本文轉載自中央研究院研之有物,泛科學為宣傳推廣執行單位
- 採訪編輯|歐柏昇、美術編輯|林洵安
宇宙也有麥田圈?重力如何害遠方星系「面目扭曲」,宛如魔戒?磁星會吹熱泡泡,研究員用電腦畫浮世繪?中央研究院天文及天文物理研究所參與中研院「開放博物館」,研究員們拿出壓箱底的天文美照與研究成果,促成「星海巡奇」線上展覽,滑鼠輕輕一點,即可穿越千萬光年的異世界,飽覽令人腦洞大開的天文奇景!
宇宙也有麥田圈?!
地球上的麥田圈還懸而未決,想不到太空中也有!?下面美麗神秘的「宇宙麥田圈」,其實是行星系統誕生之前的模樣──原行星盤。
兩張美照皆是由阿塔卡瑪大型毫米及次毫米波陣列(ALMA)望遠鏡,解析原行星盤「金牛座 HL 」所得的細緻結構。這是人類首度拍攝到這麼年輕的原行星盤高解析度影像,可一窺行星形成的秘辛!
智利沙漠上的 ALMA 望遠鏡,運用了「天文干涉技術」,一共有 66 座天線可以協同工作,且天線之間距離夠遠,才得以拍出原行星盤的細緻結構。在此以前,前一代望遠鏡對於這些年輕的原行星盤,只能看見平滑的盤面,沒有明顯的起伏,直到 ALMA 啟用才有重大突破。
原行星環:行星形成現場
說了半天,「麥田圈」盤面的環與間隙究竟是誰的傑作?「目前最熱門的解釋,是間隙中有行星正在形成。」中研院天文所顏士韋助研究員主持金牛座 HL 的氣體分布研究,他解釋:原行星盤上有很多氣體和塵埃,部份的氣體和塵埃會逐漸聚集成行星。這些行星一邊長大、一邊在盤子內繞著原恆星轉,過程中行星的重力會把沿路的東西推開,形成一圈圈的間隙。
為什麼重力會「推開」物體?因為盤上的物質進行克卜勒運動──內圈跑得快、外圈跑得慢。原行星會吸引比它內圈的物質,這些物質被拖慢速度,結果往更內圈跑;另一方面,原行星也會吸引外圈的物質,這些物質反而被拉快速度,往更外圈跑。原行星就這樣「推開」周圍物質,「清出」一條軌道,形成了明顯的間隙。
一開始,天文學家先觀測到塵埃分布的「麥田圈」影像,但如果氣體分布是平滑沒有間隙的,「環與間隙」可能只是來自塵埃性質差異。所幸,顏士韋團隊之後確認金牛座 HL 的氣體分布也有環與間隙,支持「行星形成」的假說。
他們還從縫隙的寬度與深度推算出:間隙中正在形成的行星大約是木星質量。研究人員據此推測,行星形成的時間點比預期還要早,像木星這類的巨行星,可能在恆星還沒完全「誕生」,就已經趕進度地成形囉!
磁星熱泡泡:太空版浮世繪
日本畫家耐心一筆一劃勾勒浮世繪,中研院天文所陳科榮助研究員用電腦模擬的「磁星熱泡泡」,是他獨創的太空版浮世繪。
故事要從頭說起!近年來,天文學家發現一種很特殊的超新星,可以比一般超新星亮 100 倍,稱為「超亮超新星(superluminous supernova)」。理論天文學家不斷苦思:為什麼這些超新星會這麼亮?
