Loading [MathJax]/extensions/tex2jax.js

0

0
0

文字

分享

0
0
0

世紀大彗星像夢想一樣說碎就碎了?C/2019 Y4彗星的發現與黯淡

科學月刊_96
・2020/05/08 ・2505字 ・閱讀時間約 5 分鐘 ・SR值 533 ・七年級

-----廣告,請繼續往下閱讀-----

  • 洪景川/臺北市立天文科學教育館視聽組研究助理退休,現任臺北市文山與士林社大天文課程講師。

急速增光的 C∕2019 Y4 彗星在飛向太陽前,出現了彗核裂解的突發現象。再次應證了「彗星是不穩定而且不可預測的」?

C∕2019 Y4,或稱 ATLAS、撞地警報彗星,是一顆軌道近似拋物線、離心率為 0.99871621 的彗星,由「小行星陸地撞擊最後警報系統(Asteroid Terrestrial-impact Last Alert System, ATLAS)」在去(2019)年 12 月 28 日的自動巡天觀測時所發現。

它曾經是今(2020)年截至今日最亮的彗星,總光度在 3 月底時視星等約為 7 等,到 4 月中旬卻已降到僅 9 等左右,光度比最亮時暗 6 倍多,甚至比同在夜空中的 C∕2017 T2(PanSTARRS)、C∕2019 Y1(ATLAS)和 C∕2020 F8(SWAN)等彗星還要暗淡。為何如此?原來這顆彗星在 4 月 2 日左右,經歷一次重大的分裂解體事件。

4 月中旬時,人們尚可使用望遠鏡在鹿豹座(Camelopardalis)中找到它,貌似光線瀰散的天體。由於可能剛經歷彗核解體事件,因此這顆彗星是否能夠繼續增亮,尚屬未知數。但是天文學家原先預估它將在 4 或 5 月時達到肉眼能見到的亮度,似乎已不可能達成。

彗星的發現過程和亮度變化

2019 年 12 月 28 日,它從位於夏威夷茂納羅亞(Mauna Loa)火山頂上 0.5 米口徑的賴特-施密特式望遠鏡(f∕2 Wright-Schmidt Telescope)所拍攝的影像中被發現。當時此彗星位於大熊星座中,以視星等 19.6 等的亮度發光。丹諾(Larry Denneau)是第一個辨識出這顆彗星的人,並立刻將其通報到小行星中心(Minor Planet Center, MPC)的網頁上,以便向其他天文學家發出警示。隨後幾天的進一步觀察中,發現它出現彗髮。持續觀察追蹤,又發現彗尾變得越來越明顯。

-----廣告,請繼續往下閱讀-----

2 月初到 3 月底間,亮度從 17 等激增至 8 等,增加近 4000 倍。單單在 3 月份,光度就增加 4 個星等。彗髮淡綠色的外觀是由雙原子碳 C2 的發射所產生的,估算它具有約 330 萬公里長的多色彗尾,雖然外側當時仍很黯淡,但是氣態狀的細絲結構可以掃過背景恆星的前方,觀察起來狀似一個瀰散的天體。不料在 4 月初時,發生重大的彗核分裂或破碎事件,C∕2019 Y4 突然變暗。

C∕2019 Y4 彗星是中央大學鹿林天文台 SLT 40 公分(cm)望遠鏡長期監測的目標之一。組圖可看出彗星從 2020 年 3 月 19 日到 4 月 9 日之間的亮度變化戲劇性過程。原本持續增亮的彗星於 3 月 29 日時開始變暗。(林忠義影像提供;林啟生、蕭翔耀、侯偉傑觀測)

彗星的軌道與位置

在它剛剛被發現時,距離太陽約 3 個天文單位。基於先前的觀測結果,推斷它具有約 4400 年的軌道週期和 0.25 AU 的近日點距離。經計算比對發現,C∕2019 Y4 和歷史上的 C∕1844 Y1 彗星(又稱1844年大彗星)竟然具有十分相似的軌道元素,表示 C∕2019 Y4 和 C∕1844 Y1 可能是同一母體彗星的碎片。

NASA 噴射推進實驗室小天體資料庫(JPL Small-Body Database, SBDB)使用 2020 年 2 月 18 日曆元為基礎來計算,顯示 C∕2019 Y4 的軌道週期約為 6000 年,但該計算包括在行星區域內的誤導性擾動。在彗星進入行星區域之前,一種更合理的重心計算顯示「飛入軌道週期」應約為 4800 年。預計於 2020 年 5 月 31 日到達近日點,之後離開行星區域,「飛離軌道週期」約為 5200 年。

在 2020 年 1~3 月期間,C∕2019 Y4 位於大熊星座(Ursa Major)方向;4 月份時則位於鹿豹座中;預計在 5 月 12 日之後將進入英仙星座(Perseus)。5 月 23 日時逢朔,屆時與太陽離角達 17 度時,將通過近地點。在 5 月 31 日通過近日點時,它將位於金牛座(Taurus)的方向,與太陽離角減為 12 度。

-----廣告,請繼續往下閱讀-----

彗核的分裂與可能解體?

