0

4
2

文字

分享

0
4
2

面積儀無法加減乘除,卻開創出「類比式計算機」新路│《電腦簡史》(二十二)

張瑞棋_96
・2020/07/20 ・2754字 ・閱讀時間約 5 分鐘 ・SR值 550 ・八年級

本文為系列文章,上一篇請見:第一位程式設計師愛達·勒芙雷斯,能否改變分析機的命運?│《電腦簡史》 齒輪時代(二十一)

巴貝奇發明的差分機與分析機遠遠超越他的時代,得不到認同,連在自己國家舉辦的萬國博覽會都無法參展。不過會場中有一種特殊的計算器,不能做加減乘除,卻能直接「滾」出積分結果,從此開啟類比計算機這條新路。

首度世界博覽會開幕,不見差分機,卻有面積儀?

1851 年,英國倫敦海德公園出現一棟由鋼骨與玻璃蓋成的巨大建築。這棟長五百多公尺、高度近四十公尺的「水晶宮」(The Crystal Palace),是為了萬國工業博覽會而興建。這是史上首度舉辦的萬國博覽會,世界各國在此展出最新技術與發明。

英國發起這場盛大的活動,目的在於展現工業革命之後的各項成果,以證明大不列顛的領導地位。各國不甘示弱,也都使出渾身解數,不只比誰有最新發明,更要爭誰的設計更佳。因此除了有首度亮相的沖水馬桶、傳真機等全新的發明,也有望遠鏡、銀版攝影這種原本就有的事物,再推出進化版;前面提到的雅卡爾織布機與柯瑪四則運算器也在其中。

1851 年於倫敦舉行的第一屆萬國博覽會。圖:wikipedia

巴貝奇原本殷切期待在此次萬國博覽會展出差分機模組,讓世人見識他的發明,卻因為與內閣關係交惡,未能如願,還被排除在籌備委員會之外。其實就如上一章所說,即使巴貝奇真的成功打造出差分機,恐怕也會不符投資效益而賣不出去,就和其它山寨差分機一樣,很快就無疾而終。反而是柯瑪的四則運算器,用途單純卻便宜,還有不錯的銷路。

-----廣告,請繼續往下閱讀-----

當時一起展覽的還有一種科學儀器叫面積儀 (Planimeter),也是用途單純、卻相當成功的計算器。說是計算器,但其實面積儀並不做數字的加減乘除,它的運算取決於機械動作的連續變化,因此在類別上歸屬於類比式計算機。面積儀後來又衍生出各種不同用途的類比式計算機,現代數位式電腦出現之前,許多艱鉅的計算工作都是靠它們完成的。

土地面積太難算,發明面積儀來解決

類比式與數位式的差別在於數值的連續性。類比式所處理的數值之間是連續不間斷的,數位式所處理的則是一個個孤立的數字。例如從 0 到 9 之間的任何實數都包含在內,算是類比;而如果只有 0 到 9 這十個整數,則算是數位。若以幾何來表示,類比就是0到 9 這一條線段,而數位就只有 0、1、2、……、9 這十個點。

四則運算之類的計算器當然是數位式;但計算尺則算是類比式,因為游標左右滑動,可以指到任何一個數值。傳統機械錶的指針是以連續不間斷的方式轉動,所以是類比式;不過同樣用指針的石英錶則是數位式,因為秒針是一格一格地跳躍前進。巴貝奇的差分機與分析機雖然可以計算連續函數,卻是利用代表 0 到 9十個數字的齒輪來運算,因此屬於數位計算機;而面積儀則是用完全不同的方式計算連續函數。

面積儀最早是巴伐利亞 (Bavaria,現德國的一邦) 一位公務員赫曼 (Johann Martin Hermann) 於1814 年發明。他負責地籍資料,為了計算每塊土地的面積而大傷腦筋。

-----廣告,請繼續往下閱讀-----

土地形狀若是像課本上那種簡單幾何圖形,當然只需加減乘除,頂多加上三角函數就能算出面積。但實際上,土地邊界常常有不規則曲線,得用微積分才能算出面積大小,這就不是一件簡單的事,要有相當的數學程度才能勝任。而當有成千上萬筆的土地需要計算,得耗費掉多少時間?又去哪兒找那麼多數學家?

