當前,像是企業、醫院、學校內部的伺服器,個人電腦,甚至手機等裝置,都可以成為「邊緣節點」。當數據在這些邊緣節點進行運算,稱為邊緣運算;而在邊緣節點上運行 AI ,就被稱為邊緣 AI。簡單來說,就是將原本集中在遠端資料中心的運算能力,「搬家」到更靠近數據源頭的地方。
-----廣告,請繼續往下閱讀-----
那麼,為什麼需要這樣做?資料放在雲端,集中管理不是更方便嗎?對,就是不好。
當數據在這些邊緣節點進行運算,稱為邊緣運算;而在邊緣節點上運行 AI ,就被稱為邊緣 AI。/ 圖片來源:MotionArray
第一個不好是物理限制:「延遲」。 即使光速已經非常快,數據從你家旁邊的路口傳到幾千公里外的雲端機房,再把分析結果傳回來,中間還要經過各種網路節點轉來轉去…這樣一來一回,就算只是幾十毫秒的延遲,對於需要「即刻反應」的 AI 應用,比如說工廠裡要精密控制的機械手臂、或者自駕車要判斷路況時,每一毫秒都攸關安全與精度,這點延遲都是無法接受的!這是物理距離與網路架構先天上的限制,無法繞過去。
第三個挑戰:系統「可靠性」與「韌性」。 如果所有運算都仰賴遠端的雲端時,一旦網路不穩、甚至斷線,那怎麼辦?很多關鍵應用,像是公共安全監控或是重要設備的預警系統,可不能這樣「看天吃飯」啊!邊緣處理讓系統更獨立,就算暫時斷線,本地的 AI 還是能繼續運作與即時反應,這在工程上是非常重要的考量。 所以你看,邊緣運算不是科學家們沒事找事做,它是順應數據特性和實際應用需求,一個非常合理的科學與工程上的最佳化選擇,是我們想要抓住即時數據價值,非走不可的一條路!
邊緣 AI 的實戰魅力:從工廠到倉儲,再到你的工作桌
知道要把 AI 算力搬到邊緣了,接下來的問題就是─邊緣 AI 究竟強在哪裡呢?它強就強在能夠做到「深度感知(Deep Perception)」!
-----廣告,請繼續往下閱讀-----
所謂深度感知,並非僅僅是對數據進行簡單的加加減減,而是透過如深度神經網路這類複雜的 AI 模型,從原始數據裡面,去「理解」出更高層次、更具意義的資訊。
以研華科技為例,旗下已有多項邊緣 AI 的實戰應用。以工業瑕疵檢測為例,利用物件偵測模型,快速將工業產品中的瑕疵挑出來,而且由於 AI 模型可以使用同一套參數去檢測,因此品管上能達到一致性,減少人為疏漏。尤其在高產能工廠中,檢測速度必須快、狠、準。研華這套 AI 系統每分鐘最高可處理 8,000 件產品,替工廠節省大量人力,同時確保品質穩定。這樣的效能來自於一台僅有膠囊咖啡機大小的邊緣設備—IPC-240。
這樣的效能來自於一台僅有膠囊咖啡機大小的邊緣設備—IPC-240。/ 圖片提供:研華科技
此外,在智慧倉儲場域,研華與威剛合作,研華與威剛聯手合作,在 MIC-732AO 伺服器上搭載輝達的 Nova Orin 開發平台,打造倉儲系統的 AMR(Autonomous Mobile Robot) 自走車。這跟過去在倉儲系統中使用的自動導引車 AGV 技術不一樣,AMR 不需要事先規劃好路線,靠著感測器偵測,就能輕鬆避開障礙物,識別路線,並且將貨物載到指定地點存放。
當硬體資源有限,大模型卻越來越龐大,「幫模型減肥」就成了邊緣 AI 的重要課題。/ 圖片來源:MotionArray
模型剪枝(Model Pruning)—基於重要性的結構精簡
建立一個 AI 模型,其實就是在搭建一整套類神經網路系統,並訓練類神經元中彼此關聯的參數。然而,在這麼多參數中,總會有一些參數明明佔了一個位置,卻對整體模型沒有貢獻。既然如此,不如果斷將這些「冗餘」移除。
這就像種植作物的時候,總會雜草叢生,但這些雜草並不是我們想要的作物,這時候我們就會動手清理雜草。在語言模型中也會有這樣的雜草存在,而動手去清理這些不需要的連結參數或神經元的技術,就稱為 AI 模型的模型剪枝(Model Pruning)。
-----廣告,請繼續往下閱讀-----
模型剪枝的效果,大概能把100變成70這樣的程度,說多也不是太多。雖然這樣的縮減對於提升效率已具幫助,但若我們要的是一個更小幾個數量級的模型,僅靠剪枝仍不足以應對。最後還是需要從源頭著手,採取更治本的方法:一開始就打造一個很小的模型,並讓它去學習大模型的知識。這項技術被稱為「知識蒸餾」,是目前 AI 模型壓縮領域中最具潛力的方法之一。