據馬里蘭大學(University of Maryland)天文學家葉泉志和加州理工學院(California Institute of Technology)張啟成使用拉帕爾馬島(La Palma)上的利物浦2米望遠鏡(Liverpool)對 C∕2019 Y4 進行一系列的觀測,顯示原先的點狀彗星假核(pseudo-nucleus)已演化出細長形的彗星假核,長度約為 3 角秒,並且與彗尾的軸線方向一致。

這種變化形態與彗星塵埃噴出量突然下降,甚至跡近停止噴發的現象頗為一致。彗核似乎已分裂成兩塊,前方較尖的一塊與隨後截面積較寬的第二塊之間出現了間隙,因此推論彗核已開始分裂。

使用鹿林天文台的影像觀察到 C / 2019 Y4 彗星兩個碎片的詳細報告。(林忠義影像提供;林啟生、蕭翔耀、侯偉傑觀測)

其實早在 4 月 6 日,幾位天文學家就在《天文學家電報》(The Astronomer’s Telegram)中通報 C∕2019 Y4 可能已經解體的推斷,碎裂的原因可能是釋氣(outgassing)的結果,導致彗星的離心力增加。

此外,塞爾維亞天文學家斯莫里奇(Igor Smolic)和塞庫里奇(Miodrag Sekulic)使用貝爾格勒天文台(Astronomical Observatory of Belgrade)維多耶維卡(Vidojevica)觀測站的米蘭科維奇(Milankovic)1.4 米 f∕5.1 望遠鏡對 C∕2019 Y4 進行攝影,發現彗核已經分裂成至少五塊,光度由 3 月底的 7 等變暗降低至 4 月中旬的 10 等,判斷彗星可能已經解體,並且可能將逐漸消散。

-----廣告,請繼續往下閱讀-----

亮與不亮,這是一個好問題

預測一顆彗星是否能成為明亮又彗尾悠長的大彗星是相當困難的,因為有許多因素都會影響彗星的後續表現,致使偏離預測的光度。如果彗星本身擁有一顆龐大而活躍的彗核,且近日點足夠接近太陽,在它光度最亮時沒有被太陽遮掩能從地球觀察,就有機會成為大彗星。

然而歷史上,1973 年的科侯德彗星(Comet Kohoutek,C∕1973 E1)雖然符合前述的所有標準,也曾被預測會成為壯觀的世紀大彗星,但結果並非如此。而 1976 年出現的威斯特彗星(Comet West,C∕1975 V1)彗核曾分裂成四個部分,卻從原先對它期望不高到後來意外地成為令人印象深刻的大彗星。

至 20 世紀末期,有很長的一段時間都沒有出現過大彗星,直到兩顆大彗星接連現身:

  • 1996年的百武第二號彗星(Comet Hyakutake,C∕1996 B2)拖著 120 度長的長彗尾和高達 0 等的光度亮麗現身;繼它之後,海爾─博普彗星(Comet Hale–Bopp,C∕1995 O1)在 1997 年達到最大亮度 -1.4 等,而且還拖出兩條明亮而異色的彗尾。
  • 21 世紀的第一顆大彗星則是麥克諾特彗星(Comet McNaught,C∕2006 P1),於 2007 年 1 月時光度高達到 -5.5 等,並且成為 40 年來最明亮的彗星,呈現出寬廣巨大的扇狀彗尾。

如同前面提及的威斯特彗星,其第一份彗核分裂報告出現於 1976 年 3 月,當時它已分裂成兩個部分。這些彗核碎片在當時是極少數被觀察到彗星發生分裂的案例,之前最顯著的例子是 1882 年大彗星。1882 年大彗星與本文所討論的 C∕2019 Y4,都同屬於「克魯茲族彗星」的成員之一。

-----廣告,請繼續往下閱讀-----

近年來,許多克魯茲族彗星都曾被觀察到彗核於通過太陽附近的過程中,發生了分裂。這麼說來,此次令人意外沒能成為世紀大彗星的C∕2019 Y4,彗核分裂甚至面臨解體的結局,應該要算是意料中的事了囉?

