0

4
0

文字

分享

0
4
0

麥田圈、浮世繪、至尊魔戒?!「星海巡奇」一窺腦洞大開的天文奇景

研之有物│中央研究院_96
・2020/08/29 ・4351字 ・閱讀時間約 9 分鐘 ・SR值 527 ・七年級

國民法官生存指南:用足夠的智識面對法庭裡的一切。

本文轉載自中央研究院研之有物,泛科學為宣傳推廣執行單位

  • 採訪編輯|歐柏昇、美術編輯|林洵安

宇宙也有麥田圈?重力如何害遠方星系「面目扭曲」,宛如魔戒?磁星會吹熱泡泡,研究員用電腦畫浮世繪?中央研究院天文及天文物理研究所參與中研院「開放博物館」,研究員們拿出壓箱底的天文美照與研究成果,促成「星海巡奇」線上展覽,滑鼠輕輕一點,即可穿越千萬光年的異世界,飽覽令人腦洞大開的天文奇景!

宇宙也有麥田圈?!

地球上的麥田圈還懸而未決,想不到太空中也有!?下面美麗神秘的「宇宙麥田圈」,其實是行星系統誕生之前的模樣──原行星盤。

兩張美照皆是由阿塔卡瑪大型毫米及次毫米波陣列(ALMA)望遠鏡,解析原行星盤「金牛座 HL 」所得的細緻結構。這是人類首度拍攝到這麼年輕的原行星盤高解析度影像,可一窺行星形成的秘辛!

這張是拍攝連續光譜,得到金牛座 HL 原行星盤的塵埃分布,清楚呈現環與間隙的構造。
圖/ALMA (ESO/NAOJ/NRAO)
這張照片是拍攝分子譜線,得到金牛座 HL 原行星盤的氣體分布,同樣有環與間隙。
圖/ALMA (ESO/NAOJ/NRAO), Yen et al.

智利沙漠上的 ALMA 望遠鏡,運用了「天文干涉技術」,一共有 66 座天線可以協同工作,且天線之間距離夠遠,才得以拍出原行星盤的細緻結構。在此以前,前一代望遠鏡對於這些年輕的原行星盤,只能看見平滑的盤面,沒有明顯的起伏,直到 ALMA 啟用才有重大突破。

阿塔卡瑪大型毫米波天線陣中的一些無線電望遠鏡,運用了「天文干涉技術」。若要用單一望遠鏡看清楚原行星盤,望遠鏡必須非常巨大,技術上很困難。因此天文學家先建造幾個「比較小」的望遠鏡,彼此相隔遙遠,再將它們的觀測資料一起分析,效果等同一台巨大望遠鏡,這就是「天文干涉技術」 。
圖/維基百科

原行星環:行星形成現場

說了半天,「麥田圈」盤面的環與間隙究竟是誰的傑作?「目前最熱門的解釋,是間隙中有行星正在形成。」中研院天文所顏士韋助研究員主持金牛座 HL 的氣體分布研究,他解釋:原行星盤上有很多氣體和塵埃,部份的氣體和塵埃會逐漸聚集成行星。這些行星一邊長大、一邊在盤子內繞著原恆星轉,過程中行星的重力會把沿路的東西推開,形成一圈圈的間隙。

為什麼重力會「推開」物體?因為盤上的物質進行克卜勒運動──內圈跑得快、外圈跑得慢。原行星會吸引比它內圈的物質,這些物質被拖慢速度,結果往更內圈跑;另一方面,原行星也會吸引外圈的物質,這些物質反而被拉快速度,往更外圈跑。原行星就這樣「推開」周圍物質,「清出」一條軌道,形成了明顯的間隙。

一開始,天文學家先觀測到塵埃分布的「麥田圈」影像,但如果氣體分布是平滑沒有間隙的,「環與間隙」可能只是來自塵埃性質差異。所幸,顏士韋團隊之後確認金牛座 HL 的氣體分布也有環與間隙,支持「行星形成」的假說。

他們還從縫隙的寬度與深度推算出:間隙中正在形成的行星大約是木星質量。研究人員據此推測,行星形成的時間點比預期還要早,像木星這類的巨行星,可能在恆星還沒完全「誕生」,就已經趕進度地成形囉!

磁星熱泡泡:太空版浮世繪

日本畫家耐心一筆一劃勾勒浮世繪,中研院天文所陳科榮助研究員用電腦模擬的「磁星熱泡泡」,是他獨創的太空版浮世繪。

故事要從頭說起!近年來,天文學家發現一種很特殊的超新星,可以比一般超新星亮 100 倍,稱為「超亮超新星(superluminous supernova)」。理論天文學家不斷苦思:為什麼這些超新星會這麼亮?