知識蒸餾(Knowledge Distillation)—讓小模型學習大師的「精髓」
想像一下,一位經驗豐富、見多識廣的老師傅,就是那個龐大而強悍的 AI 模型。現在,他要培養一位年輕學徒—小型 AI 模型。與其只是告訴小型模型正確答案,老師傅 (大模型) 會更直接傳授他做判斷時的「思考過程」跟「眉角」,例如「為什麼我會這樣想?」、「其他選項的可能性有多少?」。這樣一來,小小的學徒模型,用它有限的「腦容量」,也能學到老師傅的「智慧精髓」,表現就能大幅提升!這是一種很高級的訓練技巧,跟遷移學習有關。
但是!即使模型經過了這些科學方法的優化,變得比較「苗條」了,要真正在邊緣環境中處理如潮水般湧現的資料,並且高速、即時、穩定地運作,仍然需要一個夠強的「引擎」來驅動它們。也就是說,要把這些經過科學千錘百鍊、但依然需要大量計算的 AI 模型,真正放到邊緣的現場去發揮作用,就需要一個強大的「硬體平台」來承載。
-----廣告,請繼續往下閱讀-----
邊緣 AI 的強心臟:SKY-602E3 的三大關鍵
像研華的 SKY-602E3 塔式 GPU 伺服器,就是扮演「邊緣 AI 引擎」的關鍵角色!那麼,它到底厲害在哪?
三、可靠性 SKY-602E3 用的是伺服器等級的主機板、ECC 糾錯記憶體、還有備援電源供應器等等。這些聽起來很硬的規格,背後代表的是嚴謹的工程可靠性設計。畢竟在邊緣現場,系統穩定壓倒一切!你總不希望 AI 分析跑到一半就掛掉吧?這些設計確保了部署在現場的 AI 系統,能夠長時間、穩定地運作,把實驗室裡的科學成果,可靠地轉化成實際的應用價值。
-----廣告,請繼續往下閱讀-----
研華的 SKY-602E3 塔式 GPU 伺服器,體積僅如後背包大小,卻能輕鬆支援語言模型的運作,實現高效又安全的 AI 解決方案。/ 圖片提供:研華科技
有趣的是,薩根推測人類初次接觸到的外星文明應當是 1.5 J 到 1.8 K 類的文明,通常他們已然克服恆星際旅行的瓶頸。至於卡爾達肖夫的第 II 型文明,大約對應於 Q 類文明;而得以掌控可觀測宇宙大部分星系的 III 型文明,則可以達到 Z 類文明的水平。畢竟掌握時空旅行需要相當複雜的計算與模擬,需要遠超越當今的人類設備所擁有的一切運算能力。
然而,從目前的角度來看,顯而易見地——我們早已超越了他所預測的第 II 型文明等級。這是因為薩根在當時提出這個分類法時,尚未預測到數十年後的今天資訊量會隨著網路的出現而劇增。即使在薩根指數定義的資訊量必須是「單一而不重複的」(比如 A 網站的圖片是從B網站引用來的、同時 C 網站也使用了該圖片,我們只能將該影像視為一組位元、而非三組),但這些資訊在枝繁葉茂的網路時代已然是幾乎不可能被估算的。
另一個有關文明的分級是由英國宇宙學家約翰.巴羅(John D. Barrow)所提出的,是基於人類對於「微觀尺度」的「操作程度」。他發現,科學史上人類似乎不斷朝著微小尺度的事物進行探索,從生活中隨處可見的宏觀機械裝置、顯微鏡下的分析、到分子原子尺度的研究,某種程度上,「探測尺度」似乎與文明發達程度成正比。他將文明發達程度區分為下列等級:
負 I 型文明(機械文明): 該文明能操控與個體同等尺度的一切物件,比如採礦、建築樓房、使用機械裝置等等。
負 II 型文明(生物工程文明): 該文明能操控基因序列,或者藉由移植組織、器官來改變生命體的特性。
負 III 型文明(化學工程文明): 該文明能操控分子,比如透過改變分子鍵結創造新物質。
負 IV 型文明(奈米文明): 該文明得以操控個別原子,實現奈米科技在原子尺度的應用,並可能透過科技創造出複雜的人造生命體。
負 V 型文明(核子文明): 該文明得以操控原子核,並能自由改造組成原子核的質子、中子。
負 VI 型文明(粒子文明): 該文明將能操控夸克、輕子等組成萬物的基本粒子,並且能隨心所欲聚集粒子、駕馭高能量。
