0

4
0

文字

分享

0
4
0

長江熊本豪雨成災,如果臺灣也碰到連續強降雨該怎麼辦?

活躍星系核_96
・2020/08/03 ・2925字 ・閱讀時間約 6 分鐘
  • 作者/巫仲明(逢甲大學營建及防災研究中心,研究副教授)

除了疫情,也是洪災頻發的2020年

《中國氣象報》分析稱,6 月初至 7 月上旬,長江流域平均降水量達到 369.9 毫米,為 1961 年以來歷史同期最多,讓中國南方長江流域遭遇了數十年來最嚴重的洪水災害。鄱陽湖的水位已上漲至超出警戒水位 19.5 米,為歷史最高位,水域面積達近十年最大水平,鄱陽縣水位已高出堤頂 1 米多。洪水所到之處衝垮了房屋,甚至引起決堤。全中國在這次的洪災已導致超過百人死亡或失蹤,27 個省份將近 4 千萬人次受災。

Embed from Getty Images

同時的日本熊本縣豪雨成災,著名的球磨川泛濫導致嚴重水患。位於西日本九州的熊本縣和鹿兒島縣,在 7 月 4 日由氣象廳於凌晨 4 點 50 分發布了大雨警報,結果清晨 5 點左右,熊本縣境內的球磨川就發生堤防崩塌,在短短的一個小時之後,球磨川就已經氾濫成災、流經的周邊區域如球磨村和人吉市,就已幾乎遭到淹沒而孤立無援。其中以九州地方的熊本縣南部受災最為嚴重,位於球磨村渡地區的老人中心「千壽園」,因附近的河川暴漲淹水,造成園內 14 名高齡者死亡。

Embed from Getty Images

連續近兩月的強降雨天氣是今年各國洪災的主要原因,長江流域從 6 月降水量較往年平均值多 20%,7 月上旬為止中國中央氣象台連續 40 天發佈暴雨預警,這是該氣象台 2007 年使用暴雨預警業務以來歷時最長的一次。日本九州熊本縣球磨村、水俁市和等地,24 小時內降雨量就超過 400 mm 以上,熊本各個區域都在短時間內發生降雨量破紀錄的情形,日本氣象廳宣布是九州南部觀測史上 50 年來最嚴重的紀錄,這些連續強降雨的極端氣候事件與全球暖化脫不了關係。

這樣的極端降雨如果發生在臺灣會發生什麼事?在山坡地可能會造成土砂狀態的不穩定,引發崩塌、地滑及土石流等環境的變化,在平地可能會造成積、淹水之現象這是一定的,我們身處在臺灣又該如何因應?或許應該先釐清我們對災害的認知。

防洪設施就能阻止水患發生嗎?

對於崩塌、地滑、土石流及洪水在人們生存聚落活動範圍出現時,以往都會利用工程的手段進行結構式的減災工作,以減少土砂災害及洪水災害的發生。但是工程的保護總有其極限性,以排水設計為例,路邊的側溝大概 2~10 年一遇的防洪標準,區域排水大概 25 年一遇不溢堤,河川大概 50~200 年一遇的防洪設計標準,縱使設計規格再高,當降雨超過工程設計的保護標準災害依舊發生。

因此,我們面對連續強降雨的正確態度,不是期待崩塌、地滑、土石流及洪水的現象不發生,而是減少崩塌、地滑、土石流及洪水災害的損失如此一來,才會體會到工程手段只是減緩崩塌、地滑、土石流及洪水災害的手段之一。

工程只是減緩災害的方法之一,不能強求當成保命牌。圖/pixabay

面對極端降雨,減災要從你我做起!

