺,推動各產業的創新和新的可能性。大腦透過神經元網路實現這一目標,這些神經元網路可以獨立但有凝聚力地工作,使我們能夠執行複雜的任務,例如駕駛、導航、觀察交通信號、聽音樂並同時規劃我們的路線。此外,研究表明,與非人類動物相比,人類大腦具有更多平行通路,這表明我們的神經處理具有更高的複雜性。這個複雜的系統證明了我們認知功能的卓越適應性和效率。我們可以一邊和朋友聊天一邊走在街上,一邊聽音樂一邊做飯,或一邊聽講座一邊做筆記。人工智慧是模擬人類腦神經網路的科技,因此必須能同時並行地來處理許多資料。研究人員發現了人腦通訊網路具有一個在獼猴或小鼠中未觀察獨特特徵:透過多個並行路徑傳輸訊息,因此具有令人難以置信的多任務處理能力。

註解

(註一)當讀者看到此篇文章時,其股票已一股換十股,現在每一股約在 $100 左右。

(註二)組裝或升級過個人電腦的讀者或許還記得「英偉達精視 256」(GeForce 256)插卡吧?

(註三)筆者於 1984 年離開清華大學到 IBM 時,就是參加了被認為全世界使用電腦時間最多的量子化學家、IBM「院士(fellow)」Enrico Clementi 的團隊:因為當時英偉達還未有可以在 GPU 上進行平行處理的軟體層,我們只能自己寫軟體將 8 台中型電腦(非 IBM 品牌!)與一大型電腦連接來做平行運算,進行分子動力學模擬等的科學研究。如果晚生 30 年或許就不會那麼辛苦了?

-----廣告,請繼續往下閱讀-----

(註四)補助個人電腦用的 GPU 品牌到 2000 年時只剩下兩大主導廠商:英偉達及 ATI(Array Technology Inc.)。後者是出生於香港之四位中國人於 1985 年在加拿大安大略省成立,2006 年被超微半導體公司收購,品牌於 2010 年被淘汰。超微半導體公司於 2014 年 10 月提升台南出生之蘇姿豐(Lisa Tzwu-Fang Su)博士為執行長後,股票從每股 $4 左右,上升到今天每股超過 $160,其市值已經是英特爾的兩倍,完全擺脫了在後者陰影下求生存的小眾玩家角色,正在挑戰英偉達的 GPU 市場。順便一題:超微半導體公司現任總裁(兼 AI 策略負責人)為出生於台北的彭明博(Victor Peng);與黃仁勳及蘇姿豐一樣,也是小時候就隨父母親移居到美國。

(註五)

延伸閱讀

  • 熱力學與能源利用」,《科學月刊》,1982 年 3 月號;收集於《我愛科學》(華騰文化有限公司,2017 年 12 月出版),轉載於「嘉義市政府全球資訊網」。
  • 網路安全技術與比特幣」,《科學月刊》,2020 年 11 月號;轉載於「善科教育基金會」的《科技大補帖》專欄。
文章難易度

討論功能關閉中。

賴昭正_96
43 篇文章 ・ 56 位粉絲
成功大學化學工程系學士,芝加哥大學化學物理博士。在芝大時與一群留學生合創「科學月刊」。一直想回國貢獻所學,因此畢業後不久即回清大化學系任教。自認平易近人,但教學嚴謹,因此穫有「賴大刀」之惡名!於1982年時當選爲 清大化學系新一代的年青首任系主任兼所長;但壯志難酬,兩年後即辭職到美留浪。晚期曾回台蓋工廠及創業,均應「水土不服」而鎩羽而歸。正式退休後,除了開始又爲科學月刊寫文章外,全職帶小孫女(半歲起);現已成七歲之小孫女的BFF(2015)。首先接觸到泛科學是因爲科學月刊將我的一篇文章「愛因斯坦的最大的錯誤一宇宙論常數」推薦到泛科學重登。

0

9
3

文字

分享

0
9
3
快!還要更快!讓國家級地震警報更好用的「都會區強震預警精進計畫」
鳥苷三磷酸 (PanSci Promo)_96
・2024/01/21 ・2584字 ・閱讀時間約 5 分鐘

-----廣告,請繼續往下閱讀-----

本文由 交通部中央氣象署 委託,泛科學企劃執行。

  • 文/陳儀珈

從地震儀感應到地震的震動,到我們的手機響起國家級警報,大約需要多少時間?

臺灣從 1991 年開始大量增建地震測站;1999 年臺灣爆發了 921 大地震,當時的地震速報系統約在震後 102 秒完成地震定位;2014 年正式對公眾推播強震即時警報;到了 2020 年 4 月,隨著技術不斷革新,當時交通部中央氣象局地震測報中心(以下簡稱為地震中心)僅需 10 秒,就可以發出地震預警訊息!