你可能會覺得這聽起來有點熟悉,沒錯,當年法國數學家德普羅尼也是因為測量土地需要數值表,而面臨同樣的難題。德普羅尼想出的解決之道,是利用差分法分拆計算過程,讓不懂數學的美髮師也能幫忙計算。赫曼則是直接思考如何用機器解決,才發明出面積儀。

不用計算數字,機械積分就能滾出積分結果

只要將面積儀置放在地圖上,握著上面的鐵針沿著土地輪廓描過一遍,就能自動算出面積大小(原理參見文末附注)。由於它是利用滾輪與圓錐體接觸面的變化,算出積分的結果,過程中的變化起伏與呈現出的數值都是連續的,因此是不折不扣的類比計算機。這也是第一具不需計算數值,光靠機械運動就能得出積分結果的機器。

面積儀使用方式。
圖/flickr

赫曼首創「機械積分」,為計算機開創出另一條不同的道路。不過他可能原本就是發明給自己內部使用,所以並未大肆宣揚,直到 1855 年出版的一本德國期刊介紹他的發明,世人才知道赫曼是最早的發明者,而這段期間已經有許多人也陸續發明出面積儀。 1851 年的萬國工業博覽會所展出的面積儀,便多達六款,分別來自義大利、瑞士、法國、英國等國。這些面積儀的構造略有不同,或增添滾輪、或用轉盤取代圓錐體,但原理都不脫赫曼的原始設計。

-----廣告,請繼續往下閱讀-----

不過真正讓面積儀商業化並獲得廣泛採用的,是瑞士數學家兼物理學家阿姆斯勒 (Jakob Amsler) 於 1854 年所改良的機型。原來的面積儀是基於直角座標系,將 X 軸與 Y 軸的位置變化轉換為數值;阿姆斯勒改用極座標,測量的是角度與距離的變化。如此一來,阿姆斯勒便能把面積儀設計得更小巧,成本更低,而且使用起來更方便,計算結果也更準確,因此大受歡迎。三年後,阿姆斯勒乾脆自己設廠生產極座標面積儀,在他 1912 年過世之前,一共賣出多達五萬支。

阿姆斯勒設計的極座標面積儀。
圖/wikimedia

機械積分真好用,各式類比計算機由此衍生

面積儀既然可以用利用機械積分算出積分值,類似的原理應該也可以畫出對應的積分函數。1878 年,波蘭數學家阿巴卡諾維茲 (Bruno Abakanowicz) 發明積分儀 (Integraph)。將積分儀的描圖臂沿著某一函數的曲線移動,另一根繪圖臂就會同時畫出這個函數的積分圖形,例如將描圖臂沿著 y=x 這條直線移動,繪圖臂就會畫出 y=1/2 x2 的曲線,相當於一台輸出函數積分圖解的計算機。

除了積分儀,面積儀還衍生出許多不同用途的類比式計算機,其中契機正是源於1851 年的萬國博覽會,而關鍵角色竟是被譽為牛頓之後第二人的馬克士威 (James Clerk Maxwell)。馬克士威當時仍在劍橋大學就讀,他也跑去參觀萬國博覽會。面積儀的巧妙設計讓他印象深刻,回去後繼續思考其中原理,最後還發表論文,提出改善建議,竟因此開啟了類比式計算機一連串的發展。


同場加映:面積儀的運作原理

面積儀有支活動的懸臂,末端插著細細尖尖的鐵針。內部有個圓錐體,會隨著懸臂前後移動而順時針或逆時針轉;以及一個與圓錐體表面接觸的滾輪,滾輪會隨著懸臂左右移動而上上下下。

-----廣告,請繼續往下閱讀-----

當鐵針沿著土地邊界移動,便會帶動懸臂前後左右移動,使得滾輪隨著圓錐體轉動。鐵針的位置若以直角座標 (x,y) 表示,y 越大,滾輪越靠近圓錐體底部,因此轉越多圈。x 增加時,滾輪順時針轉,會累加轉動的圈數,反之則逆時針轉,倒扣轉動圈數。滾輪連結到有如時鐘的圓盤,上面的指針會跟著同步轉動,所指的數字便是累計的圈數,也就是土地的面積。

-----廣告,請繼續往下閱讀-----
文章難易度
張瑞棋_96
423 篇文章 ・ 1056 位粉絲
1987年清華大學工業工程系畢業,1992年取得美國西北大學工業工程碩士。浮沉科技業近二十載後,退休賦閒在家,當了中年大叔才開始寫作,成為泛科學專欄作者。著有《科學史上的今天》一書;個人臉書粉絲頁《科學棋談》。

0

3
1

文字

分享

0
3
1
為機器人換上「物理大腦」:一場終結AI數位囚禁的革命
鳥苷三磷酸 (PanSci Promo)_96
・2025/09/03 ・5732字 ・閱讀時間約 11 分鐘

本文與 研華科技 合作,泛科學企劃執行

我們都看過那種影片,對吧?網路上從不缺乏讓人驚嘆的機器人表演:數十台人形機器人像軍隊一樣整齊劃一地耍雜技 ,或是波士頓動力的機器狗,用一種幾乎違反物理定律的姿態後空翻、玩跑酷 。每一次,社群媒體總會掀起一陣「未來已來」、「人類要被取代了」的驚呼 。

但當你關掉螢幕,看看四周,一個巨大的落差感就來了:說好的機器人呢?為什麼大街上沒有他們的身影,為什麼我家連一件衣服都還沒人幫我摺?