如果人們認為工程手段就能阻擋災害的發生,目前在臺灣這類結構性的防災工程大部分是由政府施作,難免造成大家有一心態,災害的發生全都是政府的問題,一定是那個地方或是那個環節做不好、做不夠所造成的。

當我們意識到工程手段只是減緩災害的一種做法時,才會發現還有一些非工程手段的方法可以減少這些災害的損失,例如:透過保險可以將災害損失轉移,或是社區自主防災推動可以減少生命及財產的損失,除此之外,還有很多的非工程措施的減災手段可以減少災害的損失,但是不管是那一個,除了政府的作為外,還要個人的身體力行,方才有其減災成效。

如果臺灣也面臨極端降雨威脅該怎麼辦?source:Vladimir Varfolomeev@Flickr

以推動社區自主防災為例,當面對連續強降雨,在崩塌、地滑、土石流及洪水的現象時,想要減緩或規避災害的損失就是要進行幾個步驟:

  1. 環境探索:
    瞭解本身居住的環境,透過日常的觀察、生活的經驗瞭解那些地點在連續強降雨下,容易發生崩塌、地滑、土石流及洪水的區位,更可以上網查尋社區的災害潛勢資料,盤點社區內的防砂工程及排水工程,並且瞭解這些工程對這些現象的保護程度。
  2. 災情想定:
    對災害發生的狀況充份想像,這個步驟是需要高度想像力的工作,雖然是要運用想像力,但不是憑空胡思亂想,而是根據對當地災害瞭解,掌握災害可能發生的形式及地點,思考在連續強降雨時,超越工程保護極限的狀況時,衝擊會如何的發生。
  3. 隨時觀察:
    在生活的週遭掌握極端降雨的衝擊來襲時的前兆,這個觀察以往通常運用身體感觀直接的感受,由於科技的日新月異也可能是新科技或資訊的應用,但不管是什麼方式就是要在極端降雨發生時提高警覺,隨時注意週遭環境的變化。
  4. 超前部署:
    編撰一套可操作的防災應變劇本,並且實行它。將想像出來極端降雨產生的前兆及衝擊,依照時間順序排列出來,並且一一的找出因應的對策,例如洪水淹過來了,把貴重的東西搬高(離),利用砂包或防水檔板,讓水不淹進家裡。若是土石流或大規模崩塌的衝擊在無法垂直避難的情形下,只能帶著貴重家當,儘速離開影響範圍。
  5. 守望相助:
    極端降雨所造成的災害都不是個人所能應變的必需彼此相互協助,所以發展出的這一套劇本絕對不是獨角戲,是需要當時在社區中的每個利害關係人共同來完成,有人觀察環境變化、有人協助通知(報)、有人協助疏散、有人協助搶救。不僅協助者彼此合作,被協助者也要熟練劇本,方能發揮最大功效。
  6. 弱點強化:
    在社區自主防災推動的過程中一定會發現,在極端降雨的衝擊下有那些是比較容易受損或脆弱的,例如社區中的長者及弱勢者,是否平常就加強保護,或者災害發生之前要加強關注。

以上幾點是面對極端降雨時,我們居住在易受災區調適的做法,在氣候變遷下臺灣哪個地方才是宜居呢?或許改變我們對災害的看法及態度,認為它無所不在,所以需要隨時應變,才是防災之治本之道。

〈那些把錢丟到水裡的治水工程?〉影片截圖。影片/泛科學

參考資料:

文章難易度
活躍星系核_96
759 篇文章 ・ 70 位粉絲
活躍星系核(active galactic nucleus, AGN)是一類中央核區活動性很強的河外星系。這些星系比普通星系活躍,在從無線電波到伽瑪射線的全波段裡都發出很強的電磁輻射。 本帳號發表來自各方的投稿。附有資料出處的科學好文,都歡迎你來投稿喔。 Email: contact@pansci.asia

0

8
0

文字

分享

0
8
0

地震規模越大,晃得越厲害?