有些學者提出「磁星(magnetar)」理論來解釋:超新星爆炸經常伴隨著中子星的形成,有的中子星轉得非常快,轉速高達每秒 1000 圈,因為其磁場強度高達地球的 1000 兆倍,稱為「磁星」。

而磁星的磁力線就像是綁在星球外的繩子,在快速旋轉下被攪動,會以輻射的形式把中子星的轉動動能傳遞出去。根據目前模型,發射出去的輻射能量只要超過磁星轉動動能的 5%,就能產生比一般超新星 100 倍亮度,形成超亮超新星。

陳科榮以超級電腦模擬磁星驅動超新星爆炸的過程,上圖為將磁星一切為二的三維模型。
圖/中研院天文所 陳科榮

陳科榮從 2015 年就投入磁星驅動超新星的模擬研究,展示其爆炸過程,立刻面臨一個巨大的難題:在此之前的研究都是一維度模型,也就是假設「磁星驅動超新星的流體分佈」是球對稱,所有方向的變化都一樣。但真實過程當然沒有這麼簡單,磁星的輻射壓力會突然把物質劇烈地往外推,形成流體力學的不穩定結構,就像是把墨水滴在水裡,可見多變複雜的結構。但一維模型的結果就像剷雪,只能將大量物質擠在非常小的區域,無法判讀箇中細節。陳科榮比喻:

一維模型就是只有一個車道,車子都擠在同一個車道,不能超車;二、三維就像有兩、三個車道,才能模擬真實流體不穩定現象。

陳科榮又舉例,在葛飾北齋著名的浮世繪《神奈川沖浪裡》,海浪的尾端有許多破碎的複雜結構,真實的流體即是如此複雜,而這幅畫還只是偏向二維結構。三維流體的紊流更複雜,只有達文西這樣的天才,可以將其生動地描繪出來。

從葛飾北齋浮世繪的海浪畫面(上),以及達文西繪製的紊流細節(下),可看見真實流體的結構有多複雜。
圖/維基百科

三維的紊流具有很多複雜、不均勻的結構,磁星造成的熱泡泡也是如此!所謂的「磁星熱泡泡」,就是磁星這個強大的能量來源「吹出」的泡泡,就像滾水冒泡泡一般。每層泡泡有很多細微結構,一、二維的模擬皆無法呈現和解釋。但這些細微的紊流結構不可忽視,它可是會影響磁星能量傳輸,進而影響超亮超新星的觀測性質。陳科榮以超級電腦模擬出的磁星熱泡泡,乃史上首度對磁星熱泡泡做出三維的模擬,同時具備精密度和大尺度:全貌相當太陽系,細節小如台北市,可謂獨步全球!

陳科榮以電腦模擬的磁星熱泡泡,不但可見大尺度範圍,也可見許多複雜的精細結構。
圖/中研院天文所 陳科榮

宇宙魔戒:愛因斯坦環

這枚宛如宇宙版魔戒的「愛因斯坦環」,其實是某顆巨大黑洞造成的!中研院天文所團隊藉著分析愛因斯坦環影像,進一步推算出這顆黑洞的質量。

SDP.81 愛因斯坦環。這是地球、40 億光年外之 A 星系、120 億光年外之 B 星系,三個天體同時在一直線上,因為位置剛好加上 A 星系的巨大重力所造成的奇景。
圖/ ALMA (NRAO/ESO/NAOJ); B. Saxton NRAO/AUI/NSF

松下聰樹解釋,重力可讓光線彎曲,宇宙中如果有個大質量的東西(例如:黑洞)擺在光源前面,它的重力可以成為折射背景光的透鏡,改變我們看到的影像,這個原理稱為「重力透鏡」,是愛因斯坦環的主要成因。

何謂重力透鏡效應?由左到右分別是:地球(觀測者)、大質量星體(如黑洞)、遠方的星系。當三者在一直線上,遠方星系的光通過大質量天體附近,光線會因強大重力而彎曲(白色箭頭),就像透鏡彎曲了光線,地球上的觀測者就會「看見」變形的星系影像。
圖/NASA

松下聰樹以一個高腳酒杯和一張紙,巧妙解釋這個神秘的天文現象。他在白紙上畫了一個紅點,周圍不規則的塗上藍色。接著把酒杯放在圖案上,如果酒杯中心正對著紅點,那我們透過酒杯底座(扮演透鏡),可以看到藍色的環帶中間,顯現出一個完整清晰的紅圈。如果酒杯中心稍微偏離紅點,則會看到兩個或四點構造,散落在不對稱的藍色圓弧之中。讀者不妨自己在家做實驗!

可以在家按照操作步驟試試!
攝/林洵安

這次展出的 SDP.81 重力透鏡系統之中,背景星系有很亮的核心,就像是實驗中的紅點;附近還有瀰漫的物質,就像是周圍的藍色區塊。松下聰樹說,假如背景星系是個只有核心的點光源,只會看到四個紅點。但是圖中還可看到較微弱的弧狀結構,代表還有其他瀰漫的物質在周圍。

SDP.81「愛因斯坦環」的 ALMA 影像,數個紅點來自星系核心緻密區域。
圖/黃活生、蘇游瑄、松下聰樹(2015)

用影像「秤出」黑洞有多重?