這份存在於數位螢幕與物理現實之間的巨大鴻溝,源於一個根本性的矛盾:當代AI在數位世界裡聰明絕頂,卻在物理世界中笨拙不堪。它可以寫詩、可以畫畫,但它沒辦法為你端一杯水。

-----廣告,請繼續往下閱讀-----

這個矛盾,在我們常見的兩種機器人展示中體現得淋漓盡致。第一種,是動作精準、甚至會跳舞的類型,這本質上是一場由工程師預先寫好劇本的「戲」,機器人對它所處的世界一無所知 。第二種,則是嘗試執行日常任務(如開冰箱、拿蘋果)的類型,但其動作緩慢不穩,彷彿正在復健的病人 。

這兩種極端的對比,恰恰點出了機器人技術的真正瓶頸:它們的「大腦」還不夠強大,無法即時處理與學習真實世界的突發狀況 。

這也引出了本文試圖探索的核心問題:新一代AI晶片NVIDIA® Jetson Thor™ ,這顆號稱能驅動「物理AI」的超級大腦,真的能終結機器人的「復健時代」,開啟一個它們能真正理解、並與我們共同生活的全新紀元嗎?

新一代AI晶片NVIDIA® Jetson Thor™ ,這顆號稱能驅動「物理AI」的超級大腦 / 圖片來源:研華科技

為何我們看到的機器人,總像在演戲或復健?

那我們怎麼理解這個看似矛盾的現象?為什麼有些機器人靈活得像舞者,有些卻笨拙得像病人?答案,就藏在它們的「大腦」運作方式裡。

-----廣告,請繼續往下閱讀-----

那些動作極其精準、甚至會後空翻的機器人,秀的其實是卓越的硬體性能——關節、馬達、減速器的完美配合。但它的本質,是一場由工程師預先寫好劇本的舞台劇 。每一個角度、每一分力道,都是事先算好的,機器人本身並不知道自己為何要這麼做,它只是在「執行」指令,而不是在「理解」環境。

而另一種,那個開冰箱慢吞吞的機器人,雖然看起來笨,卻是在做一件革命性的事:它正在試圖由 AI 驅動,真正開始「理解」這個世界 。它在學習什麼是冰箱、什麼是蘋果、以及如何控制自己的力量才能順利拿起它。這個過程之所以緩慢,正是因為過去驅動它的「大腦」,也就是 AI 晶片的算力還不夠強,無法即時處理與學習現實世界中無窮的變數 。

這就像教一個小孩走路,你可以抱著他,幫他擺動雙腿,看起來走得又快又穩,但那不是他自己在走。真正的學習,是他自己搖搖晃晃、不斷跌倒、然後慢慢找到平衡的過程。過去的機器人,大多是前者;而我們真正期待的,是後者。

所以,問題的核心浮現了:我們需要為機器人裝上一個強大的大腦!但這個大腦,為什麼不能像ChatGPT一樣,放在遙遠的雲端伺服器上就好?

-----廣告,請繼續往下閱讀-----
我們需要為機器人裝上一個強大的大腦!但這個大腦,為什麼不能像ChatGPT一樣,放在遙遠的雲端伺服器上就好? / 圖片來源:shutterstock

機器人的大腦,為什麼不能放在雲端?

聽起來好像很合理,對吧?把所有複雜的運算都交給雲端最強大的伺服器,機器人本身只要負責接收指令就好了。但……真的嗎?

想像一下,如果你的大腦在雲端,你看到一個球朝你飛過來,視覺訊號要先上傳到雲端,雲端分析完,再把「快閃開」的指令傳回你的身體。這中間只要有零點幾秒的網路延遲,你大概就已經鼻青臉腫了。

現實世界的互動,需要的是「即時反應」。任何網路延遲,在物理世界中都可能造成無法彌補的失誤 。因此,運算必須在機器人本體上完成,這就是「邊緣 AI」(Edge AI)的核心概念 。而 NVIDIA  Jetson 平台,正是為了解決這種在裝置端進行高運算、又要兼顧低功耗的需求,而誕生的關鍵解決方案 。

NVIDIA Jetson 就像一個緊湊、節能卻效能強大的微型電腦,專為在各種裝置上運行 AI 任務設計 。回顧它的演進,早期的 Jetson 系統主要用於視覺辨識搭配AI推論,像是車牌辨識、工廠瑕疵檢測,或者在相機裡分辨貓狗,扮演著「眼睛」的角色,看得懂眼前的事物 。但隨著算力提升,NVIDIA Jetson 的角色也逐漸從單純的「眼睛」,演化為能夠控制手腳的「大腦」,開始驅動更複雜的自主機器,無論是地上跑的、天上飛的,都將NVIDIA Jetson 視為核心運算中樞 。

-----廣告,請繼續往下閱讀-----

但再強大的晶片,如果沒有能適應現場環境的「容器」,也無法真正落地。這正是研華(Advantech)的角色,我們將 NVIDIA Jetson 平台整合進各式工業級主機與邊緣運算設備,確保它能在高熱、灰塵、潮濕或震動的現場穩定運行,滿足從工廠到農場到礦場、從公車到貨車到貨輪等各種使用環境。換句話說,NVIDIA 提供「大腦」,而研華則是讓這顆大腦能在真實世界中呼吸的「生命支持系統」。

這個平台聽起來很工業、很遙遠,但它其實早就以一種你意想不到的方式,進入了我們的生活。

從Switch到雞蛋分揀員,NVIDIA Jetson如何悄悄改變世界?