感謝鹿林天文台觀測員林啟生、蕭翔耀、侯偉傑的觀測和林忠義博士提供影像。

 

〈本文選自《科學月刊》2020年5月號〉
科學月刊∕在一個資訊不值錢的時代中,試圖緊握那知識餘溫外,也不忘科學事實和自由價值至上的科普雜誌。

-----廣告,請繼續往下閱讀-----
文章難易度
科學月刊_96
249 篇文章 ・ 3738 位粉絲
非營利性質的《科學月刊》創刊於1970年,自創刊以來始終致力於科學普及工作;我們相信,提供一份正確而完整的科學知識,就是回饋給讀者最好的品質保證。

0

1
0

文字

分享

0
1
0
純淨之水的追尋—濾水技術如何改變我們的生活?
鳥苷三磷酸 (PanSci Promo)_96
・2025/04/17 ・3142字 ・閱讀時間約 6 分鐘

-----廣告,請繼續往下閱讀-----

本文與 BRITA 合作,泛科學企劃執行。

你確定你喝的水真的乾淨嗎?

如果你回到兩百年前,試圖喝一口當時世界上最大城市的飲用水,可能會立刻放下杯子——那水的顏色帶點黃褐,氣味刺鼻,甚至還飄著肉眼可見的雜質。十九世紀倫敦泰晤士河的水,被戲稱為「流動的污水」,當時的人們雖然知道水不乾淨,但卻無力改變,導致霍亂和傷寒等疾病肆虐。

十九世紀倫敦泰晤士河的水,被戲稱為「流動的污水」(圖片來源 / freepik)

幸運的是,現代自來水處理系統已經讓我們喝不到這種「肉眼可見」的污染物,但問題可還沒徹底解決。面對 21 世紀的飲水挑戰,哪些技術真正有效?

-----廣告,請繼續往下閱讀-----

19 世紀的歐洲因為城市人口膨脹與工業發展,面臨了前所未有的水污染挑戰。當時多數城市的供水系統仍然依賴河流、湖泊,甚至未經處理的地下水,導致傳染病肆虐。

1854 年,英國醫生約翰·斯諾(John Snow)透過流行病學調查,發現倫敦某口公共水井與霍亂爆發直接相關,這是歷史上首次確立「飲水與疾病傳播的關聯」。這項發現徹底改變了各國政府對供水系統的態度,促使公衛政策改革,加速了濾水與消毒技術的發展。到了 20 世紀初,英國、美國等國開始在自來水中加入氯消毒,成功降低霍亂、傷寒等水媒傳染病的發生率,這一技術迅速普及,成為現代供水安全的基石。    

 19 世紀末的台灣同樣深受傳染病困擾,尤其是鼠疫肆虐。1895 年割讓給日本後,惡劣的衛生條件成為殖民政府最棘手的問題之一。1896 年,後藤新平出任民政長官,他本人曾參與東京自來水與下水道系統的規劃建設,對公共衛生系統有深厚理解。為改善台灣水源與防疫問題,他邀請了曾參與東京水道工程的英籍技師 W.K. 巴爾頓(William Kinnimond Burton) 來台,規劃現代化的供水設施。在雙方合作下,台灣陸續建立起結合過濾、消毒、儲水與送水功能的設施。到 1917 年,全台已有 16 座現代水廠,有效改善公共衛生,為台灣城市化奠定關鍵基礎。

-----廣告,請繼續往下閱讀-----
圖片來源/BRITA

進入 20 世紀,人們已經可以喝到看起來乾淨的水,但問題真的解決了嗎? 科學家如今發現,水裡仍然可能殘留奈米塑膠、重金屬、農藥、藥物代謝物,甚至微量的內分泌干擾物,這些看不見、嚐不出的隱形污染,正在成為21世紀的飲水挑戰。也因此,濾水技術迎來了一波科技革新,活性碳吸附、離子交換樹脂、微濾、逆滲透(RO)等技術相繼問世,各有其專長:

活性碳吸附:去除氯氣、異味與部分有機污染物

離子交換樹脂:軟化水質,去除鈣鎂離子,減少水垢

微濾技術逆滲透(RO)技術:攔截細菌與部分微生物,過濾重金屬與污染物等

-----廣告,請繼續往下閱讀-----

這些技術相互搭配,能夠大幅提升飲水安全,然而,無論技術如何進步,濾芯始終是濾水設備的核心。一個設計優良的濾芯,決定了水質能否真正被淨化,而現代濾水器的競爭,正是圍繞著「如何打造更高效、更耐用、更智能的濾芯」展開的。於是,最關鍵的問題就在於到底該如何確保濾芯的效能?

