0

0
0

文字

分享

0
0
0

解密疾病與喪失嗅覺味覺的關連:全球科學家需要你的協助!

活躍星系核_96
・2020/05/19 ・1534字 ・閱讀時間約 3 分鐘 ・SR值 578 ・九年級

國民法官生存指南:用足夠的智識面對法庭裡的一切。

  • 文/黃亮達(Daniel Hwang)

世紀傳染病 COVID-19(俗稱:武漢肺炎、新冠肺炎)仍在全球肆虐中,目前(19 日)已經感染了超過四百八十萬人,並造成超過三十萬人死亡1 。即使大部分的國家在嚴格執行社交隔離政策後 COVID-19 確診人數已有所改善,但像德國在鬆綁社交限制後病情又隨即回升,顯示當前仍然沒有更有效的防疫手段。

圖/ Pixabay

COVID-19 一般會造成發燒、乾咳和呼吸困難,但嗅覺和味覺喪失的症狀也在許多歐美以及亞洲國家被大量通報。5 月 11 日發表在Nature Medicine的報告甚至指出,在英國和美國的患者中,失去嗅覺比起其他症狀像是發燒、疲倦還有呼吸短促更為尋常2。5 月 13 日的一份系統調查報告指出3, 在疫情重災區包括歐美和伊朗的病人有 22%  – 68% 喪失嗅覺。至於亞洲地區一項韓國研究指出4,急性嗅覺或味覺喪失發生在  15% 的韓國 COVID-19 患者身上,而且較容易生發生在女性以及年輕人中,大多數病人的嗅覺和味覺功能會在三週內恢復。

嗅覺和味覺喪失已經被許多國家(包含美國、新加坡、紐西蘭、義大利、瑞士和荷蘭等)正式列為 COVID-19 的症狀,然而仍有一些國家在沒有足夠的科學證據下尚未列入。

圖/截圖自衛服部

台灣衛福部疾管署在 4 月 13 日正式將味覺和嗅覺喪失列為 COVID-19 的症狀5,而世界衛生組織 WHO 也在 5 月 4 日的更新中列入6。即便如此,COVID-19 為什麼會造成嗅覺和味覺喪失仍然不清楚,而這個問題也引起了科學家們以及耳鼻喉科醫生們的注意。

透過問卷幫助科學家了解嗅覺和味覺的問題

為了探討這個問題,全球超過 40 個國家 500 位科學家和醫護人員們組成了全球化學感覺協會(Global Consortium for Chemosensory Research),並且共同設計了一個問卷,針對被診斷出 COVID-19 或近期內患有呼吸道疾病的病人回答一系列關於嗅覺和味覺的問題。這份問卷被翻譯成  29 種語言,目前(16日)已經搜集超過三萬份問卷,大多數來自

  • 法文(>10000)
  • 英文(>5000)
  • 義大利文(>4000)
  • 西班牙文(>3000)語系國家。

第一輪的報告指出7,在患有 COVID-19 期間,不儘是嗅覺和味覺,其他口中的感覺(像是汽水的刺激感和冰水的涼感)也會大受影響。在五種基本味覺中(甜、鹹、酸、苦、鮮/肉味),11% 的患者只有單一味覺改變,近一半的患者有兩種以上的味覺受到影響,其中又以鹹味改變最為普遍。

圖/截圖自研究計畫網站

因為一般感冒引起的鼻塞也可能會造成嗅覺和味覺喪失,科學家們在這份研究報告中特別指出鼻塞並不是造成 COVID-19 嗅覺和味覺喪失的成因,而可能是因為 COVID-19 攻擊腦中的嗅味覺感知神經系統。

這個研究計畫仍在持續進行中,參與這個研究很容易,只需要五分鐘來填寫這個問卷,希望近期有罹患呼吸道疾病或是(疑似)確診的人能參與填寫問卷,或是幫忙把這個連結分享給其他人,讓台灣在解密 COVID-19 的全球研究中不缺席。