如果我告訴你,第一代的任天堂Switch遊戲機與Jetson有相同血緣,你會不會很驚訝?它的核心處理器X1晶片,與Jetson TX1模組共享相同架構。這款遊戲機對高效能運算和低功耗的嚴苛要求,正好與 Jetson 的設計理念不謀而合 。

而在更專業的領域,研華透過 NVIDIA Jetson 更是解決了許多真實世界的難題 。例如

-----廣告,請繼續往下閱讀-----
  • 在北美,有客戶利用 AI 進行雞蛋品質檢測,研華的工業電腦搭載NVIDIA Jetson 模組與相機介面,能精準辨識並挑出髒污、雙黃蛋到血蛋 
  • 在日本,為避免鏟雪車在移動時發生意外,導入了環繞視覺系統,當 AI 偵測到周圍有人時便會立刻停止 ;
  • 在水資源珍貴的以色列,研華的邊緣運算平台搭載NVIDIA Jetson模組置入無人機內,24 小時在果園巡航,一旦發現成熟的果實就直接凌空採摘,實現了「無落果」的終極目標 。

這些應用,代表著 NVIDIA Jetson Orin™ 世代的成功,它讓「自動化」設備變得更聰明 。然而,隨著大型語言模型(LLM)的浪潮來襲,人們的期待也從「自動化」轉向了「自主化」 。我們希望機器人不僅能執行命令,更能理解、推理。

Orin世代的算力在執行人形機器人AI推論時的效能約為每秒5到10次的推論頻率,若要機器人更快速完成動作,需要更強大的算力。業界迫切需要一個更強大的大腦。這也引出了一個革命性的問題:AI到底該如何學會「動手」,而不只是「動口」?

革命性的一步:AI如何學會「動手」而不只是「動口」?

面對 Orin 世代的瓶頸,NVIDIA 給出的答案,不是溫和升級,而是一次徹底的世代跨越— NVIDIA Jetson Thor 。這款基於最新 Blackwell 架構的新模組,峰值性能是前代的 7.5 倍,記憶體也翻倍 。如此巨大的效能提升,目標只有一個:將過去只能在雲端資料中心運行的、以 Transformer 為基礎的大型 AI 模型,成功部署到終端的機器上 。

NVIDIA Jetson Thor 的誕生,將驅動機器人控制典範的根本轉變。這要從 AI 模型的演進說起:

-----廣告,請繼續往下閱讀-----
  1. 第一階段是 LLM(Large Language Model,大型語言模型):
    我們最熟悉的 ChatGPT 就屬此類,它接收文字、輸出文字,實現了流暢的人機對話 。
  2. 第二階段是 VLM(Vision-Language Model,視覺語言模型):
    AI 學會了看,可以上傳圖片,它能用文字描述所見之物,但輸出結果仍然是給人類看的自然語言 。
  3. 第三階段則是 VLA(Vision-Language-Action Model,視覺語言行動模型):
    這是革命性的一步。VLA 模型的輸出不再是文字,而是「行動指令(Action Token)」 。它能將視覺與語言的理解,直接轉化為控制機器人關節力矩、速度等物理行為的具體參數 。

這就是關鍵! 過去以NVIDIA Jetson Orin™作為大腦的機器人,僅能以有限的速度運行VLA模型。而由 VLA 模型驅動,讓 AI 能夠感知、理解並直接與物理世界互動的全新形態,正是「物理 AI」(Physical AI)的開端 。NVIDIA Jetson Thor 的強大算力,就是為了滿足物理 AI 的嚴苛需求而生,要讓機器人擺脫「復健」,迎來真正自主、流暢的行動時代 。

NVIDIA Jetson Thor 的強大算力,就是為了滿足物理 AI 的嚴苛需求而生,要讓機器人擺脫「復健」,迎來真正自主、流暢的行動時代 / 圖片來源:研華科技

其中,物理 AI 強調的 vision to action,就需要研華設計對應的硬體來實現;譬如視覺可能來自於一般相機、深度相機、紅外線相機甚至光達,你的系統就要有對應的介面來整合視覺;你也會需要控制介面去控制馬達伸長手臂或控制夾具拿取物品;你也要有 WIFI、4G 或 5G 來傳輸資料或和別的 AI 溝通,這些都需要具體化到一個系統上,這個系統的集大成就是機器人。

好,我們有了史上最強的大腦。但一個再聰明的大腦,也需要一副強韌的身體。而這副身體,為什麼非得是「人形」?這不是一種很沒效率的執念嗎?