濾芯的壽命與更換頻率:濾水效能的關鍵時刻濾芯,雖然是濾水器中看不見的內部構件,卻是決定水質純淨度的核心。以德國濾水品牌 BRITA 為例,其濾芯技術結合椰殼活性碳和離子交換樹脂,能有效去除水中的氯、除草劑、殺蟲劑及藥物殘留等化學物質,並過濾鉛、銅等重金屬,同時軟化水質,提升口感。

然而,隨著市場需求的增長,非原廠濾芯也悄然湧現,這不僅影響濾水效果,更可能帶來健康風險。據消費者反映,同一網路賣場內便可輕易購得真假 BRITA 濾芯,顯示問題日益嚴重。為確保飲水安全,建議消費者僅在實體官方授權通路或網路官方直營旗艦店購買濾芯,避免誤用來路不明的濾芯產品讓自己的身體當過濾器。

辨識濾芯其實並不難——正品 BRITA 濾芯的紙盒下方應有「台灣碧然德」的進口商貼紙,正面則可看到 BRITA 商標,以及「4週換放芯喝」的標誌。塑膠袋外包裝上同樣印有 BRITA 商標。濾芯本體的上方會有兩個浮雕的 BRITA 字樣,並且沒有拉環設計,底部則標示著創新科技過濾結構。購買時仔細留意這些細節,才能確保濾芯發揮最佳過濾效果,讓每一口水都能保證潔淨安全。

-----廣告,請繼續往下閱讀-----
濾芯本體的上方會有兩個浮雕的 BRITA 字樣,並且沒有拉環設計 (圖片來源 / BRITA)

不過,即便是正品濾芯,其效能也非永久不變。隨著使用時間增加,濾芯的孔隙會逐漸被污染物堵塞,導致過濾效果減弱,濾水速度也可能變慢。而且,濾芯在拆封後便接觸到空氣,潮濕的環境可能會成為細菌滋生的溫床。如果長期不更換濾芯,不僅會影響過濾效能,還可能讓積累的微小污染物反過來影響水質,形成「過濾器悖論」(Filter Paradox):本應淨化水質的裝置,反而成為污染源。為此,BRITA 建議每四週更換一次濾芯,以維持穩定的濾水效果。

為了解決使用者容易忽略更換時機的問題,BRITA 推出了三大智慧提醒機制,確保濾芯不會因過期使用而影響水質:

1. Memo 或 LED 智慧濾芯指示燈:即時監測濾芯狀況,顯示剩餘效能,讓使用者掌握最佳更換時間。

2. QR Code 掃碼電子日曆提醒:掃描包裝外盒上的 QR Code 記錄濾芯的使用時間,自動提醒何時該更換,減少遺漏。

-----廣告,請繼續往下閱讀-----

3. LINE 官方帳號自動通知:透過 LINE 推送更換提醒,確保用戶不會因忙碌而錯過更換時機。

在濾水技術日新月異的今天,濾芯已不僅僅是過濾裝置,更是智慧監控的一部分。如何挑選最適合自己需求的濾水設備,成為了健康生活的關鍵。

人類對潔淨飲用水的追求,從未停止。19世紀,隨著城市化與工業化發展,水污染問題加劇並引發霍亂等疾病,促使濾水技術迅速發展。20世紀,氯消毒技術普及,進一步保障了水質安全。隨著科技進步,現代濾水技術透過活性碳、離子交換等技術,去除水中的污染物,讓每一口水更加潔淨與安全。

-----廣告,請繼續往下閱讀-----
(圖片來源 / BRITA)

今天,消費者不再單純依賴公共供水系統,而是能根據自身需求選擇適合的濾水設備。例如,BRITA 提供的「純淨全效型濾芯」與「去水垢專家濾芯」可針對不同需求,從去除餘氯、過濾重金屬到改善水質硬度等問題,去水垢專家濾芯的去水垢能力較純淨全效型濾芯提升50%,並通過 SGS 檢測,通過國家標準水質檢測「可生飲」,讓消費者能安心直飲。

然而,隨著環境污染問題的加劇,真正的挑戰在於如何減少水污染,並確保每個人都能擁有乾淨水源。科技不僅是解決問題的工具,更應該成為守護未來的承諾。濾水器不僅是家用設備,它象徵著人類與自然的對話,提醒我們水的純淨不僅是技術的勝利,更是社會的責任和對未來世代的承諾。