鳥苷三磷酸 (PanSci Promo)_96
・2021/09/16 ・3706字 ・閱讀時間約 7 分鐘

本文由 交通部氣象局 委託,泛科學企劃執行。

某天,阿雲跟阿寶分享了一個通訊軟體上看到的資訊:

阿雲:「欸,你知道最近有個傳言說,花蓮有 7.7 級地震,如果發生的話台北會有 5.0 級的震度耶!」

阿寶:「蛤?那個傳言也太怪了吧,應該是把規模和震度搞混了!」

震度:量度地表搖晃的單位

確實常常有人把地震的規模跟震度搞混,實際上,因為規模指的是地震釋放的能量大小,所以當一個地震發生時,它的規模值已經決定了,只是會因為測量或計算的方式不同,會有些許的數字差異,而一般規模計算會到小數點後第一位,故常會有小數點在裡面。然而震度指的意思是地表搖晃的程度,度量表示方式通常都是以「分級」為主,比如國外常見、分了 12 級震度的麥卡利震度階,就是用 12 種不同分級來描述,而中央氣象局目前所使用的震度則共分十級,原先是從 0 級到 7 級,而自 2020 年起,在 5 級與 6 級又增了強、弱之分,也就是震度由小而大為 0-1-2-3-4-5弱-5強-6弱-6強-7 等分級,所以在表示上我們以整數 + 級或是強、弱等寫法,就可以區分規模和震度,不被混淆了!

而為什麼專家常需要強調震度和規模不一樣?那是因為震度的大小,是受到許多因素的影響。地震發生後,造成地表搖晃的主要原因是「地震波」傳來了大量能量,規模越大的地震,代表的就是地震釋放的能量越大,就像是你把擴音的音量不斷提高時,會有更大的聲音傳出一般。所以當其他的因素固定時,確實會因為規模越大、震度越大。

可是,地震波的能量在傳播過程中也會慢慢衰減,就像在演唱會的搖滾區時,在擴音器旁往往感覺聲音震耳欲聾,但隔了二、三十公尺之外,音量就會變得比較適中,但到了會場外,又會變得不是那麼清楚一樣。所以無論是地震的震源太深、或是震央離我們太遙遠,地震波的能量都會隨著距離衰減,一般來說震度都會變得比較小。

「所以,只要把那個謠言的台北規模 5.0 改為震度 5 弱,說法就比較合理了嗎?」阿雲說。

「可是,影響震度的因素還有很多,像是我們腳下的岩石性質,也是影響震度的重要因素。」阿寶說。

場址效應:像布丁一樣的軟弱岩層放大震波

原本我們都會覺得,如果地震釋放能量的方式就像是聲音或是爆炸一般,照理說等震度圖(地表的震度大小分布圖)上會呈現同心圓分布,但因為地質條件的差異,分布上會稍微不規則一些,只能大致看出震度會隨著離震央越遠而越小。地震學上有一個專有名詞叫做「埸址效應」,指的就是因為某些特殊的地質條件下,反而讓距離震央較遠的地方但震度被放大的地質條件。其中最常見的就是「軟弱岩層」和「盆地」兩種條件,而且這兩種還常常伴隨在一起出現,像是 1985 年的墨西哥城大地震,便是一個著名的例子。

影片:「場址效應」是什麼? 布丁演給你看

墨西哥城在人們開始在這邊發展之前,是個湖泊,湖泊中常有鬆軟的沉積物,而當湖泊乾掉之後,便成了易於居住與發展的盆地。雖然 1985 年發生的地震規模達 8.0,但震央距離墨西哥城中心有 400 公里,照理說這樣的距離足以讓地震波大幅衰減,而地震波傳到盆地外圍時,造成的加速度(PGA)大約只有 35gal,在臺灣大約是 4 級的震度,然而在盆地內的測站,卻觀測到 170gal 的 PGA 值,加速度放大了將近五倍,換算成震度,也可能多了一至二級的程度,也造成了相當程度的災情。盆地裡的沉積物,就像是裝在容器裡的布丁一樣,受到搖晃時,會有更加「Q 彈」的晃動!