為什麼機器人非得是「人形」?這不是一種低效的執念嗎?

這是我一直在思考的問題。為什麼業界的主流目標,是充滿挑戰的「人形」機器人?為何不設計成效率更高的輪式,或是功能更多元的章魚型態?

-----廣告,請繼續往下閱讀-----

答案,簡單到令人無法反駁:因為我們所處的世界,是徹底為人形生物所打造的。

從樓梯的階高、門把的設計,到桌椅的高度,無一不是為了適應人類的雙足、雙手與身高而存在 。對 AI 而言,採用人形的軀體,意味著它能用與我們最相似的視角與方式去感知和學習這個世界,進而最快地理解並融入人類環境 。這背後的邏輯是,與其讓 AI 去適應千奇百怪的非人形設計,不如讓它直接採用這個已經被數千年人類文明「驗證」過的最優解 。

這也區分了「通用型 AI 人形機器人」與「專用型 AI 工業自動化設備」的本質不同 。後者像高度特化的工具,產線上的機械手臂能高效重複鎖螺絲,但它無法處理安裝柔軟水管這種預設外的任務 。而通用型人形機器人的目標,是成為一個「多面手」,它能在廣泛學習後,理解物理世界的運作規律 。理論上,今天它在產線上組裝伺服器,明天就能在廚房裡學會煮菜 。

人形機器人的手、腳、眼睛、甚至背部,都需要大量感測器去理解環境就像神經末梢一樣,隨時傳回方位、力量與外界狀態 / 圖片來源:shutterstock

但要讓一個「多面手」真正活起來,光有骨架還不夠。它必須同時擁有強大的大腦平台與遍布全身的感知神經,才能理解並回應外在環境。人形機器人的手、腳、眼睛、甚至背部,都需要大量感測器去理解環境就像神經末梢一樣,隨時傳回方位、力量與外界狀態。但這些訊號若沒有通過一個穩定的「大腦平台」,就無法匯聚成有意義的行動。

這正是研華的角色:我們不僅把 NVIDIA Jetson Thor 這顆核心晶片包載在工業級電腦中,讓它成為能真正思考與反應的「完整大腦」,同時也提供神經系統的骨幹,將感測器、I/O 介面與通訊模組可靠地連結起來,把訊號傳導進大腦。你或許看不見研華的存在,但它實際上遍布在機器人全身,像隱藏在皮膚之下的神經網絡,讓整個身體真正活過來。

但有了大腦、有了身體,接下來的挑戰是「教育」。你要怎麼教一個物理 AI?總不能讓它在現實世界裡一直摔跤,把一台幾百萬的機器人摔壞吧?

打造一個「精神時光屋」,AI的學習速度能有多快?

這個問題非常關鍵。大型語言模型可以閱讀網際網路上浩瀚的文本資料,但物理世界中用於訓練的互動資料卻極其稀缺,而且在現實中反覆試錯的成本與風險實在太高 。

答案,就在虛擬世界之中。

NVIDIA Isaac Sim™等模擬平台,為這個問題提供了完美的解決方案 。它能創造出一個物理規則高度擬真的數位孿生(Digital Twin)世界,讓 AI 在其中進行訓練 。

這就像是為機器人打造了一個「精神時光屋」 。它可以在一天之內,經歷相當於現實世界千百日的學習與演練,從而在絕對安全的環境中,窮盡各種可能性,深刻領悟物理世界的定律 。透過這種「模擬-訓練-推論」的 3 Computers 閉環,Physical AI (物理AI) 的學習曲線得以指數級加速 。

我原本以為模擬只是為了節省成本,但後來發現,它的意義遠不止於此。它是在為 AI 建立一種關於物理世界的「直覺」。這種直覺,是在現實世界中難以透過有限次的試錯來建立的。

所以你看,這趟從 Switch 到人形機器人的旅程,一幅清晰的未來藍圖已經浮現了。實現物理 AI 的三大支柱已然齊備:一個劃時代的「AI 大腦」(NVIDIA Jetson Thor)、讓核心延展為「完整大腦與神經系統」的工業級骨幹(由研華 Advantech 提供),以及一個不可或缺的「教育環境」(NVIDIA Isaac Sim 模擬平台) 。

結語

我們拆解了那些酷炫機器人影片背後的真相,看見了從「自動化」走向「自主化」的巨大技術鴻溝,也見證了「物理 AI」時代的三大支柱——大腦、身軀、與教育——如何逐一到位 。

專家預測,未來 3 到 5 年內,人形機器人領域將迎來一場顯著的革命 。過去我們只能在科幻電影中想像的場景,如今正以前所未有的速度成為現實 。

這不再只是一個關於效率和生產力的問題。當一台機器,能夠觀察我們的世界,理解我們的語言,並開始以物理實體的方式與我們互動,這將從根本上改變我們與科技的關係。

所以,最後我想留給你的思想實驗是:當一個「物理 AI」真的走進你的生活,它不只是個工具,而是一個能學習、能適應、能與你共同存在於同一個空間的「非人智慧體」,你最先感受到的,會是興奮、是便利,還是……一絲不安?