參考資料

  1. Worldometer – Coronavirus
  2. Real-time tracking of self-reported symptoms to predict potential COVID-19
  3. Anosmia and dysgeusia in COVID-19: A systematic review
  4. Prevalence and Duration of Acute Loss of Smell or Taste in COVID-19 Patients
  5. 衛生福利部疾病管制署
  6. 世界衛生組織
  7. More than just smell – COVID-19 is associated with severe impairment of smell, taste, and chemesthesis
  • 作者資訊/黃亮達(Daniel Hwang)於台灣大學生化科技系畢業後到美國費城賓州大學和西雅圖華盛頓大學留學,現為澳洲昆士蘭大學博士後研究員,做大數據以及統計遺傳學的研究。而文章中所提到的全球化學感覺協會是由作者在費城莫內爾化學感覺研究中心(Monell Chemical Senses Center)工作時的老闆以及同事們所籌創,作者在這個研究計畫中參與問卷設計,主導中文翻譯,以及澳洲負責人。
文章難易度
活躍星系核_96
752 篇文章 ・ 99 位粉絲
活躍星系核(active galactic nucleus, AGN)是一類中央核區活動性很強的河外星系。這些星系比普通星系活躍,在從無線電波到伽瑪射線的全波段裡都發出很強的電磁輻射。 本帳號發表來自各方的投稿。附有資料出處的科學好文,都歡迎你來投稿喔。 Email: contact@pansci.asia

2

1
0

文字

分享

2
1
0
物理學家說,公車的窗戶開這幾扇才通風
胡中行_96
・2023/01/09 ・1774字 ・閱讀時間約 3 分鐘

國民法官生存指南:用足夠的智識面對法庭裡的一切。

在流感盛行的嚴冬,您可曾為了開窗與否,天人交戰?還是在搭公車的時候,選擇開走道對面的窗戶,凍死別人,造福自己?通風能降低感染空氣傳播疾病的風險,但交通工具的窗戶到底要怎麼開,才能達到最佳效果?墨西哥物理學團隊發揮所長,在 2022 年 12 月的《科學報告》(Scientific Reports)期刊上,推薦開公車窗戶的方法。[1]

公車模型

COVID-19 疫情期間,防疫資訊滿天飛。因為事關人命,「♪ 雖然我曾經這樣以為/♪ 我真的這樣認為」,並不能做為給予建議的理由。許多公衛措施的效益,例如:戴口罩和保持社交距離等,都被嚴厲地以科學的方法檢視。這群墨西哥物理學家著眼於通風的機制,想瞭解到底挑哪個位置的窗戶,打開多少扇,對公車內的空氣品質最好。當然,他們並未唱著林憶蓮的〈為你我受冷風吹〉,親自搭車實測,被風吹到掉眼淚;而是打造了一台小模型來實驗,再以電腦模擬運算。[1, 2]

公車模型:A 是風速計;S 為二氧化碳偵測器;窗戶被黑虛線框出;二氧化碳則由中央車底灌入。圖/編輯自參考資料 1,Figure 1b、8a和8b。CC BY 4.0)

他們參考一輛 9.92 x 2.5 x 2.2 公尺,地板內側離路面 0.4 公尺的實體公車,打造出約 1/10 大的壓克力模型。如圖所示,車體透明,僅窗戶用黑色虛線框出,方便觀察;裡面有二氧化碳偵測器(CO2 sensor)、風速計(anemometer);以及可裝卸的 3D 列印乘客,方便創造空車和滿載等狀態。由於假人不會呼吸,所以得從模型的中央車底灌入二氧化碳,代替真實的吐氣。測試氣流時的車速,則主要設定在每小時 50 公里。[1]

實驗項目

這個實驗從下列兩個角度,來探討通風效果:

  1. 開啟的窗戶數目:從不開窗、開 2 扇或 4 扇,到全部開啟等,都嘗試一輪。[1]
  2. 窗戶的位置:一般常見的公車,窗戶都是開在車體兩側,也就是乘客座位的旁邊。不過,科學家在模型的車頭,挖了 2 個長方形的氣窗,看看這種設計的效果又是如何。[1]