中研院天文所的團隊利用愛因斯坦環的影像,成功計算出中間的透鏡星系為一個黑洞,至少有 3 億倍太陽質量。

松下聰樹解釋,如果透鏡星系的質量夠大,嚴重扭曲背景星系的星光,地球上的觀測者只會在兩側看到增強的成像,看不見正中央背景星系的影像。這就好比,在酒杯的成像中只看到外圍的弧狀範圍,看不到原來中央的紅點。而在 SDP.81 系統中的確如此,無法看到背景星系的原始影像,這表示黑洞夠重,可藉此推知黑洞質量的下限。

此外,愛因斯坦環還能推知背景星系的影像。背景星系遙遠而黯淡,但經過透鏡星系有放大的效果,運用電腦計算可還原出極高解析度的影像。

天文學家從 ALMA 影像(中)重建出背景星系的樣貌(右),目睹 120 億光年外的異世界。透鏡星系是橢圓星系,通常不會發出電波,所以在 ALMA 的波段可以不受透鏡星系干擾,清楚分辨來自背景星系的光。再加上 ALMA 有夠好的解析度和靈敏度,才能看清楚愛因斯坦環,並執行以上的計算。
圖/ALMA (NRAO/ESO/NAOJ)/Y. Tamura (The University of Tokyo)/Mark Swinbank (Durham University)

除了以上精彩內容,本次展覽還有「微旋臂 暗度陳倉?」展示呂浩宇研究的大質量恆星團旋臂,「完美螺旋的分岔」則是金孝宣的飛馬座 LL 雙星系統中螺旋分岔,「塵埃間隙發現旋臂: 暗示行星正在形成」展現湯雅雯研究的御夫座 AB 星美照,「漢堡,啤酒,雙頭槍」為李景輝所發現胚胎恆星在吸食「塵埃漢堡」的案發現場……更多讓你腦洞大開天文美照,快進入「星海巡奇」線上展覽一飽眼福吧!

延伸閱讀

本文轉載自中央研究院研之有物,原文為麥田圈、浮世繪、至尊魔戒?!「星海巡奇」一窺腦洞大開的天文奇景,泛科學為宣傳推廣執行單位

文章難易度
研之有物│中央研究院_96
255 篇文章 ・ 2334 位粉絲
研之有物,取諧音自「言之有物」,出處為《周易·家人》:「君子以言有物而行有恆」。探索具體研究案例、直擊研究員生活,成為串聯您與中研院的橋梁,通往博大精深的知識世界。 網頁:研之有物 臉書:研之有物@Facebook

0

4
4

文字

分享

0
4
4
數學有多好用?從種馬鈴薯到上太空,那些我們沒發現的數學——《大自然的數學遊戲》
天下文化_96
・2022/12/25 ・2278字 ・閱讀時間約 4 分鐘

國民法官生存指南:用足夠的智識面對法庭裡的一切。

數學的共振系統存在於太陽系中

太陽系的動力系統充滿了共振。

月球的自轉由於受到其他天體的攝動(perturbation),因而有輕微的起伏,不過它的自轉週期與它環繞地球的公轉週期相同,這是自轉週期與軌道週期的「一:一」共振。因此,我們在地球上總是看到月球的同一側,從來無法看到月球的「背面」。

水星每隔五十八.六五日自轉一周,每隔八十七.九七日公轉太陽一周。二乘八十七.九七等於一七五.九四,而三乘五十八.六五等於一七五.九五,因此水星的自轉週期與軌道週期是一個「二:三」共振。事實上,長久以來,天文學家一直以為兩者構成「一:一」共振,以為兩個週期大約都是八十八日。

因為想要觀察像水星這麼接近太陽的行星,實在是一件很困難的事情。這使得天文學家相信,水星的一側熱得不可思議,而另一側則冷得不可思議,最後卻發現事實並非如此。不過共振還是存在,而且比單純的「一:一」更有意思。

在火星與木星之間,有一個寬闊的小行星帶(asteroid belt),其中包含了數千個微小的天體。這些小行星的分布並不均勻,在某些與太陽距離固定的軌道上,我們發現還有些「小行星子帶」,在其他距離上則幾乎找不到它們的蹤跡。這兩者都得歸因於與木星的共振。

火星與木星間的小行星帶。圖/wikipedia

希耳達群(Hilda group)小行星就位在小行星子帶,它們與木星形成「二:三」共振。也就是說,這群小行星所處的位置,剛好使它們在木星公轉兩圈的時間中環繞太陽三圈。而最有名的小行星帶隙(gap of asteroid),則是「一:二」、「一:三」、「一:四」、「二:五」與「二:七」的共振。

各位讀者也許有些擔心,為什麼共振同時能夠解釋小行星帶的叢聚與間隙呢? 答案是每一個共振都具有本身的動力學特徵,某些會造成叢聚效應,某些的作用則剛好相反,全都由共振比例數字來決定。

用數學來預測未來

數學的另一項功能是進行預測。

在了解天體的運動之後,天文學家便能預測月食、日食,以及彗星的回歸等等。他們知道應該將望遠鏡對準何處,才能重新發現運行到太陽背面、暫時無法觀測的小行星。由於潮汐主要是由日、月與地球的相對位置所控制,所以他們也能預測許多年後的潮汐。