這個問題,不再是「我們能否做到」,而是「當它發生時,我們準備好了嗎?」

研華已經整裝待發,現在,我們與您一起推動下一代物理 AI 與智慧設備的誕生。
https://bit.ly/4n78dR4

-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

0

6
0

文字

分享

0
6
0
量子革命來襲!一分鐘搞定傳統電腦要花數千萬年的難題!你的電腦是否即將被淘汰?
PanSci_96
・2024/10/17 ・2050字 ・閱讀時間約 4 分鐘

-----廣告,請繼續往下閱讀-----

量子電腦:解碼顛覆未來科技的關鍵

2023 年,Google 發表了一項引人注目的研究成果,顯示人類現有最強大的超級電腦 Frontier 需要花費 47 年才能完成的計算任務,Google 所研發的量子電腦 Sycamore 只需幾秒鐘便能完成。這項消息震驚了科技界,也再次引發了量子電腦的討論。

那麼,量子電腦為什麼如此強大?它能否徹底改變我們對計算技術的認知?

歡迎訂閱 Pansci Youtube 頻道 獲取更多深入淺出的科學知識!

量子電腦是什麼?

量子電腦是一種基於量子力學運作的新型計算機,它與我們熟悉的傳統電腦截然不同。傳統電腦的運算是建立在「位元」(bits)的基礎上,每個位元可以是 0 或 1,這種二進位制運作方式使得計算過程變得線性且單向。然而,量子電腦使用的是「量子位元」(qubits),其運算邏輯則是基於量子力學中的「疊加」與「糾纏」等現象,這使得量子位元能同時處於 0 和 1 的疊加狀態。

這意味著,量子電腦能夠在同一時間進行多個計算,從而大幅提高運算效率。對於某些非常複雜的問題,例如氣候模型、金融分析,甚至質因數分解,傳統電腦可能需要數千年才能完成的運算任務,量子電腦只需數分鐘甚至更短時間便可完成。

-----廣告,請繼續往下閱讀-----

Google、IBM 和量子競賽

Google 和 IBM 是目前在量子計算領域中競爭最為激烈的兩大科技公司。Google 的 Sycamore 量子電腦已經展示出極高的計算速度,令傳統超級電腦相形見絀。IBM 則持續投入量子電腦的研究,並推出了超過 1000 個量子位元的系統,預計到 2025 年,IBM 的量子電腦將擁有超過 4000 個量子位元。

除此之外,世界各國和企業都爭相投入這場「量子霸權」的競賽,台灣的量子國家隊也不例外,積極尋求量子計算方面的突破。這場量子競賽,將決定未來的計算技術格局。

量子電腦的核心原理

量子電腦之所以能如此快速,是因為它利用了量子力學中的「疊加態」和「糾纏態」。簡單來說,傳統電腦的位元只能是 0 或 1 兩種狀態,而量子位元則可以同時處於 0 和 1 兩種狀態的疊加,這使得量子電腦可以在同一時間內同時進行多次計算。

舉例來說,如果一台電腦需要處理一個要花 330 年才能解決的問題,量子電腦只需 10 分鐘便可解決。如果問題變得更複雜,傳統電腦需要 3300 年才能解決,量子電腦只需再多花一分鐘便能完成。

-----廣告,請繼續往下閱讀-----

此外,量子電腦中使用的量子閘(quantum gates)類似於傳統電腦中的邏輯閘,但它能進行更複雜的運算。量子閘可以改變量子位元的量子態,進而完成計算過程。例如,Hadamard 閘能將量子位元轉變為疊加態,使其進行平行計算。

量子電腦能大幅縮短複雜問題的計算時間,利用量子閘進行平行運算。圖/envato

計算的效率

除了硬體技術的進步,量子電腦的強大運算能力也依賴於量子演算法。當前,最著名的兩種量子演算法分別是 Grover 演算法與 Shor 演算法。

Grover 演算法主要用於搜尋無序資料庫,它能將運算時間從傳統電腦的 N 遞減至 √N,這使得資料搜索的效率大幅提升。舉例來說,傳統電腦需要花費一小時才能完成的搜索,量子電腦只需幾分鐘甚至更短時間便能找到目標資料。

Shor 演算法則專注於質因數分解。這對於現代加密技術至關重要,因為目前網路上使用的 RSA 加密技術正是基於質因數分解的困難性。傳統電腦需要數千萬年才能破解的加密,量子電腦只需幾秒鐘便可破解。這也引發了全球對後量子密碼學(PQC)的研究,因為一旦量子電腦大規模應用,現有的加密系統將面臨極大的威脅。