實驗結果

研究團隊發現,在一般擁有左右兩排窗戶的公車上,氣膠(aerosols,又稱「氣溶膠」或「懸浮微粒」)的擴散與排出,均受車內負壓造成的吸力驅動。打開 4 扇,也就是左右各 2 扇窗戶最通風;全開也不會加快氣膠排散,或減少累積。氣流促使氣膠向車頭聚集;有些從前面離開的氣膠,會由後面的窗戶回流;而氣膠在車裡停留的時間,平均為 6 分鐘。不過,當科學家拿出他們改造的新型公車,馬上就超越了傳統公車開 4 扇窗的成效。[1]

有別於市面上常見的款式,這種新型公車的前方擋風玻璃,靠近車頂處,多了兩個氣窗。如下圖所示,公車移動時,前方氣窗會進氣,產生一股推力帶動通風,而不再仰賴車內負壓的吸力。空氣從前方灌入,通過座位區域,再由車尾原本就設在兩側的窗戶出去;不像開 4 扇的,氣流無法完全貫穿車體。[1]

左:一般有兩排窗戶的公車;右:車頭設氣窗的新款公車。圖/參考資料 1,Figure 1c(CC BY 4.0)

以公車滿載 50 人的狀況為例,車速每小時 50 公里時,新款公車內的通風換氣速率,為每人每秒 100 公升;遠高於英國急難科學顧問團(Scientific Advisory Group of Emergencies,簡稱SAGE),在 COVID-19 疫情期間建議的 8 至 10 公升。就算行車速度只有每小時 9 公里,也還能符合 SAGE 的標準。同時,車內氣膠的總量減少,在車速每小時 50 公里的狀態下,滯留的時間降至 50 秒。[1]

公車向左行駛時,開不同窗戶的通風情形。影/參考資料 1,Supplementary Information 2(CC BY 4.0)

尚待研究的變因

既然新款公車這麼通風,何不趕快上市?上述實驗未涵蓋的數個變因,其實仍有待探究。比方說,3D 列印的假人沒有體溫,真實的公車坐滿活人乘客時,車內的溫度可能較高。如果再考量各地天候,造成的車外氣溫差異,這裡關於氣體流動的結論,便不見得適用。[1]更何況在空氣污染嚴重的市區,開窗搞不好會弄得灰頭土臉,大概也無益於呼吸功能。假如將來臺灣除了密閉且附空調的公車,也有這種墨西哥的新式車款,身為乘客的您,會想搭哪一種?

  

參考資料

  1. Alexei Pichardo-Orta F, Luna OAP, Cordero JRV. (2022) ‘A frontal air intake may improve the natural ventilation in urban buses’. Scientific Reports, 12, 21256.
  2. 滾石唱片ROCK RECORDS(01 JUN 2012)「林憶蓮Sandy Lam【為你我受冷風吹 Suffer for you】Official Music Video」YouTube.
所有討論 2
胡中行_96
81 篇文章 ・ 29 位粉絲
曾任澳洲臨床試驗研究護理師,以及臺、澳劇場工作者。 西澳大學護理碩士、國立台北藝術大學戲劇學士(主修編劇)。邀稿請洽臉書「荒誕遊牧」,謝謝。

1

1
0

文字

分享

1
1
0
動物其實吃不出甜食!因「偏食」而消逝的味覺演化——《舌尖上的演化》
商周出版_96
・2023/01/02 ・2011字 ・閱讀時間約 4 分鐘

國民法官生存指南:用足夠的智識面對法庭裡的一切。

本喵不懂甜食啦!

貓即便有了甜味受器,也不會更容易存活或繁殖,如果牠們花更多時間吸花蜜,吃獵物的時間就會變少,如此一來還可能會影響生存。因此,即便貓的祖先的甜味受器失去功能,牠依舊可以存活。

時任蒙內爾化學感官中心研究員的李夏發現:這個演化對貓不僅有存活的意義,更是現代貓科動物的味覺濫觴,沒有任何一種現代貓科動物具有活化的甜味受器,充滿花蜜與甘甜果實的森林對貓沒有一絲口慾上的吸引力。