有些學者提出「磁星(magnetar)」理論來解釋:超新星爆炸經常伴隨著中子星的形成,有的中子星轉得非常快,轉速高達每秒 1000 圈,因為其磁場強度高達地球的 1000 兆倍,稱為「磁星」。
而磁星的磁力線就像是綁在星球外的繩子,在快速旋轉下被攪動,會以輻射的形式把中子星的轉動動能傳遞出去。根據目前模型,發射出去的輻射能量只要超過磁星轉動動能的 5%,就能產生比一般超新星 100 倍亮度,形成超亮超新星。
陳科榮從 2015 年就投入磁星驅動超新星的模擬研究,展示其爆炸過程,立刻面臨一個巨大的難題:在此之前的研究都是一維度模型,也就是假設「磁星驅動超新星的流體分佈」是球對稱,所有方向的變化都一樣。但真實過程當然沒有這麼簡單,磁星的輻射壓力會突然把物質劇烈地往外推,形成流體力學的不穩定結構,就像是把墨水滴在水裡,可見多變複雜的結構。但一維模型的結果就像剷雪,只能將大量物質擠在非常小的區域,無法判讀箇中細節。陳科榮比喻:
一維模型就是只有一個車道,車子都擠在同一個車道,不能超車;二、三維就像有兩、三個車道,才能模擬真實流體不穩定現象。
陳科榮又舉例,在葛飾北齋著名的浮世繪《神奈川沖浪裡》,海浪的尾端有許多破碎的複雜結構,真實的流體即是如此複雜,而這幅畫還只是偏向二維結構。三維流體的紊流更複雜,只有達文西這樣的天才,可以將其生動地描繪出來。
三維的紊流具有很多複雜、不均勻的結構,磁星造成的熱泡泡也是如此!所謂的「磁星熱泡泡」,就是磁星這個強大的能量來源「吹出」的泡泡,就像滾水冒泡泡一般。每層泡泡有很多細微結構,一、二維的模擬皆無法呈現和解釋。但這些細微的紊流結構不可忽視,它可是會影響磁星能量傳輸,進而影響超亮超新星的觀測性質。陳科榮以超級電腦模擬出的磁星熱泡泡,乃史上首度對磁星熱泡泡做出三維的模擬,同時具備精密度和大尺度:全貌相當太陽系,細節小如台北市,可謂獨步全球!
宇宙魔戒:愛因斯坦環
這枚宛如宇宙版魔戒的「愛因斯坦環」,其實是某顆巨大黑洞造成的!中研院天文所團隊藉著分析愛因斯坦環影像,進一步推算出這顆黑洞的質量。
松下聰樹解釋,重力可讓光線彎曲,宇宙中如果有個大質量的東西(例如:黑洞)擺在光源前面,它的重力可以成為折射背景光的透鏡,改變我們看到的影像,這個原理稱為「重力透鏡」,是愛因斯坦環的主要成因。
松下聰樹以一個高腳酒杯和一張紙,巧妙解釋這個神秘的天文現象。他在白紙上畫了一個紅點,周圍不規則的塗上藍色。接著把酒杯放在圖案上,如果酒杯中心正對著紅點,那我們透過酒杯底座(扮演透鏡),可以看到藍色的環帶中間,顯現出一個完整清晰的紅圈。如果酒杯中心稍微偏離紅點,則會看到兩個或四點構造,散落在不對稱的藍色圓弧之中。讀者不妨自己在家做實驗!
這次展出的 SDP.81 重力透鏡系統之中,背景星系有很亮的核心,就像是實驗中的紅點;附近還有瀰漫的物質,就像是周圍的藍色區塊。松下聰樹說,假如背景星系是個只有核心的點光源,只會看到四個紅點。但是圖中還可看到較微弱的弧狀結構,代表還有其他瀰漫的物質在周圍。
用影像「秤出」黑洞有多重?
中研院天文所的團隊利用愛因斯坦環的影像,成功計算出中間的透鏡星系為一個黑洞,至少有 3 億倍太陽質量。
松下聰樹解釋,如果透鏡星系的質量夠大,嚴重扭曲背景星系的星光,地球上的觀測者只會在兩側看到增強的成像,看不見正中央背景星系的影像。這就好比,在酒杯的成像中只看到外圍的弧狀範圍,看不到原來中央的紅點。而在 SDP.81 系統中的確如此,無法看到背景星系的原始影像,這表示黑洞夠重,可藉此推知黑洞質量的下限。
此外,愛因斯坦環還能推知背景星系的影像。背景星系遙遠而黯淡,但經過透鏡星系有放大的效果,運用電腦計算可還原出極高解析度的影像。
除了以上精彩內容,本次展覽還有「微旋臂 暗度陳倉?」展示呂浩宇研究的大質量恆星團旋臂,「完美螺旋的分岔」則是金孝宣的飛馬座 LL 雙星系統中螺旋分岔,「塵埃間隙發現旋臂: 暗示行星正在形成」展現湯雅雯研究的御夫座 AB 星美照,「漢堡,啤酒,雙頭槍」為李景輝所發現胚胎恆星在吸食「塵埃漢堡」的案發現場……更多讓你腦洞大開天文美照,快進入「星海巡奇」線上展覽一飽眼福吧!
延伸閱讀
本文轉載自中央研究院研之有物,原文為麥田圈、浮世繪、至尊魔戒?!「星海巡奇」一窺腦洞大開的天文奇景,泛科學為宣傳推廣執行單位