(但這種預測的主要困難並非來自天文學,而是大陸的形狀與海底的地形,它們都能使某個高潮提前或延後。然而,即使過了一個世紀,這些地理因素也幾乎不會有什麼改變,因此一旦了解它們造成的效應之後,將這些效應考慮在內只是例行公事。)

反之,想要預測天氣則困難無數倍。對於控制天氣的數學,我們知道的跟控制潮汐的數學一樣多,可是天氣天生就有一種不可預測性。縱使如此,氣象學家仍能做出有效的短期預測,比方說三、四天以後的天氣。不過,天氣的不可預測性與隨機性毫無關聯。在第八章中,當我們討論到混沌概念的時候,將會詳加探討這個題目。

數學所能做的遠不止於預測。一旦了解某個系統如何運作,我們就不必再做個被動的觀察者了。我們可以試圖控制這個系統,讓它照我們的意思行事。可是最好不要野心太大,例如天氣控制就仍處於嬰兒期,我們還無法隨心所欲地造雨,即使天上有一大團現成的雨雲。

控制系統的例子不勝枚舉,從保持汽鍋溫度固定的恆溫器(thermostat)到中世紀式的造林。還有,假如沒有精妙的數學控制系統,太空梭就會在空中橫衝直撞,因為任何太空人絕對沒有足夠迅速的反應,可矯正它固有的不穩定性。至於使用電子式心律調節器幫助心臟病患者,則是控制的另一項實例。

這些例子,讓我們看到數學最為實際的一面,也就是它的實際應用:數學如何造福人群。

隱身文化幕後的數學工具

我們的世界奠立在數學基礎上,數學不可避免地深植於全球文化中。我們並非總能夠了解數學對我們的生活有多大影響,理由是它被人盡可能藏在幕後。

這是很合理的,譬如您找旅行社安排一次度假旅遊時,不必了解設計電腦或電話線的數學與物理理論,也不必了解使某座機場能起降最多架次飛機的最佳化(optimization)程式,或是為駕駛員提供正確雷達影像的信號處理方法。

當您收看電視節目的時候,也不必了解在螢幕上製造特殊效果的三維幾何、藉由衛星傳送電視訊號的編碼方式、解出衛星軌道運動方程式的數學技巧,以及在製造可將衛星送到定位的太空的各個零組件時,每個步驟所應用的數千種不同的數學工具。

還有,農夫在種植新品種的馬鈴薯時,也不必知道遺傳學統計理論,不必知道這理論如何幫助育種學家找出何種基因使這品種具有抗病性。

然而,以前一定有人了解這一切,否則飛機、電視、太空船、抗病性的馬鈴薯都不可能發明出來。現在也需要有人了解這一切,否則它們就不會繼續運作。而將來也需要有人發明新的數學,以便解決新出現的或迄今尚未有解的難題,否則當我們面對某種改變,必須解決新的問題,或是舊問題需要新的解答時,我們的社會便會崩潰。

假如數學以及所有植基其上的發展,突然之間從我們的世界消失,人類社會將在瞬間四分五裂。又假如數學從此停滯不前,再也不會向前邁出一步,我們的文明便會很快開始倒退。

——本文摘自《大自然的數學遊戲 》,2022 年 11 月,天下文化出版,未經同意請勿轉載。

天下文化_96
116 篇文章 ・ 600 位粉絲
天下文化成立於1982年。一直堅持「傳播進步觀念,豐富閱讀世界」,已出版超過2,500種書籍,涵括財經企管、心理勵志、社會人文、科學文化、文學人生、健康生活、親子教養等領域。每一本書都帶給讀者知識、啟發、創意、以及實用的多重收穫,也持續引領台灣社會與國際重要管理潮流同步接軌。

0

8
3

文字

分享

0
8
3
發現最靠近地球的黑洞:Gaia BH1
全國大學天文社聯盟
・2022/11/30 ・2897字 ・閱讀時間約 6 分鐘

國民法官生存指南:用足夠的智識面對法庭裡的一切。

  • 文/林彥興|清大天文所碩士生、EASY 天文地科團隊主編、全國大學天文社聯盟監事

本月初 [1],「最靠近地球的黑洞」這個紀錄被刷新了!以天文學家 Kareem El-Badry 為首的團隊,利用蓋亞(Gaia)衛星極度精準的天體位置資料,加上多座望遠鏡聯合進行的徑向速度量測,成功確認了約 1550 光年外位於蛇夫座的一顆恆星,正與黑洞互相繞行,打破離地球最近的黑洞紀錄。

狩獵隱身巨獸的方法

人類搜尋黑洞已經有數十年的歷史。對於正在「進食」,也就是正在吸積物質的黑洞,由於其周遭的吸積盤和噴流等結構會在無線電、X 射線等多個波段發出強烈的電磁輻射,因此相對容易看到;但沒有在進食的黑洞,就要難找許多。

畢竟黑洞之所以被叫做黑洞,就是因為它本身幾乎不會發光。想要尋找這些「沉默」黑洞的方法,通常只能靠著黑洞的重力對其週遭的影響,間接推測黑洞的存在。

其中最常見的方法,就是尋找「繞著看不見的物體旋轉的恆星」。一般來說,恆星在天空中移動的軌跡應只受恆星的視差和自行影響,但如果恆星在與另一個大質量的天體互相繞行,比如我們的目標:沉默的黑洞,那恆星的軌跡就會受到黑洞影響。