如果你給一隻貓一片糖霜餅乾,呃,牠也不會理你;就算牠吃了餅乾,也沒辦法感受到糖霜帶來的愉悅感,因為這個餅乾對牠來說沒有甜味。

貓咪其實無法分辨甜味。圖/envatoelements

除了貓以外,其他肉食動物如海狗、亞洲小爪水獺、斑鬣狗、馬島長尾狸貓以及瓶鼻海豚,牠們的甜味受器也沒有作用,只是這些甜味受器基因出現的破壞性突變都屬於獨立的演化事件,不過也共屬於一種基因功能缺失的趨同演化。

有人可能會想問,為什麼其他肉食性動物的甜味受器沒有失去功能?例如貓的鹹味味覺受器,就跟其他肉食性動物一樣依舊安在,但牠們獵物體內鹽分的含量就足以應付生理所需,所以牠們的鹹味味覺受器喪失功能可能只是時間早晚的問題。

海獅已經喪失了甜味跟鮮味的味覺,海豚也是,而且海豚的無味人生開始得更早,牠們根本無法嚐出甜味、鹹味或是鮮味。對海豚來說,存在的只有飢餓感與飽足感,餓了就去吃飽,而牠們相信海裡任何長得像魚而且會動的東西都可以餵飽自己。

有人可能也會好奇,到底海豚的獵物要有什麼特色才能為牠們帶來進食的愉悅感?我們不知道。海豚的愉悅感從哪來、是什麼,至少到目前為止都是科學謎團。

不吃肉改吃素的大貓熊

特定味覺受器失去功能的情況,並不單發生在肉食性動物身上,也發生在食物選擇非常專一的動物身上。大貓熊的祖先屬於熊科動物,也跟現代的熊一樣是雜食性動物,會狩獵,會吃酸酸的螞蟻,也會吃甜甜的莓果。但到了大貓熊身上,新的食物偏好出現了,就是愛吃竹子,牠們吃竹子就可以活。

其實,當牠們才剛開始喜歡吃竹子時,竹子跟肉都是牠們愛吃的食物,但久而久之,仍然愛吃肉的大貓熊就變得難以生存或難以交配繁殖,或另一個機率較小的可能是,牠們的食物偏好無法符合生理需求,所以在覓食時無法專心致志。一段時間後, 大貓熊的鮮味受器就失去功能了,就像貓兒的甜味受器。現在就算你把肉端到大貓熊面前,牠們也不會碰上一口。

即便在多年後的未來,貓、海獅或海豚的後代也不太可能會嚐到甜味,大貓熊也依然無法嚐到鮮味,雖然隨著竹林減少,大貓熊對吃竹子的執著也讓牠們的數量不斷減少。從這些日常生活中的演化故事中我們學到:當某些東西成為需求時,比起破壞,建設是更困難的。但從頭做起雖然很難,也並非完全不可能。

現在的熊貓不在吃肉,演化成只吃竹子。圖/《舌尖上的演化》

過了三億年,蜂鳥才嘗到了「甜」的滋味

以甜味受器為例, 它在某些動物身上曾經失去功能, 但後來又重新復活了。三億年前,現代鳥類、哺乳類與爬蟲類的祖先,應該可以嚐到食物中的鹹味、鮮味與甜味,然而現代鳥類的甜味味覺沒了,不知是什麼原因,牠們的甜味受器都失去了功能。因此鳥類無法嚐出甜味,至少大多數鳥類都無法。

蜂鳥是從古燕演化而來的,而古燕跟現代的燕子一樣專門吃昆蟲,喜歡品嚐蟲子體內會出現的鮮味,對於糖分則沒什麼興趣。但在大約四千萬年前,有一群燕子開始以花蜜與含糖物質為食,可能只是為了解渴。一般鳥類並無法嚐出花蜜的甜味,所以牠們吸食花蜜就像在喝水,但花蜜畢竟不是水,裡面可富含著糖分。

因此有一假說猜測,那些喝到比較多花蜜的鳥可能獲得更多能量,因此更有機會將牠們的基因傳給後代,而牠們的鮮味受器在演化過程中,變成不只辨識原本的鮮味成分﹙像麩氨酸或是某些核苷酸﹚,也可以同時偵測糖分。