-----廣告,請繼續往下閱讀-----

量子電腦的挑戰:退相干與材料限制

儘管量子電腦具有顛覆性的運算能力,但其技術發展仍面臨諸多挑戰。量子位元必須保持在「疊加態」才能進行運算,但量子態非常脆弱,容易因環境中的微小干擾而坍縮成 0 或 1,這種現象被稱為「量子退相干」。量子退相干導致量子計算無法穩定進行,因此,如何保持量子位元穩定是量子電腦發展的一大難題。

目前,科學家們正在探索多種材料和技術來解決這一問題,例如超導體和半導體技術,並嘗試研發更穩定且易於量產的量子電腦硬體。然而,要實現大規模的量子計算應用,仍需克服諸多技術瓶頸。

量子電腦對未來生活的影響

量子電腦的快速發展將為未來帶來深遠的影響。它不僅將推動科學研究的進步,例如藥物設計、材料科學和天文物理等領域,還可能徹底改變我們的日常生活。例如,交通運輸、物流優化、金融風險管理,甚至氣候變遷預測,都有望因量子計算的應用而變得更加精確和高效。

然而,量子計算的發展也帶來了一些潛在的風險。隨著量子電腦逐漸成熟,現有的加密技術可能會被徹底摧毀,全球的資訊安全體系將面臨巨大挑戰。因此,各國政府和企業已經開始研究新的加密方法,以應對量子時代的來臨。

-----廣告,請繼續往下閱讀-----
-----廣告,請繼續往下閱讀-----

討論功能關閉中。

0

1
0

文字

分享

0
1
0
計算機先驅:巴貝奇與他的小型差分計算機——《資訊大歷史》
azothbooks_96
・2022/07/01 ・3045字 ・閱讀時間約 6 分鐘

查爾斯.巴貝奇

查爾斯.巴貝奇(Charles Babbage),1792 至 1871 年。

1843 年,一位英國數學家提出了分析機原理,這個構思將在一百零三年後由後人付諸實踐,並有了一個為大家熟知的名字——計算機(今日俗稱電腦)。很遺憾,查理斯.巴貝奇終其一生也沒能實現造出分析機的願望,但他依舊是當之無愧的計算機先驅。

直到今天,許多計算機書籍扉頁裡仍然刊載著他的照片,以表紀念。

巴貝奇發明小型差分計算機

一七九二年,巴貝奇出生於倫敦一個富有的銀行家家庭,十八歲進入著名的劍橋大學三一學院,成為牛頓的校友。後來他擔任了牛頓擔任過的「盧卡斯數學教授」職務。在進入大學之前,他就展現出極高的數學天分。

進入大學後,巴貝奇發現,當時英國人普遍接受的牛頓建立在運動基礎之上的微積分,不如萊布尼茨基於符號處理的微積分那樣便於理解和傳播。為了推廣已被歐洲大陸普遍接受的萊布尼茨的微積分,他和其他人一同創辦了英國的(數學)分析學會。

不過巴貝奇並不是一個安分的學生,他一方面顯現出超凡的智力,另一方面又不按照要求完成學業,為此他不得不轉了一個學院,才能繼續學業。在學校裡,他還對很多超自然的現象感興趣。

延伸閱讀:巴貝奇誕辰|科學史上的今天:12/26

如果不是趕上工業革命,巴貝奇或許會尋找某個傳統的數學領域或者自然哲學領域做一輩子研究,並且留下一個巴貝奇定律或者巴貝奇定理。但是,工業革命的大背景,讓他把畢生精力和金錢都投入研究一種能夠處理資訊的機械中。

-----廣告,請繼續往下閱讀-----

這也不奇怪,因為工業革命為資訊處理提供了思想上的依據、技術上的條件和廣闊的市場。工業革命是人類歷史上最偉大的事件。它不僅第一次讓人類從此進入可持續發展的時代,也改變了人們的思想。人類從相信神,到今天開始變得自信起來,相信這個世界是確定的、有規律的,而自己能夠發現世界上所有的規律。

早在牛頓時代,著名物理學家玻意耳(Robert Boyle)在總結牛頓等人的科學成就之後,就提出了「機械論」,也被稱為「機械思維」。

提出「機械論」的玻意耳(Robert Boyle)。圖/Wikipedia

玻意耳等人(包括牛頓、哈雷等)認為,世間萬物的規律都可以用機械運動的規律來描述,包括蒸汽機和火車在內的工業革命中那些最重要的發明,都受益於機械思維。人們熱衷於用機械的方法解決問題,從精密的航海導航,到能夠奏樂的音樂盒,再到能織出各種圖案的紡織機。

