0

1
0

文字

分享

0
1
0

加進沙士裡的鹽巴背後藏有什麼秘密?——《化學有多重要,為什麼我從來不知道?》

商周出版_96
・2020/10/16 ・1235字 ・閱讀時間約 2 分鐘 ・SR值 426 ・四年級
  • 作者/陳瑋駿

二氧化碳全員逃走中!在成核點集合吧!

想要把二氧化碳從汽水裡面趕出來,除了加熱以外,不知道你有沒有喝過加鹽沙士的經驗,我指的不是外面已經加好鹽巴的那種,而是自己買沙士回來之後,拿家裡的鹽巴丟下去。

相信只要你有做過這件事,看到加鹽之後的變化印象一定很深刻,因為每加一匙鹽巴,就會有相當綿密的氣泡大量從杯中湧出。這是因為鹽巴加入的瞬間,提供了一個非常好的「成核點」讓二氧化碳聚集,這是什麼意思呢?

剛開瓶的碳酸飲料,裡面的氣泡還相當旺盛,只要你稍微仔細觀察一下,氣泡生成的位置並不是平均分散在飲料的每個地方,你會發現氣泡是由瓶壁「長」出來的,甚至當你把汽水倒到杯子裡,把手指放進去水中,氣泡也會從你的手指「長」出來。

將碳酸飲料倒進杯子時,會發現氣泡沿著杯緣「長」。圖/Pixabay

事實上,由於二氧化碳想要從水裡逃脫出來的時候,必須要想辦法克服水分子之間的吸引力,因為當一個氣泡要生成,勢必將要占有一定的空間,因此就必須試圖「推開」氣泡周遭的水分。

揪團「越獄」的二氧化碳

只不過,水分子之間的吸引力對他們來講就好像是一個監獄,光靠自己一個人的力量是無法推開周遭的水分子而「越獄」變成氣泡的。

這個時候你就可以看到,二氧化碳之間的互動可是很有「人情味」的,俗話說團結力量大,既然一個人力量不夠,那麼二氧化碳們就靜候佳機,若有機會相遇便會互相集結成團,等人數夠多、時機成熟了再一起飛走,而這才是你在外觀上所看到的泡泡,但由於二氧化碳平均分散在水中,他們可沒有手機傳Line 相約,所以要提高他們相遇的機會,我們可以替二氧化碳設立一個「地標」, 也就是我們所謂的「成核點」。

二氧化碳們靜若有機會相遇便會互相集結成團,等人數夠多、時機成熟了再一起飛走。圖/giphy

成核點的意義在於它可以讓二氧化碳立即明白到:這個地方能快速找到同伴,大家一起壯大聲勢,脫離水中。

什麼東西可以做為成核點呢?

一般來說,粗糙不平的固體表面是絕佳的場所,這裡的粗糙不平不是指人類感受的層級,對二氧化碳來說,甚至是器皿內壁上輕微的刮傷,都能成為成核點,所以像寶特瓶的瓶壁、你的手指,還有我們加鹽沙士的主角——鹽巴都是一個能讓二氧化碳聚攏的場所。

——本文摘自泛科學 2020 年 10 月選書《化學有多重要,為什麼我從來不知道?》,2020 年 8 月,商周出版

文章難易度
商周出版_96
81 篇文章 ・ 328 位粉絲
閱讀商周,一手掌握趨勢,感受愜意生活!商業出版為專業的商業書籍出版公司,期望為社會推動基礎商業知識和教育。


0

0
1

文字

分享

0
0
1

如果可以簡單,誰想要複雜?2021 諾貝爾化學獎得獎的是……讓合成變簡單的「不對稱有機催化劑」! ft. 陳榮傑博士【科科聊聊 EP62】

PanSci_96
・2021/10/26 ・3018字 ・閱讀時間約 6 分鐘
2021 年諾貝爾化學獎得主 Benjamin List 和 David MacMillan。圖/TheNobelPrize

化學反應中,能夠加快反應過程的物品就叫做「催化劑」。我們的生活處處都有催化劑,據估計,世界上大概有 35% 的 GDP ,是和某種化學催化有關的。但想想看,如果能讓催化劑的效率提升,是不是更能讓省去繁雜的製程,提高工作效率呢?