*符合濾(淨)水器飲用水水質檢測技術規範所列9項「金屬元素」及15項「揮發性有機物」測試
*僅限使用合格自來水源,且住宅之儲水設備至少每6-12個月標準清洗且無受汙染之虞

-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

鳥苷三磷酸 (PanSci Promo)_96
225 篇文章 ・ 313 位粉絲
充滿能量的泛科學品牌合作帳號!相關行銷合作請洽:contact@pansci.asia

0

6
2

文字

分享

0
6
2
水是從哪裡來的?改寫宇宙謎團:科學家揭露地球水源的真正來源!——《你的身體怎麼來的?》
商周出版_96
・2025/01/25 ・2808字 ・閱讀時間約 5 分鐘

-----廣告,請繼續往下閱讀-----

彗星送水論?地球的水是從哪來?

想知道古地球如何得到水的行星科學家將矛頭指向大泥球。似乎數十億年前曾有彗星雨落下,為我們帶來大量的水。

但,彗星又來自何方?

科學家長期認為彗星誕生於比火星更遠的寒冷區域。一九九〇年代,學者更進一步認定大部分彗星已經被日益成長的行星吸收。然而荷蘭天文學家揚.歐特(Jan Oort)提出不同見解,主張可以有數以兆計的彗星在太陽系邊緣存活,它們距離行星太遠所以沒被重力拉扯,最終圍繞太陽系形成巨大球形外殼,現在將該區域稱為歐特雲。歐特雲的大量彗星可以填滿地球海洋,問題是它們太遠,是地日距離的數千倍,實在不大可能到得了。

揚·歐特認為彗星圍繞太陽系形成遠距離的歐特雲,雖然數量足夠填滿地球的海洋,但距離遠到不易抵達地球。圖 / unplash

於是又有研究者懷疑部分彗星在太陽系較內側存活,或許是土星軌道外,這樣也比歐特雲近了一千倍。然而僅僅停留在臆測,因為想要在那麼遠的地方找到直徑不過數十英里或更小的彗星太困難,大家沒有傻到去做這種嘗試。

-----廣告,請繼續往下閱讀-----

唯二例外是年輕的麻省理工學院教授戴夫.朱維特(Dave Jewitt)和他的研究生盧珍(Jane Luu)。裘伊特頭頂高聳,笑容可掬,性格充滿英國式幽默,父母是倫敦的工廠工人和電話操作員。童年時偶然在夜空看見流星勾起他對天文學的迷戀。

從天文學觀測到重水比例:揭開水的宇宙密碼

一九八五年,他突發奇想將新的數位型光感測器 CCD(譯按:感光耦合元件)連接到望遠鏡,藉此在太陽系遙遠角落尋找彗星這種小天體。朱維特認為我們看不見不代表不存在,但研究需要資金,只可惜多數人都不相信,所以計畫案一次一次被拒絕。三十多年後,回憶起當初遭受的輕蔑他依舊義憤填膺。「最常得到的回答是『無法證明計畫裡的測量實際可行』,」他說:「我的天,這是什麼蠢邏輯?整個計畫的意義就是去做一些以前沒做過的嘗試。就算最後真的不可行又怎麼樣呢,重點不就是得試試看嗎?」批判他的人可能陷入了「現有工具檢測不到就代表不存在」的認知偏誤,習慣性地假設科學家尚未找到就代表目標處什麼也沒有。

朱維特和盧珍拒絕放棄,偷偷從其他研究案借用望遠鏡時間尋找數十億英里外可疑的微小物體。

很長時間毫無收穫。一年又一年,然後四年五年六年。直到一九九二年夏夜,他們在夏威夷大島茂納凱亞天文臺工作。那時候他們心灰意冷,覺得五年多光陰白費了,卻沒想到忽然發現了非常微弱的光點。察覺這個點微微移動時,朱維特還暗忖「不可能是真的」,但它確實存在。兩人找到的天體位於海王星外的軌道,後來進一步證實那邊還有數百萬顆彗星。該區域被命名為古柏帶,淵源是最早提出此概念的荷蘭天文學家30,他在一九五〇年代就探討了這個可能(諷刺的是他本人不相信)。

-----廣告,請繼續往下閱讀-----

科學家在古柏帶找到大量彗星,人體內的水看似已經確定來源。地球形成後不久,彗星從古柏帶,或許一部分從更遠的歐特雲抵達,送來覆蓋這顆行星表面的水。彗星堪稱飛行的冰山,攜帶的水量確實足以填滿地球海洋。理論很快得到多數人接納及傳播,謎題終於得到解答。