既然能想到的所有規律都可以用運動規律來描述,那麼就很容易想到讓具有特殊結構的齒輪組運動來完成計算,這便是設計機械計算機的思想基礎。

其實,這種想法早在十七世紀就有人嘗試過。法國數學家帕斯卡(Blaise Pascal)發明了一種手搖計算器——雖然有時人們將它稱為最早的機械計算機,但實際上它和我們今天理解的電腦概念沒有太多相似之處,稱之為「計算器」更為恰當。

-----廣告,請繼續往下閱讀-----

帕斯卡計算器從外觀上看有上下兩排旋鈕,每個旋鈕上都刻著○至九這十個數字。在做加減法時,只要將參加運算的兩個數字分別撥到相應的位置,然後轉動手柄,計算器裡的一組組齒輪就會轉動,完成計算。

帕斯卡計算器。圖/Wikipedia

帕斯卡計算器最初只能做加法,後來經過改良, 可以做減法和乘法, 但做不了除法。在帕斯卡之後,萊布尼茨改良了計算器。他發明了一種以他名字命名的轉輪「萊布尼茨輪」,方便實現四則運算中的進位和借位。

到了十九世紀初,經過近兩個世紀的改進,機械計算器已經能夠完成四則運算,但是計算速度很慢,精度也不夠高,而且設備造價昂貴。不過,這種計算器更大的缺陷在於,對於複雜的運算(比如對數運算和三角函數運算)都做不到。

十九世紀機械工業的發展需要進行大量的複雜計算,比如三角函數的計算、指數和對數的計算等。在微積分出現之前,完成這些函數的計算是幾乎不可能的事。

-----廣告,請繼續往下閱讀-----

十八世紀之後,歐洲數學家用微積分找到了很多計算上述函數的近似方法,不過這些方法的計算量極大,需要很長的時間,而且當時除了數學家,一般人是完成不了那些計算的。為了便於工程師在工程中和設計時完成各種計算,數學家設計了數學用表,如此一來工程師就可以從表中直接查出計算的結果。

不過,那個時代的數學用表錯誤百出,為生產和科學研究帶來了很多麻煩。而這個問題很難避免,因為手算很難保證完全不出錯。如果很多數學家分別獨立計算,還可以比對結果發現錯誤。但是巴貝奇發現,那些不同版本的數學用表都是抄來抄去,而犯的錯也都一樣。

因此,巴貝奇想設計一種機械來完成微積分的計算,然後用它來計算各種函數值,得到一份可靠的數學用表。當時他只有二十二歲。

延伸閱讀:兩艘軍艦換不到兩噸重的計算機?巴貝奇與差分機|《電腦簡史》 齒輪時代(十八)

在隨後的十年裡,巴貝奇造出來一台有六位精度(巴貝奇最初的目標是達到八位精度)的小型差分計算機。隨後巴貝奇用它算出了好幾種函數表,用於解決航海、機械和天文方面的計算問題。

-----廣告,請繼續往下閱讀-----

值得指出的是,巴貝奇的這次成功受益於工業革命的成就——當時機械加工的精度比瓦特時代已經高出了很多,這讓巴貝奇能夠加工出各種尺寸獨特的齒輪。

但是,當時並沒有二十世紀的精密加工技術,製造小批量特製齒輪和機械部件的成本高、難度大,這給巴貝奇後來的工作帶來了諸多不便。

巴貝奇小型差分計算機的部分模組。圖/Wikipedia

不過,首次成功還是讓巴貝奇獲得了英國政府的資助,用以打造一台精度高達二十位的計算機。

幾年後,他又獲得了劍橋大學盧卡斯數學教授的職位,讓他有了穩定的收入。在此之前,他一直在花自己繼承的十萬英鎊遺產。勝利女神似乎正向他招手,但接下來的時日,他在計算機研究方面一籌莫展。

-----廣告,請繼續往下閱讀-----

從表面上看,巴貝奇遇到的困難是因為那台差分機太複雜了,裡面有包括上萬個齒輪的二點五萬個零件,當時的加工水準根本無法製造。但更本質的原因是,巴貝奇並不真正理解計算的原理。他不懂得對於複雜的計算來說,不是要把機器做得更複雜,而是要用簡單的計算單元來實現複雜的計算。

當然,在那個年代沒有人瞭解這些。作為現代計算機基礎理論的布林代數要再等十幾年才會被提出來,而且要再過近一個世紀,才會被應用到計算技術中。

後人根據巴貝奇的設計打造而成的差分機。圖/Wikipedia

——本文摘自《資訊大歷史:人類如何消除對未知的不確定》,2022 年 6 月,漫遊者文化,未經同意請勿轉載。

-----廣告,請繼續往下閱讀-----
azothbooks_96
55 篇文章 ・ 21 位粉絲
漫遊也許有原因,卻沒有目的。 漫遊者的原因就是自由。文學、人文、藝術、商業、學習、生活雜學,以及問題解決的實用學,這些都是「漫遊者」的範疇,「漫遊者」希望在其中找到未來的閱讀形式,尋找新的面貌,為出版文化找尋新風景。