因此觀測恆星的移動軌跡,是尋找沉默黑洞的重要方法之一。這個方法最著名的例子,就是 2020 年諾貝爾物理獎得主 Reinhard Genzel 與 Andrea Ghez 藉由長時間觀測銀河系中心的恆星運動(位置與徑向速度),從而確認了銀河系中心超大質量黑洞的存在。

UCLA 的銀河中心觀測團隊即是以觀測恆星的運動確認銀河系中央超大質量黑洞的存在。圖/UCLA Galactic Center Group – W.M. Keck Observatory Laser Team

但由於方法間接,用這類方式尋找黑洞時往往很難確定那個「看不見的物體」到底是不是黑洞。舉例來說,2020 年歐南天文台的天文學家宣布發現 HR 6819 是一個包含黑洞的三星系統,卻在更多更仔細的研究後遭到推翻。因此從恆星的運動來尋找「黑洞候選者」相對不難,但是想要消滅所有其他的可能性,「確定」黑洞的存在,就不是一件容易的事。

多方聯合|鎖定真身

那麼,這次的新研究是怎麼「確定」黑洞的存在的呢?

第一步,天文學家們先把目標鎖定在「形跡詭異」的恆星。因為當一顆恆星與黑洞互相繞行時,恆星在天上的運行軌跡會因為黑洞的引力而有週期性的擺盪。所以,如果我們看到有個恆星的軌跡歪歪扭扭,這顆恆星很可能就是受到黑洞重力影響的候選者。

而目前,蓋亞衛星(Gaia)提供的天體位置資料是當之無愧的首選。蓋亞是歐洲太空總署(ESA)於 2013 年發射的太空望遠鏡,與著名的韋伯太空望遠鏡一樣運行在日地第二拉格朗日點。

但與十項全能的韋伯不同,蓋亞是「天體測量學 Astrometry」的專家,專門以微角秒等級的超高精確度測量天體的位置。每隔幾年,蓋亞團隊就會整理並公布他們的觀測結果,稱為資料發布(Data Release)。目前最新的「第三次資料發布 DR3」之中,就包含了超過 18 億顆天體的海量資料。

歐洲太空總署(ESA)的蓋亞衛星(Gaia)是當前測量天體位置和距離無庸置疑的首選。圖/ESA/ATG medialab; background: ESO/S. Brunier

經過篩選,團隊發現一顆名為 Gaia DR3 4373465352415301632 的恆星看起來格外可疑。這是一顆視星等 13.77(大概比肉眼可見極限暗 1300 倍,但以天文學的角度來說算是相當亮)、與太陽十分相似的恆星,距離地球約 1550 光年。

畫面中央的明亮恆星即是這次的主角 Gaia BH1。圖/Panstarrs

找到可能的候選者後,團隊一方面翻閱過去觀測這顆恆星的歷史資料,另一方面也申請多座望遠鏡,進行了四個月的光譜觀測。同時使用從蓋亞衛星的位置(赤經、赤緯、視差)以及從光譜獲得的徑向速度資訊,團隊可以精確地計算出這顆恆星應當是正在繞行一個 9.6 倍太陽質量的天體運轉。

這麼大的質量,卻幾乎不發出任何光,黑洞幾乎是唯一可能的解釋。

但以現有的觀測資料,天文學家仍不能確定它到底是一顆黑洞,還是有兩顆黑洞以相當近地軌道互相繞行,然後恆星再以較大的軌道繞著兩顆黑洞運轉。但無論是一顆或兩顆,Gaia BH1 都刷新了離地球最近黑洞的紀錄,距離僅有 1550 光年,比上一個紀錄保持人(LMXB A0620-00)要近了三倍。從銀河系的尺度來看,這幾乎可說是就在自家後院。

結合蓋亞與其他多座望遠鏡的光譜觀測,天文學家可以計算出 Gaia BH1 在天空中的移動軌跡(左圖黑線)與其軌道形狀(右圖)。注意除了恆星與黑洞互繞所造成的移動外,恆星在天上的位置也受視差和自行影響,兩者在左圖中以藍色虛線表示。圖/El-Badry et al. 2022.
天文學家計算出的 Gaia BH1 徑向速度(RV)變化(黑線)與觀測結果(各顏色的點)。圖/El-Badry et al. 2022.

更多黑洞就在前方

最後讓我們來聊聊,找到「離地球最近的黑洞」有什麼意義呢?

「離地球最近的黑洞」這個紀錄本身是沒有太多意義的。雖然說從銀河系的尺度來說,1550 光年幾乎可說是自家後院,但是這顆黑洞並不會對太陽系、地球或是大家的日常生活產生任何影響。既然如此,為什麼天文學家還會努力尋找這些黑洞呢?