顯而易見地,人類距離負 Ω 型文明依然來日方長。目前,人類能夠自由操控與我們相同尺度的機械物件,可以建築、採礦,也可以完成一些簡單的基因工程;在近一個世紀內,我們掌握了相對論、發明了人造衛星與 GPS,同時也因為量子力學的發跡,打造出各式各樣的電子產品。但我們尚未能夠自由改變分子鍵結、發明新物質的能力也是侷限的、更無法隨心所欲操控並改變原子結構,因此目前人類大概落在負 I 型文明與負 II 型文明之間。
科幻作品中那些搭乘星艦、遨遊星際空間的劇情,大多數便是 II 型文明;至於可以利用曲速引擎穿越時空的,或許是 III 型文明才能實現的。對於 II 型文明而言,他們或許能夠透過「戴森球」(Dyson sphere)控制恆星能量的輸出。當一個文明的工業發達到一個程度,便能夠駕馭恆星能量,搭建一系列能源板或人造衛星,從而環繞著恆星本體、調控能量的輸出,這種大規模的人造結構便稱為「戴森球」。
綜上所述,人類文明目前還算是新生兒,也或許,宇宙中還沒有更先進的文明出現。但在躍升為第 I 型文明之前,我們恐怕會經歷各種挑戰,而有些已經發生過、有些則或許正在醞釀,例如——宗教戰爭、糧食危機、核武威脅、氣候災難等等。
從目前看來,氣候變遷便是當務之急:人類過度排放溫室氣體,溫室效應導致了海平面上升、全球暖化,間接引發了各地氣候的異常、熱浪、饑荒,並一再落入惡性循環。此外,在二戰期間人類發明並使用了核子武器,其毀滅性更是不容輕忽的。我們尚不需考慮火山、地震這些自然災害,若無法擺脫上述這些境況,人類很有可能會在蛻變為 I 型文明前便自取滅亡。
人類文明雖然已有一定的科技水平,然而在卡爾達肖夫指數中,目前仍處於第 0.7 型文明。在躍升成為I型文明之前,有可能面臨生態危機、核子戰爭而自取滅亡。上圖為正在排放溫室氣體的工業煙囪。圖/Economist Intelligence Unit
"We are attempting to survive our time so we may live into yours. We hope someday, having solved the problems we face, to join a community of galactic civilizations."
參考文獻 / 延伸閱讀
Kardashev, N.S. (1964). Transmission of information by extraterrestrial civilizations. articles.adsabs.harvard.edu.
科學研究者,1999年生於台北,目前於美國佛羅里達大學(University of Florida)攻讀物理學博士,並於費米國家實驗室(Fermilab)從事高能物理相關研究。2022年於美國羅格斯大學(Rutgers University)取得物理學學士學位,當前則致力於學術研究、以及科學知識的傳播發展。 同時也是網路作家、《隨筆天下》網誌創辦人,筆名辰風,業餘發表網誌文章,從事詩詞、小說、以及音樂創作。
目前人類的能量來源主要仍是石油、煤炭、天然氣;除此之外還有傳統生質能、水力發電、以及核能。在數十年內,風力發電、太陽能、生質能會慢慢取代化石燃料,而核融合技術很可能帶領人類走向 I 型文明。
當人類開始進行太空殖民、並且能妥善運用母恆星(太陽)所供應的能量後,才會慢慢朝向 II 型文明發展;而在 I 型或者 II 型文明階段,另一個能催動科技進展的很可能就是反物質(antimatter)的製造與普及。加來道雄認為,我們有機會在本世紀末或是兩百年內躍升成為 I 型文明;到達 II 型文明需要數千年;至於到達可以隨心所欲駕馭時空的 III 型文明,可能還需要數十萬至百萬年。
科學研究者,1999年生於台北,目前於美國佛羅里達大學(University of Florida)攻讀物理學博士,並於費米國家實驗室(Fermilab)從事高能物理相關研究。2022年於美國羅格斯大學(Rutgers University)取得物理學學士學位,當前則致力於學術研究、以及科學知識的傳播發展。 同時也是網路作家、《隨筆天下》網誌創辦人,筆名辰風,業餘發表網誌文章,從事詩詞、小說、以及音樂創作。