科學家認為古柏帶與歐特雲彗星攜帶的水,可能就是地球水源的來源。圖 / unplash

小行星的貢獻:來自太空岩石的生命之源

真的嗎?一九九五年,波瀾再起。亞利桑那州鳳凰城附近一場觀星派對上,輪到混凝土供應公司零件經理湯瑪斯.博普(Thomas Bopp)借用朋友的望遠鏡,他留意到視野角落有個模糊光點。同一天晚上,新墨西哥州克勞德克羅夫特村天文學家艾倫.海爾在家中發現同樣物體。這顆新發現的彗星,是有史以來見過最亮的,命名為稱為海爾─博普彗星。

翌年,戴夫.朱維特隨學者團隊返回茂納凱亞觀測站,這次以強大的電波望遠鏡觀測海爾─博普彗星。他們在海拔一萬四千英尺(約四千兩百六十七公尺)的稀薄空氣中每十三至十六小時輪班一次測量夜間光譜,試圖比較彗星中一種罕見的水形式比例是否與地球海洋相符。

或許有些人還不知道其實水分子有不同形式。大部分水由氫原子組成,核心只有一個質子。但還有別種水存在,由於重量多出一成所以稱為重水,其氫原子是同位素,核心除質子外還包含一個中子。重水很罕見,在地球海洋中每六千四百個水分子只有一個是重水。因此,茂納凱亞團隊準備測量海爾─博普彗星時原本很有信心會找到相同比例的重水,畢竟地球的水應該來自彗星。

-----廣告,請繼續往下閱讀-----

然而觀測結果並非如此。海爾─博普彗星重水含量是地球海洋兩倍。這就麻煩了,先前天文學家在哈雷彗星發現類似的高比例重水,當初只視為異常案例,然而後來在百武二號彗星又測量到相同數據。三次觀測結果一致成為難以忽視的證據,顯示彗星並不吻合地球海洋的水分子組成。

「天文學家對海爾─博普的觀測結果作何反應?」我問。

「嚇壞了。」朱維特的意思是指數據背後的涵義:「有點像新時代運動31的意識覺醒之類。」他笑了笑又說:「好像不該說這種話才對。」但顯而易見,學界頗受震撼,一夕間又不能靠融化彗星形成海洋了。雖然惠普爾沒說錯,彗星確實充滿水,但海洋來自太陽系其他地方。具體究竟是哪兒?

朱維特和其他許多學者一樣,注意力轉向飄浮在太空中的巨大岩石,即所謂小行星。

-----廣告,請繼續往下閱讀-----

從石頭榨水,乍聽很無稽,但事實上有些岩石確實可以。如果加熱隕石,也就是從小行星落到地球的碎片,困在晶體結構內的水分子就能變成水蒸氣。多年前科學家已經知道小行星含水,這些岩石含水量差異很大。多數靠近太陽形成的小行星幾乎不含水,但在火星之外冰冷區域形成者水分含量則可高達百分之十三。

朱維特等人的想法是:如果撞擊地球的小行星夠大就會帶來豐沛的水。此外,天文學家還知道火星木星之間軌道上有一大群小行星,並將該區域稱為小行星帶。而且,小行星中重水與彗星不同,吻合地球海洋和人體。各種線索指向我們這兒的水應該來自宇宙岩石。

感覺好像結案了,但其實小行星帶距離地球三億英里遠。從那種距離要一桿進洞得有多高明的技術?有足夠數量的小行星算準角度飛向地球以水覆蓋地表,這個現象發生機率有多高?人類又如何進一步理解?

——本文摘自《你的身體怎麼來的?從大霹靂到昨日晚餐,解密人體原子的故事》,2025 年 01 月,商周出版,未經同意請勿轉載。

-----廣告,請繼續往下閱讀-----
-----廣告,請繼續往下閱讀-----

討論功能關閉中。

商周出版_96
123 篇文章 ・ 364 位粉絲
閱讀商周,一手掌握趨勢,感受愜意生活!商周出版為專業的商業書籍出版公司,期望為社會推動基礎商業知識和教育。

2

5
3

文字

分享

2
5
3
披著喜劇外皮的警世寓言:《千萬別抬頭》背後的科學真相
PanSci_96
・2022/01/06 ・3626字 ・閱讀時間約 7 分鐘

-----廣告,請繼續往下閱讀-----

2021 年底在 Netflix 上架的《千萬別抬頭》(Don’t Look Up)講的是一個彗星撞地球的故事,但這並不是一部普通的科幻災難片,而是帶有黑色幽默的諷刺電影,用來嘲諷拒絕科學、對科學冷漠的社會大眾。雖然製作團隊原先是想諷刺那些否認全球暖化的言論,但在 COVID-19 疫情肆虐的現在,恰巧也能影射抵制口罩和疫苗的行為、煽動對立的政治操作,以及人們對於社交媒體的過度依賴。即使整部電影看似穿插了不少笑點,仍能從中感受到一股壓抑和無力感。