今年的諾貝爾化學獎,就是頒發給革新催化劑的 Benjamin List 和 David MacMillan!他們開發出「不對稱有機催化劑」,不只改善催化效率,也克服了「不對稱金屬催化劑」的缺點。說到這,什麼是「不對稱催化劑」?不對稱「有機」催化劑和不對稱「金屬」催化劑又有什麼差別?

為了解答這個問題,這次泛泛泛科學請到中央研究院化學研究所的陳榮傑老師,來替我們解說本屆獲獎的「不對稱催化劑」到底是什麼?另外,陳榮傑老師還說出 2020 年僅用兩週就做出轟動全台的「瑞德西韋」背後小故事!就讓我們一起來了解本次諾貝爾化學獎的內容吧!

本次專訪感謝 台灣科技媒體中心 的協助。

  • 00:57 陳榮傑老師的研究

中央研究院化學研究所的陳榮傑老師主要研究「有機合成」,包括天然物的全合成、不對稱有機催化反應。有時他的實驗室也會運用合成能力協助開發藥物,最著名的即是在 2020 年,他們僅用兩週就合成出可以協助治療新冠肺炎的「瑞德西韋(Remdesivir)」藥物,純度還高達 97%。

延伸閱讀:武漢肺炎/中研院7人團隊2週合成瑞德西韋 純度達97%

  • 03:39 2021 諾貝爾化學獎得獎研究

李斯特(Benjamin List)在研究催化性抗體時,雖然以前就有人以脯氨酸(proline)做催化劑,但卻因為當時沒有系統性發展,所以研究後繼無人。結果在他簡單的測試下,不僅證明脯氨酸是有效的催化劑,也證明它能驅動不對稱催化。

麥克米倫(David MacMillan)則是為了能夠讓不對稱催化劑能夠大規模工業生產,所以開始改良不對稱催化劑,最後他利用胺基酸的衍生物合成,開發出以他命名的催化劑 MacMillan catalyst。

延伸閱讀:

The Nobel Prize in Chemistry 2021

【2021諾貝爾化學獎】更高效率且環保的化學合成——「不對稱有機催化劑」

2021諾貝爾化學獎記者會 會後新聞稿

  • 06:33 想了解「不對稱催化劑」要先知道「鏡像異構物」

不對稱合成也可以稱為手性合成、掌性合成、鏡像異構物合成。有些分子會產生鏡像異構物(enantiomer),宛如一個分子照了鏡子,結構左右互換,又好似人的左右手雖然對稱但算是兩種不同的結構。同一組鏡像異構物的沸點、熔點、光譜都一樣,兩者唯一不同的是用偏極光照射時,正常分子是右旋的位移,但鏡像異構物則會產生左旋的位移。

延伸閱讀:左旋還是右旋?化學對稱跟你我的身體有關!

  • 09:37 不對稱合成

生物體內組成的基本單位如氨基酸、醣類,很容易會產生鏡像異構物,這些鏡像異構物也需要不同的酵素去辨認,如同你的左右手只能分別套上左右手的手套。在製藥上無可避免的須要只合成其中一種鏡像異構物才會有效果,而用化學的方式選擇性合成單一的鏡像異構物,這就叫做「不對稱合成」。

另外如有兩種鏡像異構物也需要分別測試,陳榮傑老師舉例 1960 年代的沙利竇邁(Thalidomide)事件就是不清楚沙利竇邁的右旋結構可以抑制孕婦害喜症狀,左旋結構卻會導致新生兒畸形,才會造成畸形兒比例異常升高。

2001 年時就有另一組人馬(William S. Knowles, Ryoji Noyori, K. Barry Sharpless)以不對稱催化獲得當年諾貝爾化學獎,不過當年開發的催化劑含有金屬成份,今年獲獎的催化劑研究則不含金屬,避免了金屬造成的問題。

延伸閱讀:鏡像異構物的分離方法(上)

  • 15:47 為什麼需要「不對稱催化劑」?