然而,地震中心並未因此而自滿,而是持續擴建地震觀測網,開發新技術。近年來,地震中心執行前瞻基礎建設 2.0「都會區強震預警精進計畫」,預計讓臺灣的地震預警系統邁入下一個新紀元!

-----廣告,請繼續往下閱讀-----

連上網路吧!用建設與技術,換取獲得地震資料的時間

「都會區強震預警精進計畫」起源於「民生公共物聯網數據應用及產業開展計畫」,該計畫致力於跨部會、跨單位合作,由 11 個執行單位共同策畫,致力於優化我國環境與防災治理,並建置資料開放平台。

看到這裡,或許你還沒反應過來地震預警系統跟物聯網(Internet of Things,IoT)有什麼關係,嘿嘿,那可大有關係啦!

當我們將各種實體物品透過網路連結起來,建立彼此與裝置的通訊後,成為了所謂的物聯網。在我國的地震預警系統中,即是透過將地震儀的資料即時傳輸到聯網系統,並進行運算,實現了對地震活動的即時監測和預警。

地震中心在臺灣架設了 700 多個強震監測站,但能夠和地震中心即時連線的,只有其中 500 個,藉由這項計畫,地震中心將致力增加可連線的強震監測站數量,並優化原有強震監測站的聯網品質。

-----廣告,請繼續往下閱讀-----

在地震中心的評估中,可以連線的強震監測站大約可在 113 年時,從原有的 500 個增加至 600 個,並且更新現有監測站的軟體與硬體設備,藉此提升地震預警系統的效能。

由此可知,倘若地震儀沒有了聯網的功能,我們也形同完全失去了地震預警系統的一切。

把地震儀放到井下後,有什麼好處?

除了加強地震儀的聯網功能外,把地震儀「放到地下」,也是提升地震預警系統效能的關鍵做法。

為什麼要把地震儀放到地底下?用日常生活來比喻的話,就像是買屋子時,要選擇鬧中取靜的社區,才不會讓吵雜的環境影響自己在房間聆聽優美的音樂;看星星時,要選擇光害比較不嚴重的山區,才能看清楚一閃又一閃的美麗星空。

-----廣告,請繼續往下閱讀-----

地表有太多、太多的環境雜訊了,因此當地震儀被安裝在地表時,想要從混亂的「噪音」之中找出關鍵的地震波,就像是在搖滾演唱會裡聽電話一樣困難,無論是電腦或研究人員,都需要花費比較多的時間,才能判讀來自地震的波形。

這些環境雜訊都是從哪裡來的?基本上,只要是你想得到的人為震動,對地震儀來說,都有可能是「噪音」!

當地震儀靠近工地或馬路時,一輛輛大卡車框啷、框啷地經過測站,是噪音;大稻埕夏日節放起絢麗的煙火,隨著煙花在天空上一個一個的炸開,也是噪音;台北捷運行經軌道的摩擦與震動,那也是噪音;有好奇的路人經過測站,推了推踢了下測站時,那也是不可忽視的噪音。

因此,井下地震儀(Borehole seismometer)的主要目的,就是盡量讓地震儀「遠離塵囂」,記錄到更清楚、雜訊更少的地震波!​無論是微震、強震,還是來自遠方的地震,井下地震儀都能提供遠比地表地震儀更高品質的訊號。

-----廣告,請繼續往下閱讀-----

地震中心於 2008 年展開建置井下地震儀觀測站的行動,根據不同測站底下的地質條件,​將井下地震儀放置在深達 30~500 公尺的乾井深處。​除了地震儀外,站房內也會備有資料收錄器、網路傳輸設備、不斷電設備與電池,讓測站可以儲存、傳送資料。

既然井下地震儀這麼強大,為什麼無法大規模建造測站呢?簡單來說,這一切可以歸咎於技術和成本問題。

安裝井下地震儀需要鑽井,然而鑽井的深度、難度均會提高時間、技術與金錢成本,因此,即使井下地震儀的訊號再好,若非有國家建設計畫的支援,也難以大量建置。

人口聚集,震災好嚴重?建立「客製化」的地震預警系統!

臺灣人口主要聚集於西半部,然而此區的震源深度較淺,再加上密集的人口與建築,容易造成相當重大的災害。

-----廣告,請繼續往下閱讀-----

許多都會區的建築老舊且密集,當屋齡超過 50 歲時,它很有可能是在沒有耐震規範的背景下建造而成的的,若是超過 25 年左右的房屋,也有可能不符合最新的耐震規範,並未具備現今標準下足夠的耐震能力。 

延伸閱讀:

在地震界有句名言「地震不會殺人,但建築物會」,因此,若建築物的結構不符合地震規範,地震發生時,在同一面積下越密集的老屋,有可能造成越多的傷亡。

因此,對於發生在都會區的直下型地震,預警時間的要求更高,需求也更迫切。

-----廣告,請繼續往下閱讀-----

地震中心著手於人口密集之都會區開發「客製化」的強震預警系統,目標針對都會區直下型淺層地震,可以在「震後 7 秒內」發布地震警報,將地震預警盲區縮小為 25 公里。