其中一大原因,是因為尋找這些與恆星互相繞行的黑洞,可以幫助天文學家了解恆星演化的過程。在銀河系漫長的演化歷史中,曾有數不清的恆星誕生又死亡。我們看不到這些已經死亡的恆星,但可以藉由這次研究的方法,去尋找這些大質量恆星死亡後留下的黑洞 [2],從而推測雙星過去是如何演化,留下的遺骸才會是如今看到的樣子。

除了 Gaia BH1,天文學家也在持續研究 Gaia DR3 之中其他「形跡可疑」的恆星/黑洞雙星候選系統。而隨著蓋亞衛星的持續觀測,更多這類黑洞候選者將會越來越多。研究這些系統,將幫助天文學家進一步了解雙星系統演化的奧秘。

註解

[1] 嚴格來說,論文九月中就已經出現在 arXiv 上了。

[2] 嚴格來說,恆星質量黑洞(stellar mass black hole)是大質量恆星的遺骸。超大質量黑洞(supermassive black hole)就不一定了。

延伸閱讀

  1. El-Badry, K., Rix, H. W., Quataert, E., Howard, A. W., Isaacson, H., Fuller, J., … & Wojno, J. (2022). A Sun-like star orbiting a black hole. Monthly Notices of the Royal Astronomical Society518(1), 1057-1085.
  2. [2209.06833] A Sun-like star orbiting a black hole
  3. Astronomers Discover Closest Black Hole to Earth | Center for Astrophysics
  4. The Dormant Stellar-Mass Black Hole that Actually Is | astrobites
  5. Astronomers find a sun-like star orbiting a nearby black hole
  6. 狩獵隱身巨獸:天文學家發現沉默的恆星質量黑洞? – PanSci 泛科學
  7. 「最靠近地球的黑洞」其實不是黑洞
  8. 人們抬頭所遙望的星空是恆定不變嗎? – 科學月刊Science Monthly
全國大學天文社聯盟
7 篇文章 ・ 14 位粉絲

1

4
0

文字

分享

1
4
0
洞窟裡的宇宙!拉斯科壁畫上的生命歌賦──《人類大宇宙》
遠流出版_96
・2022/10/18 ・4576字 ・閱讀時間約 9 分鐘

國民法官生存指南:用足夠的智識面對法庭裡的一切。

  • 作者 / 喬.馬錢特博士(Dr. Jo Marchant)
  • 譯者 / 徐立妍

世界共通的圖案——卯宿星團

綜觀歷史,世界各地的藝術作品上經常出現有趣的點狀圖案,數量各有不同,但通常都是六個圓點形成緊密的團體,四個為一排、兩個為另一排;這樣的主題在世界各地的社群中都出現過,從美洲納瓦荷部落的葫蘆形搖鈴上鑽出的孔洞,乃至於西伯利亞薩滿巫師鼓上的繪畫,甚至還出現在日本汽車製造商速霸陸的商標上。

所有這些例子當中的圓點所代表的是夜空中最具代表性的景象:昴宿星團,這一團六、七顆星星(確切數量會依觀看條件有所不同)看起來相當接近太陽每年在空中行經的軌跡,而成為了許多神話與傳說中的主角:在切羅基神話中,這些星星是走失的孩子;維京人將這些星星當成女神芙蕾雅的母雞。這些星星也是金牛星座中相當顯著的組成,昴宿星團就坐落在天空中這頭牛的肩膀上方,再加上向外突出的牛角,紅巨星畢宿五就是明亮的牛眼,還有另一群星星畢宿星團則在牛的臉面上散落成一個V字形。

  

卯宿星團。圖/envato.elements

這六點形成的圖案經常出現,表示昴宿星團在世界各地的社會中相當重要,也傳達出人類想要在藝術上呈現星空各種面向的共通渴望。但是這個故事還不僅如此,有另一個例子也畫出了這些點點,但老實說似乎是不可能出現的。在法國西南部的拉斯科洞窟(Lascaux)最出名的,就是洞內豐富的舊石器時代藝術:描繪動物的壁畫及雕刻,認為已有兩萬年歷史,是人性初現的象徵。幾十年來,學者不斷爭論這些作品的意義,同時卻很少有人注意到,在洞窟龐大入口空間的頂部有六個簡單的點,完美契合昴宿星團的位置,以紅赭色仔細畫下這些點,漂浮在一頭壯碩的原牛肩膀上方。

這頭原牛被稱為「第十八號公牛」,有五.二公尺長,是整個洞窟中最大、或許也是最容易辨識的壁畫,與現代的金牛座形象之間有驚人的相似性,甚至在臉頰上還有V字形點點,已經被發現多年,但在導覽手冊上卻沒有提及,主流考古學家也鮮少討論。金牛座是最早出現記述的星座之一,文字紀錄可以追溯至將近三千年前觀測天象的巴比倫祭司,祭司將昴宿星團看成了天上公牛背上的鬃毛。但其真正的起源會是拉斯科這個應該還相當原始的狩獵採集部落所創作的星圖嗎?與其說學界否定了這個想法,應該說根本沒討論過其可能性。