要達成不對稱合成,最好的方式是透過催化劑,讓反應活化能降低,加速反應進行。如果不採用不對稱催化劑加以控制,合成出的化合物會是各佔一半含量的異構物。

延伸閱讀:不對稱催化(Asymmetric Catalysis)(一)─ 不對稱氫化反應(Catalytic Asymmetric Hydrogenation)

  • 17:47 催化的重要性

根據估計,世界上有 35% 的 GDP,都在某種程度上涉及到化學催化 。因為催化劑可以降低反應活化能,原來需要高溫或高壓的反應,有了催化劑就可以在較低的條件下進行,節省了大量能量。諾貝爾化學獎至今頒發過七組關於催化的研究,不只是製藥,石油產業、高分子材料等等也都是催化研究的受益者,可見催化對我們的生活有著巨大的影響力。

  • 20:22 2001年也有不對稱催化劑的研究獲得諾貝爾化學獎,與今年的差別是?

2001 的諾貝爾化學獎由 William S. Knowles、Ryoji Noyori、K. Barry Sharpless 三位獲得,他們的不對稱催化劑含有金屬成份,有些還是貴金屬或重金屬,合成過程中需要特別去除重金屬污染,會有殘留的風險。而今年得獎的 Benjamin List 與 David  MacMillan 開發的「不對稱有機催化劑」屏除金屬,使用更精細的方式設計分子的立體結構。用量只要原來金屬催化劑的百分之一,還能維持效用與不對稱的選擇性,而且沒有重金屬的污染問題。比起許多酵素必須在人體內作用還有過往的金屬催化劑,不對稱有機催化劑能做的事情更多,未來延續性更加廣泛!

延伸閱讀:

The Nobel Prize in Chemistry 2001

【2001諾貝爾化學獎】催化性的不對稱合成

  • 25:32 Benjamin List 與 David MacMillan 的得獎關鍵

早在 1970 年代就有人在研究以脯氨酸(proline)用做催化劑,但卻沒有人繼續研究下去,Benjamin 認為可能是其效果不甚理想。抱著先試試的態度,Benjamin 測試了是否能夠催化讓兩個碳原子結合的羥醛反應(aldol reaction)。令他驚訝的是結果相當的有效。透過實驗,Benjamin 不僅證明脯氨酸是一種有效的催化劑,也證明了這種氨基酸可以驅動不對稱催化。

MacMillan 早年投身在天然物全合成領域,接受紮實的有機合成訓練。在研究有機金屬不對稱催化的過程中產生了避免使用金屬成分的想法,後來發展出與 Benjamin List 基底不太一樣但殊途同歸的研究結果。

  • 31:51 陳榮傑老師在「天然物全合成」的研究歷程

「天然物全合成」就是要動用所有可能的方法合成標的化合物,由於天然物的結構複雜,合成的方法也是非常紮實的訓練。

  • 35:07 科學家為了化繁為簡研究催化劑

可以簡單,誰想要複雜?為了把工作過程簡單化,並更有效率地完成工作,科學家們才願意研究催化劑。此外,化學反應的步驟越多,最後的產率可能會變低,所以如果能夠簡化步驟,就不會白白浪費物質與時間成本。

  • 42:39 2020 年轟動全台的瑞德西韋
  • 54:13 每個研究的背後,都有一個為社會付出的科學家

在每個領域,都有人在做很基礎的事情。希望能藉這次的化學獎,讓大家知道基礎研究的重要;大家也要想到,在這些受獎人的光環之下,其實背後也是有許多基礎研究在支撐的。

PanSci_96
955 篇文章 ・ 242 位粉絲
PanSci的編輯部帳號,會發自產內容跟各種消息喔。
網站更新隱私權聲明
本網站使用 cookie 及其他相關技術分析以確保使用者獲得最佳體驗,通過我們的網站,您確認並同意本網站的隱私權政策更新,了解最新隱私權政策