出現這種特徵的古燕就是最早的蜂鳥。蜂鳥跟一般鳥類不同,不僅能嚐出胺基酸,也能嚐出糖分。不過牠們只靠同一種味覺受器,所以胺基酸跟糖分對牠們來說,應該是同一種味道,一樣是帶來愉悅感的「鮮甜味」。

動物吃下新食物而產生美味感受的同時,也滿足了營養所需,這類美妙的演化故事,正是生物藉由愉悅感以精巧調控的生化機制滿足需求的例子。只要持續研究味覺受器的演化,我們就會發現更多類似的故事。

——本文摘自《舌尖上的演化》,2022 年 12 月,商周出版出版,未經同意請勿轉載。

所有討論 1
商周出版_96
110 篇文章 ・ 343 位粉絲
閱讀商周,一手掌握趨勢,感受愜意生活!商周出版為專業的商業書籍出版公司,期望為社會推動基礎商業知識和教育。

2

2
1

文字

分享

2
2
1
為什麼東西會這麼好吃?是嗅覺、回憶還是化學鍵?——《完美歐姆蛋的化學》
日出出版
・2022/12/30 ・2854字 ・閱讀時間約 5 分鐘

國民法官生存指南:用足夠的智識面對法庭裡的一切。

嗅覺:廚房的第一道防線

嗅覺是我們在廚房裡的第一道防線,主要功能是防止我們接觸到可能會致命的東西,例如細菌。

有極小比例的人缺乏嗅覺,他們不僅無法擁有品嚐食物的完整體驗,也不具有可以防止我們吃下腐壞或變質食物的人類直覺。

我真的認識一位沒有嗅覺的人,有一次他媽媽去看他,結果一踏進他的公寓就差點吐出來。原來是有壞掉的雞肉埋藏在冰箱的某個角落,但是他聞不到。

嗅覺是我們在廚房裡的第一道防線。圖/pexels

至於對其他人來說,如果餐點聞起來和吃起來都很美味,兩種感官會結合在一起,形成所謂的風味。餐點的風味會讓人有所反應——而且每個人都有自己最喜歡的風味組合。

話雖如此,全世界的每一種風味,從 Kraft 起司通心粉,到頂級餐廳的菜單,都是由四個分子組成:水、脂肪/油、蛋白質和碳水化合物。

味蕾的辨識能力:離子通道

人類的大腦非常擅長解析這些味道在微觀層次上的差異;事實上,大腦甚至可以分辨出我們是在攝取單醣還是多醣(也就是糖還是澱粉)。

這是因為我們的味蕾會辨識各式各樣的分子,然後傳送訊息給大腦。例如,當味蕾辨識出氫離子(H+),我們會覺得食物有酸味;另一方面,鹼金屬則會讓食物帶有鹹味。

就烘焙層面來說,這一點之所以很重要,是因為我們的大腦可以辨別單醣—水果混合物中的糖—和多醣—低筋麵粉中的澱粉—之間的差異。

我敢說,派是最讚甜點的原因,正是甜(單醣)和鹹香(多醣)混合。(我也許有點偏頗——我有說過我媽會做無敵好吃的派嗎?)