拉斯科洞窟的公牛壁畫/wikipedia

然而,過去幾年來,人類學、神話學和天文學等領域的專家開始主張,應該徹底重新評估我們在舊石器時代祖先的技巧,以及他們訴說的故事有多麼長遠的影響力。這裡要說的就是人類與星空關聯的歷史,那麼就從第十八號公牛的謎團開始吧,我們將會探討拉斯科的藝術家是否真的能夠畫出星座,也要問問為什麼他們會如此關心天空。這趟旅程會引領我們直往核心,認識這群最早擁有想像力、記憶力、解釋及表達能力的人類,宇宙對他們來說有何意義,而他們所創造的宇宙觀仍影響著我們今日的生活。

重見光明的壁畫

一九四○年九月十二日,十七歲的實習技工馬塞爾.拉維達(Marcel Ravidat)和三個朋友一起到村莊附近的山丘散步,村莊位於法國西南部的蒙蒂尼亞克(Montignac)。村莊裡流傳著這片山丘底下有洞窟,法國大革命之後的一波處決潮中,附近一處莊園的主人也是修道院院長拉布魯斯(Labrousse)據說就藏在其中一個洞窟,而拉維達則異想天開地認為其中可能藏著寶藏。幾天前,他在地面上發現了一個洞,或許有機會一探,並開始清除障礙物,這一次他帶著一把刀和一盞拼湊出來的燈,打算要完成這項工作。

這些男孩的目標是地面上一處臉盆狀的凹陷,周圍長著松樹和杜松,到處都是荊棘灌木,盆底有一處小開口接著一道狹長、幾乎垂直的通道。男孩們清除了荊棘(居然還有一頭驢子屍體),然後徒手將洞口挖寬到將近三十公分。他們往下丟石頭,發現石頭滾動了很長時間而且還有回聲,感覺相當驚訝。那些荊棘底下藏著什麼龐大的東西。

拉維達是這群人當中年紀最大也是最強壯的,他頭下腳上鑽了進去,匍匐在土裡爬了幾公尺後,便掉在一堆尖尖的泥土和石頭上。他點起燈,這是他用一顆滑脂泵加上一條線做成的,但他幾乎馬上就失去平衡,一路滑到底部。他發現自己處在一片寬闊的空間裡,大約有二十公尺長,便出聲叫朋友跟著下來。

他們在近乎一片漆黑中穿過石灰岩洞穴,避開地上的淺水坑,最後抵達一處狹窄的走道,上頭拱起的頂部距離相當遠,就像教堂穹頂。一直到了這裡,拉維達才舉起燈,男孩們便發現了寶藏。在白色的牆壁上覆滿了爆發的生命,從我們的物種誕生便出現的圖像,經過兩萬年後終於再次重現世人眼前。

首先,他們注意到有顏色的線條以及怪異的幾何圖像,然後拿著燈往四處一照,便看到了動物,到處都有金色的馬配上黑色鬃毛,同時還有紅黑相間的公牛、山羊,以及一頭鳴叫的長角雄鹿。一群群動物躍然牆上,跟著跳上了洞窟頂部,有些線條明確而顏色繽紛,也有些形象模糊,彷彿是從霧中掉出來似的。這些男孩還不明白自己發現的東西有多麼重要,但他們知道這很特別,於是在搖曳的光線中又跳又叫地慶祝著。

拉斯科洞窟上的萬物奔騰/wikipedia

拉斯科洞窟(以鄰近的那座莊園命名)如今名列歷史上最壯觀的考古發現之一。在法國南部及西班牙北部有上百個洞窟,拉斯科是其中一處,洞窟中的裝飾可以追溯至三萬七千至一萬一千年前。這些藝術家從解剖學來說已經是現代人類,他們在上一次冰河期間,大約是四萬五千年前首先從非洲遷徙到歐洲。這段時期稱為舊石器時代晚期,以此時所使用的石頭工具命名,而人類的創造力似乎也在此時有爆發性的成長。其他地方也發現大約同一時期的岩石壁畫,像在印尼及澳洲都有,這項活動的起源幾乎可以肯定還更早就出現在非洲。不過,多虧了其複雜性、細膩的保存手法以及繪畫雕刻的數量驚人(近兩千幅),拉斯科是當中最為精細的遺蹟。

眾說紛紜的解讀

這裡的藝術家使用以植物製成的刷子或者髮束,顏料則是鐵礦和錳礦、高嶺土及炭條,畫滿了深達一百公尺的石窟內所有通道及穴室。他們的創作讓我們得以一窺史前人類的心智,實屬難得,也美得令人魂牽夢縈。這些先民是誰?他們關心些什麼?是什麼讓他們想要創作藝術?實質上,是什麼讓他們發展出人性?