《千萬別抬頭》還請來了星光熠熠的卡司陣容,包括李奧納多.狄卡皮歐、珍妮佛.勞倫斯、喬納.希爾和凱特.布蘭琪等多位奧斯卡得主。飾演美國總統的梅莉.史翠普更表示這是她拍過最重要的電影!

Don't Look Up Poster.jpg
《千萬別抬頭》的演員陣容十分豪華,主演群包括李奧納多.狄卡皮歐、珍妮佛.勞倫斯等人。圖/WIKIPEDIA

製作人亞當.麥凱(Adam McKay)希望這部電影能夠如實描繪科學事實以及科學家面臨的挑戰,於是,他邀請知名天文學家艾米.邁因策爾博士(Dr. Amy Mainzer)擔任電影的科學顧問。

邁因策爾博士現為亞利桑那大學月球與行星實驗室的教授、全球頂尖的小行星探測和行星防禦專家,以及 NASA NEOWISE(Near-Earth Object Wide-field Infrared Survey Explorer)計畫的首席研究員,負責監督這項史上規模最大的小行星探測計畫。在 2020 年 3 月,計劃內的一名天文學家成功發現了一顆新的彗星,並且將它命名為 NEOWISE,就跟計畫名稱一樣。

-----廣告,請繼續往下閱讀-----
Photo of Dr. Amy Mainzer
邁因策爾博士。 圖/NASA

科學家眼中的災難片

本片的科學顧問邁因策爾博士與北美天文學新聞網站《今日宇宙》(Universe Today)的編輯南西.阿特金森(Nancy Atkinson)聊了《千萬別抬頭》這部片,以及電影中的科學。

邁因策爾博士醉心於彗星和小行星的研究,所以她表示,自己非常喜歡隕石浩劫這類電影題材!非常開心能看到以彗星為主題的電影,也十分慶幸能夠成為災難電影的科學顧問。

雖然目前實際上沒有任何小行星或彗星運行在可能撞擊地球的軌道上,也沒有任何一顆即將撞上地球。但本片畢竟是科幻電影,需要設定一顆真的即將撞上地球的彗星,更像是「拋磚引玉」的功能。邁因策爾博士以「科學實在論」打造故事框架,希望觀眾重視科學家的警告,不再相信虛假的謠言。

而《千萬別抬頭》之所以涵蓋這麼多科學知識,是因為製作團隊對科學深感興趣,非常重視電影中的科學。因此電影畫面中,團隊設計的彗星既要符合電影的視覺需求,又要符合科學上真實彗星的樣貌。劇情不僅描述了發現彗星的過程,包括如何識別、確定彗星軌跡,還刻畫了科學家在探索未知事物時的反應。這不只描繪了科學家的形象,也告訴觀眾科學家是什麼樣的人,還有他們是如何傳播科學知識——有時很順利,但有時真的困難重重。

-----廣告,請繼續往下閱讀-----

這部電影讓《今日宇宙》編輯印象最深刻的是,科學家試圖警告災難,卻沒有被當一回事。若是套用在氣候變遷和傳染病肆虐等全球議題上,這種冷漠的態度似乎有點太寫實了。

邁因策爾博士也認為,這齣電影想強調人們對於科學新聞的態度。就像《今日宇宙》編輯平時所從事的科普工作,將複雜的概念轉化為淺顯易懂的文字是很困難的,因為科學家慣用的詞語與日常生活中的用詞完全不同。

例如,「不確定性」(Uncertainty)代表測量結果是一個可能的數值範圍,而不是指我們不確定自己測量的是什麼。在不同的情境下,詞語意思也會不一樣,確實有可能造成溝通障礙——這只是其中一個例子而已。

對邁因策爾博士來說,這部電影講述的是科學家如何傳播知識,如何讓眾人瞭解這些知識,還有如何根據科學做出明智的決定。這樣的題材很有挑戰性,因為這是一部喜劇,希望觀眾可以在笑著看完的同時,能夠更加理解科學家們多麼努力想做到這些事,「可是也請容許我們偶爾做不到。」

-----廣告,請繼續往下閱讀-----
陨石, 天空, 云, 火焰, 日落, 山, 人, 幻想, 数字艺术
《千萬別抬頭》希望透過反諷與幽默,能讓更多人抬起頭、睜開眼,開始關心環境議題。圖/Pixabay

幕後花絮:真正的 NEOWISE 計畫在做什麼?