我們的味蕾會辨識各式各樣的分子,然後傳送訊息給大腦。圖/pexels

我們的味蕾可以辨識各種分子,是因為大腦會監測特定離子在所謂的離子通道中的濃度,以剛才的例子來說就是 Na+ 和 H+。

這些離子通道位於人體器官中的細胞,並提供特別的途徑讓離子可以在人體內移動,就像道路可以讓汽車從一個地方移動到另一地。

當我們咬下含有大量鹽的食物,大腦會察覺到在舌頭上的離子通道移動的鈉離子數量增加。而當水合氫離子的濃度上升,大腦則會馬上知道我們正在吃有酸味的東西。

而且,這一切都是瞬間發生。我們的大腦真的很強大。

各種味道的差別:化學鍵

從分子的層次來說,鹹/酸和甜/鹹香之間有個非常明顯的差異——分子之間的鍵。有鹹味和酸味的食物利用的是離子鍵,有甜味和鹹香的食物則是利用共價鍵。

這就是為什麼我們可以忍受非常甜的食物,卻無法接受超級酸的食物。舉例來說,吃藍莓派的時候,我們的味蕾會立刻辨識出甜味,但由於我們在吃甜食,離子通道並沒有派上用場。

基於相同的道理,苦味的程度會維持不變,因為濃度不影響整體的味道。不論你是喝一滴或一杯,味道都是一樣苦。

由於甜、鹹香和苦味不需要經過人體內的離子通道就能抵達大腦,這三種味道通常會被歸為同一類。這些味道源於特定的共價分子和味蕾細胞膜中的受器所產生的化學反應。

這種反應發生的瞬間,我們的大腦就會察覺到甜、鹹香或者苦的味道。再次強調,這整個過程花不到一秒鐘。

甜、鹹香和苦味不需要經過人體內的離子通道就能抵達大腦。圖/pixabay

既然談到了這個話題,我想要快速釐清一個常見的誤會。人的整個舌頭可以相對平均地嚐到總共五種味道,也就是說味蕾並沒有分區!舌頭的每一吋都可以分辨出你的派有多甜。

總而言之,食物有五種主要的味道:甜、鹹、酸、鮮和苦。(鮮[umami]這個詞源自日語,字面上的意思就是美味,不過大多數人會用鹹香[savory]來表達這個概念。) 烘焙高手會利用這五種味道來組合出無限多種美妙的風味。

看看經典的大黃派就知道了,內餡有 4 杯大黃(酸味)、2/3 杯糖(甜味)和一小撮鹽。再加上一點檸檬汁(更多酸味),就可以呈現出完美平衡的鹹—甜—酸可口風味。

經典的大黃派可以呈現出完美平衡的鹹-甜-酸可口風味。圖/pexels

不過我覺得特別有趣的地方在於,從化學的角度而言,每個人對相同的分子組合都有各自的解讀。有些人討厭大黃派,我卻完全吃不膩,為什麼呢? 

口味喜好常與過去經驗綁在一起

風味喜好完全取決於愉悅的心理狀態,這可以解釋為什麼人有最喜歡的食物,還有最喜歡的顏色、電影、歌曲等等。雖然大腦中的化學極為複雜,但一般來說,心理學家多半都認同一個理論:人之所以有最喜歡的東西,是源於他們首次接觸到這個東西時的正面經驗……而且他們的大腦會因此對不同的化學受器產生反應。

以食物來說,大多數人最愛的食物都是在年紀非常小的時候就固定下來。

我這麼愛大黃派,很有可能是因為這是我人生中第一次吃到的派。那種甜—酸—鹹合而為一的風味,震撼了我幼小的心靈,後來我再也沒吃過任何勝過那次體驗的派。

味蕾辨識力可以訓練,也可能會退化

不過這套通用的理論有個例外:其實你可以訓練舌頭辨識出更多風味。就像你可以為了準備馬拉松或足球比賽而鍛鍊肌肉,只要努力、認真和大量接觸,你就可以學會辨識食物中的不同分子。

成功之後,這些人通常會發現一些自己開始喜歡上的新食物,這都是因為他們的味覺變得更加敏銳——簡單來說,他們可以辨識出的風味種類變多了。

有些人的味覺非常敏銳;舉例來說,我有遇過一些烘焙師可以立刻辨認出燕麥餅乾裡的一絲肉豆蔻味,或是有些老饕可以吃出自己最愛的泰式餐廳在某一種咖哩中加了哪一種魚露。

有些老饕可以吃出自己最愛的泰式餐廳在某一種咖哩中加了哪一種魚露。圖/pexels

不過大部分的人年紀越大(或是菸抽的越多),大腦就越難解讀來自舌頭的訊號。

簡直就像是味蕾——或分辨離子和共價鍵分子的能力——折損或變遲鈍了,尤其是當你邁入老年。

所以,趕緊趁你還年輕的時候,多出去走走嘗試新食物吧。烤個大黃派和蘋果派,看看你比較喜歡哪一種。

——本文摘自《完美歐姆蛋的化學》,2022 年 12 月,日出出版出版,未經同意請勿轉載。

所有討論 2
日出出版
11 篇文章 ・ 5 位粉絲