自從男孩們發現此地後的幾十年間,學者針對這些問題提出了各種令人目不暇給的答案。早期有人認為這些神祕的圖樣只是裝飾,「為了藝術而藝術」,沒有什麼特別的意義;另一派則認為這些動物代表不同的部落,這些繪畫描述的便是部落之間的戰役及結盟。有些專家認為這些繪畫的用意是施法的咒語,是為了提升狩獵遠征的成功率或驅除惡靈。在一九六○年代,學者採取了統計學的方式,記錄下不同類型的圖樣在洞窟內的分布情形,並且根據他們看到的模式建立理論,例如馬和野牛就象徵著男性和女性身分。

然後,諾伯特.奧祖拉特(Norbert Aujoulat)出現了,他對這些繪畫的了解或許比任何人都更加親密。他十分熱中於洞窟研究,自述為「地底人」,經常獨自遁入法國山區,一去就是好幾天,也協助發現了十幾處地底洞室。但他一直沒有忘記自己初次見到拉斯科的時候,那是在一九七○年一個冬日下午,自從發現洞窟之後便開放大眾參觀,但後來又關閉了:每天上千名遊客所呼出的氣息,再加上他們帶入的細菌,都損傷了珍貴的壁畫。當時二十四歲的奧祖拉特就在當地讀書,參加了賈克.馬叟(Jacques Marsal)的私人導覽行程,馬叟正是三十年前發現這個洞窟的四名好朋友之一。

為了抵達壁畫所在之處,馬叟帶著他們走下一道斜坡,通過一連串為安全而建造、由石塊堆砌成的入口廳堂及門廊,這讓奧祖拉特感覺他們恍若正要前往神廟內部的神聖空間。最後一道門是以沉重的青銅鑄成,裝飾著光亮的石頭,奧祖拉特只花了半個小時探索在門後的寶藏,但已經足以決定他人生的道路,他完全入迷於洞窟內那股強烈的人類存在感,強大到能夠穿越數千數萬年,於是他立定目標,志要理解這些壁畫創作的方式與原因。

奧祖拉特花了將近二十年才得以完成自己的夢想。一九八八年,他成為法國文化部洞窟藝術局的局長後,便展開研究拉斯科洞窟長達十年的龐大計畫,從環繞著入口洞室頂部的大型公牛,到一處稱為半圓形後殿的較小洞室中密麻交纏的雕刻圖案。其他學者都將焦點放在藝術上,奧祖拉特卻是以自然科學家的身分看待拉斯科,從各個面向研究這個洞窟,包括石灰岩的地質學乃至牆上動物的生物學,他下了結論,認為其他人都忽略了一個關鍵面向:時間。

壁畫上的時節週期

他在研究馬、原牛和雄鹿等一同交疊出現的圖樣時,發現每一次都是先畫上馬、然後是原牛,最後才是雄鹿。而且,這些動物總是顯露出對應著一年當中特定時節的特徵:馬匹身上厚重的毛皮及長長的尾巴對應著冬天尾聲;原牛則是在夏季當中,然後雄鹿頭上突出的鹿角是秋季時才有的特色。對每一物種來說,都正值交配季節。

奧祖拉特在二○○五年出版的《拉斯科:動作、空間與時間》(Lascaux: Movement, Space, and Time)一書中描述了自己的發現,他認為壁畫繪製出重要動物的生育週期,可以理解這個洞窟是一處靈性的聖地,用意是象徵創造以及生命的永恆節奏。不過,這些繪畫所呈現出的創造週期並不僅是代表了俗世上與動物、天氣相關的主題,還能延伸到整個宇宙。

當然,年復一年發生在石器時代世界中的生命再造,也能反映在星象週期上:以太陽的路徑及夜空中出現特殊星座來標記每一季節。奧祖拉特相信,這就是藝術家觀點的核心。他認為,這顯示出生物及宇宙時間是相互糾纏在一起的,將洞窟頂部高懸的牆壁及整片頂部的壁畫比擬為「蒼穹」,並且提出論點說這些動物並非呈現在地面上,而是於天空裡。

這點可以解釋為什麼這些動物經常看起來像是飄浮著的:從各個角度繪成、看不見任何地面線條,有時甚至還高懸著腳蹄。如果奧祖拉特是對的,拉斯科洞窟不僅表達出生物學,同樣也表達出宇宙學:這些藝術家並非在模仿身邊所見的環境,而是將一切定義了他們存在的變化,無論是地上的或在天上的,都揉合在一起,可以說這就像一首歌頌他們宇宙的歌賦,呈現出人類最早對於宇宙本質及生命起源的認知。

奧祖拉特處於法國學術機構的核心,而他的研究成果具有相當大的影響力,但即使如此,卻很少有人討論他對天空的概念。在缺乏直接證據的情形下,考古學家認為,與其將這些繪畫視為對天空的觀點,當成歌頌自然的作品要容易多了。不過仍有一些學者認為奧祖拉特的論點還不夠大膽,拉斯科的藝術家不僅僅是想像天空上的動物,更繪製出天上的星圖。

———本書摘自《人類大宇宙》,2022年 9 月,遠流出版。
所有討論 1
遠流出版_96
59 篇文章 ・ 29 位粉絲
遠流出版公司成立於1975年,致力於台灣本土文化的紮根與出版的工作,向以專業的編輯團隊及嚴謹的製作態度著稱,曾獲日本出版之《台灣百科》評為「台灣最具影響力的民營出版社」。遠流以「建立沒有圍牆的學校」、滿足廣大讀者「一生的讀書計畫」自期,積極引進西方新知,開發作家資源,提供全方位、多元化的閱讀生活,矢志將遠流經營成一個「理想與勇氣的實踐之地」。