其實,現實中新發現的 NEOWISE 彗星就是電影裡那顆彗星的原型。那是一顆長週期彗星,以驚人的速度從遠方朝太陽系飛來。邁因策爾博士在 2020 年 3 月發現 NEOWISE,7 月時它就接近地球了,就真的像電影中的彗星一樣,我們來得及反應的時間非常短。 

好消息是,我們已經開始監視那些能釀成全球性災難的近地小行星。以超過 1 公里的近地小行星來說,科學家已經找到了其中 90%,而且沒有一個會對地球造成威脅。

但長週期彗星就是另一回事了。比起小行星,長週期彗星相當稀有,但這不代表它們不存在。雖然科學家持續監測,還是無法推估總數到底有多少。在邁因策爾博士看來,任何物體接近地球的機率都不是零,我們需要獲得更多知識,才能做好準備,方法就是不斷尋找彗星和小行星,並且全面性地監測、追蹤。

邁因策爾博士也花了很多時間和導演討論小行星監測系統。當科學家們發現未知的小行星或彗星時,會透過這個系統比對所有已知的星體,如果確定是未知星體,系統就會公開觀測資訊,讓其他天文學家看見。從科學家的角度來看,他們努力地傳播科學資訊,但問題在於每個人對於科學的接受程度不同,這樣的矛盾在劇情中也有不少著墨。

-----廣告,請繼續往下閱讀-----

電影中的科學家發現彗星只是湊巧,他本身並不是研究彗星的專家,但製片團隊仍花了不少時間呈現他們識別彗星、確定軌道,以及將結果轉告其他科學家的過程。雖然這畢竟是電影,多少美化了實際情況,但還是希望能藉此讓觀眾看見科學論證的嚴謹之處。

Comet 2020 F3 (NEOWISE) on Jul 14 2020 aligned to stars.jpg
NEOWISE 彗星 或音譯尼歐懷茲彗星 ,又稱為 C/2020 F3,是一顆具有接近拋物線軌道的逆行長週期彗星。圖/WIKIPEDIA

科學講述事實,但藝術掌管對事實的感受

本片中有許多大咖演員,他們才華洋溢,而且都有自信能展現出科學家感性的一面。他們都熱衷科學、關心科學在日常生活中扮演的角色,也相信如果人們根據科學做決定,就能找到更好的問題解決方法。邁因策爾博士還花了很多時間陪演員練習台詞,因為劇本裡有很多艱澀的科學術語。這麼做還有另一個好處,就是當他們沒有在聽博士講話時,博士可以表達身為科學家的感受,供他們揣摩。

邁因策爾博士一直覺得科學和藝術之間的關係很有趣。科學告訴我們事情的本質,但藝術掌管我們對這些事情的感受。這部電影呈現出科學家和大眾對於科學的看法:科學家想改變社會,以做出基於科學的決定,但也必須設法讓大眾傾聽科學的聲音——這種矛盾和拉扯,就是這部電影的核心所在。

科學家有所隱瞞?他們更想說個沒完

那些拒絕科學的大眾普遍認為 NASA 或政府隱瞞了一些事情,可是所有科學家卻都說,如果他們發現太空有危險物體,絕對會爬上屋頂告訴全世界。

-----廣告,請繼續往下閱讀-----

如果換成是邁因策爾博士,她也會這樣做!當科學家學到新的酷東西時,就像一班人去了一趟很棒的旅行,回家後,他可能會讓其他人感到厭煩,因為他不斷提起旅行中的所見所聞。大多數科學家不會停止談論自身所學,因為他們熱愛這些知識,也希望其他人知道這些酷東西,或許他們就會因此愛上科學!

邁因策爾博士希望觀眾看完這部電影後,能夠理解科學家也是人,而且和一般人沒什麼兩樣。「作為科學家,我們經常遇到溝通方面的挑戰,但我們正在努力,而且我們不會放棄!」

圖/twitter @dobrienloml
-----廣告,請繼續往下閱讀-----
所有討論 2
PanSci_96
1262 篇文章 ・ 2411 位粉絲
PanSci的編輯部帳號,會發自產內容跟各種消息喔。