111 年起,地震中心已先後完成大臺北地區、桃園市客製化作業模組,並開始上線測試,當前正致力於臺南市的模組,未來的目標為高雄市與臺中市。

永不停歇的防災宣導行動、地震預警技術研發

地震預警系統僅能在地震來臨時警示民眾避難,無法主動保護民眾的生命安全,若人民沒有搭配正確的防震防災觀念,即使地震警報再快,也無法達到有效的防災效果。

因此除了不斷革新地震預警系統的技術,地震中心也積極投入於地震的宣導活動和教育管道,經營 Facebook 粉絲專頁「報地震 – 中央氣象署」、跨部會舉辦《地震島大冒險》特展、《震守家園 — 民生公共物聯網主題展》,讓民眾了解正確的避難行為與應變作為,充分發揮地震警報的效果。

-----廣告,請繼續往下閱讀-----

此外,雖然地震中心預計於 114 年將都會區的預警費時縮減為 7 秒,研發新技術的腳步不會停止;未來,他們將應用 AI 技術,持續強化地震預警系統的效能,降低地震對臺灣人民的威脅程度,保障你我生命財產安全。

討論功能關閉中。

1

2
0

文字

分享

1
2
0
【成語科學】滄海桑田:無時無刻不在改變的地貌
張之傑_96
・2023/06/30 ・1217字 ・閱讀時間約 2 分鐘

-----廣告,請繼續往下閱讀-----

東晉的葛洪,號抱朴子,是位道家人物,也是位醫藥學家、博物學家。

他寫過一本《神仙傳》,書中介紹女神仙麻姑,說她壽命極長:

「已見東海三為桑田」(已三度見到東海變成桑田)。

這就是成語「滄海桑田」的由來。

桑田,泛指農田。圖/Envato Elements

滄海桑田,字面的意思是:大海變成桑田,桑田變成大海。桑田,泛指農田。這個成語比喻環境變遷,人事無常,讓我們造個句吧。

-----廣告,請繼續往下閱讀-----
  • 新北市五股區一帶,原有大片沼澤,現已消失殆盡,不免有滄海桑田之嘆。
  • 滄海桑田,有時我們有生之年就能看到,新竹香山的海埔新生地就是個例子。

知道了成語滄海桑田的含意,也學會了怎麼使用這個成語,接下去要談談它的科學意義了。小朋友首先得了解,滄海桑田確有其事,不僅僅只是個形容詞而已。

當年章老師在國中任教時,曾帶領學生到山上採集昆蟲標本。在山路一側的崖壁上,無意中看到貝類化石。細看之下,有牡蠣、貽貝、蛤蜊、海扇等,還有棘皮動物類的海膽。牠們可都是海洋生物,怎會跑到山上?章老師趁機給同學們上了一堂地球科學課程。

地球從地表到地心分成三層:地殼、地函和地核。圖/維基百科

地球從地表到地心,明顯分成三層:地殼、地函和地核。地殼由板塊拼合而成,可說是「浮」在地函上。約 600 萬年前,菲律賓海板塊向北移動,撞向歐亞板塊,將中國大陸東南沿海的大陸斜坡抬高,逐漸形成一座島嶼——就是我們台灣啊!到 300 萬年前,大致已成為今天的樣貌。

既然台灣島是大陸斜坡隆起形成的,我們在山上找到海洋生物化石也就不足為奇了。菲律賓海板塊撞向歐亞板塊,這一造山運動迄今仍在進行,中央山脈每年仍升高約 3 公分呢!

-----廣告,請繼續往下閱讀-----

台灣海峽很淺,大部份不到 100 公尺。冰河時期,大量的水變成冰,堆積在南北極和高緯度地,造成海水減少,海面下降,這時台灣海峽就露出海面。冰河期結束,大地回暖,海面上升,台灣和大陸再次隔海相望。自從台灣島形成以來,已不知分合多少次了。

2022 年台灣的樣子!圖/維基百科

最近的一次冰河期,發生在距今 2.5~1.8 萬年前,海面較現今約低 130 公尺,台灣海峽變成陸地,許多動物從大陸徒步遷徙到台灣,包括大象、犀牛和古人類(左鎮人)。左鎮人距今約 1 萬年,和北京周口店發現的山頂洞人差不多同一時期。

我們能想像台灣島是從海中隆起的嗎?我們能想像台灣海峽曾經乾涸成陸地嗎?滄海桑田豈只是個形容詞而已!

所有討論 1
張之傑_96
103 篇文章 ・ 224 位粉絲
張之傑,字百器,出入文理,著述多樣,其中以科普和科學史較為人知。