1985 年墨西哥城大地震的等震度圖。圖/wikipedia

因此,在臺灣,雖然臺北都會區並沒有比其他區有更多更活躍的斷層,但地震風險仍不容小覷,因為臺北也正是一個過去曾為湖泊的盆地都市,仍有一定程度的地震風險,也需要小心來自稍遠的地震,除了建築需要有更強靭的抗震能力,強震警報能提供數秒至數十秒的預警,也多少讓人們能即時避災。

斷層的方向與震源破裂的瞬間,也決定了等震度圖的模樣

阿雲似懂非懂的接著問:「可是啊,為什麼有的時候大地震的等震度圖長得很奇怪,而且有些時候震度最大的地方都離震央好遠呢!也太巧合了吧?」

「這並不是巧合,因為震央下方的震源,指的其實是地震發生的起始點,並不是地震能量釋放最大的地方啊!」阿寶繼續解釋著。

「蛤!為什麼啊?」阿雲抓抓頭,一邊思考著。

地震是因為地下岩層破裂產生斷層滑動而造成的,雖然不是每個地震都會造成地表破裂,但目前科學家大多認為,地震的破裂只是藏在地底下,沒有延伸到地表而已,而且從地震的震度,也可以看出地底下斷層滑移的特性。

斷層在滑動時,主要的滑動和地震波傳出的地方,會集中在斷層面上某些特定的「地栓」(Asperity)之上,這些地栓又被認為「錯動集中區」,而通常透過傳統的地震定位求出來的震源,其實只是這些地栓中,最早開始錯動的地方。但實際上,整個斷層錯動最大的地方,往往都不會在那一開始錯動的地方,就像是我們跑步時,跑得最快的瞬間,不會發生在起跑的瞬間,而是在起跑後一小段的過程中,而錯動量最大的區域,才會是能量釋放最大的地方。而或許是小地震的地栓範圍小,震央幾乎就在最大滑移區的附近,因此也看不太出來,通常規模越大,震源的破裂行為會隨著時間傳遞,此效應才會越明顯。

震源與震央位置示意圖。圖/中央氣象局

那麼斷層上的地栓位置能否確認?這仍是科學上的難題,但近年來科學進展已經能讓我們透過地震波逆推斷層上的錯動集中區,至少可以透過地震波逆推斷層破裂滑移的型式,得以用來比對斷層破裂方向對震度分布的影響。以 2016 年臺南—美濃地震為例,最大錯動量的地區並不在震央所在的美濃附近,而是稍微偏西北方的臺南地區,也就是因為從地震資料逆推後,發現斷層在破裂時是向西北方向破裂。而更近一點的 2018 年花蓮地震,錯動量大、災害多的地方,也是與斷層破裂方向一致的西南方。

一張含有 地圖 的圖片  自動產生的描述
2016 年臺南美濃地震的等震度圖。圖/中央氣象局

透過更多的分析,現在也逐漸發現破裂方向性對於大地震震度分布的影響確實是重要議題。而雖然我們無法在地震發生之前就預知地栓的位置,但仍可從各種觀測資料作為基礎,針對目前已知的活動斷層進行模擬,就能做出「地震情境模擬」,並且由模擬結果找出可能有高危害度的地區,就能考慮對這些地區早先一步加強耐震或防災的準備工作。

多知道一點風險和危害度,多一份準備以減低災害

但是,直到目前為止,我們仍無法確知斷層何時會錯動、錯動是大是小。科學能給我們的解答,只能先評估出斷層未來的活動性中,哪個稍微大一些(機會小的不代表不會發生),或者像是斷層帶附近、特殊地質特性的場址附近,或許更要小心被意外「放大」的震度。而更重要的是,當地震來臨前,先確保自己的住家、公司或任何你所在的地方是安全還是危險,在室內要小心高處掉落物、在路上要小心掉落的招牌花盆壁磚、在鐵路捷運上要注意緊急煞車對你產生的慣性效應…多一些及早思考與演練,目的就是為了防範不知何時突然出現的大地震,在不恐慌的情況下保持適當警戒,會是對你我都很重要的防震守則!

【參考文獻】

鳥苷三磷酸 (PanSci Promo)_96
4 篇文章 ・ 7 位粉絲
充滿能量的泛科學品牌合作帳號!相關行銷合作請洽:contact@pansci.asia
網站更新隱私權聲明
本網站使用 cookie 及其他相關技術分析以確保使用者獲得最佳體驗,通過我們的網站,您確認並同意本網站的隱私權政策更新,了解最新隱私權政策