0

0
0

文字

分享

0
0
0

這條路走不通就換一條:「骨導式助聽器」的運作原理與設計思路

Unmet Needs 臨床工程專欄_96
・2020/04/09 ・2323字 ・閱讀時間約 4 分鐘 ・SR值 499 ・六年級

立即填寫問卷,預約【課程開賣早鳥優惠】與送你【問卷專屬折扣碼】!

 

  • 作者/許逸翔

今天要來說說「骨導式助聽器」的故事。不知道各位有沒有聽過骨傳導耳機呢?只要將耳機表面貼近耳朵附近而不用塞進耳朵,就能聽見聲音?

這到底是真的還是假的?

告訴你,沒有錯!骨傳導耳機所運用的骨傳導技術 (Bone Conduction),其實原本是應用在一種稱為「骨導式助聽器」的醫療器材上,聲波的傳遞可以藉由我們顱骨的振動傳遞至內耳的耳蝸,再經由聽神經將訊號傳輸到大腦的聽覺中樞,使我們聽見聲音。

不過你可能會想,好端端的助聽器,為什麼偏偏要用骨導式的呢?這跟我平常聽到的助聽器不太一樣啊!助聽器不就是因為我們耳朵感受聲音的能力變低了,所以要放一個擴音器在耳朵裡,讓它把接收的聲音放大後再傳到耳膜嗎?你有沒有在唬我?

傳統助聽器。圖/rawpixel.com@Freepik

傳統助聽器的不足?

好啦沒有唬你,其實,傳統助聽器是屬於氣導式的。聲音經由外耳道的空氣傳到耳膜,引發振動產生聽覺,助聽器本身會放在外耳道的外側、中側或是內側,對聲音進行攔截,把它放大後再傳至耳膜。

然而,若病患的外耳道產生病症,或是中耳的聲音傳輸系統遭到破壞……等等,使得傳統的氣導式助聽器無法在正常的路徑上對聲音進行放大,那便會出現問題。

此時,我們便需要在其它聲音傳導的路徑上對聲音進行放大,才能協助病患聽清楚外界的聲音。

欸不過,聲音不就只是藉由空氣從耳道傳到耳膜,再傳到我們的大腦內嗎?

傳統的氣導式助聽器會對聲音進行攔截,把它放大後再傳至耳膜。圖/GIPHY

不!你有沒有發現,當我們摀住耳朵的時候,還是常常可以些微聽見外面的聲音?

其實,聲音不只可以經由耳道傳導,它也可以透過我們顱骨中顳骨的振動,將聲音傳遞至內耳的耳蝸,而這也是「骨導式助聽器」的重要原理。

骨導式助聽器的出現

根據三軍總醫院的衛教資料指出,骨導式助聽器通常是植入式的(與電子耳相似但並不相同),又稱  Bone Anchored Hearing Aids (BAHA),簡稱「巴哈」, 是一種藉由手術方式將傳音的鈦金屬植入頭顱骨內的一種骨傳導式助聽器裝置。

這樣的助聽器設計由於不會經過外耳道以及中耳耳膜、聽小骨等空氣傳導的構造,因此特別適合於中耳或外耳道閉鎖或中耳構造已經遭到破壞的病患使用。

骨導式助聽器的外觀。圖/Ear Associates

聽覺產生的原理

人體主要接收聲音的構造是「耳朵」,並在大腦皮質內產生聽覺。然而,各位是否覺得奇怪,聲音是以機械波的形式在介質中傳遞,大腦需要接收到神經電訊號才能產生聽覺。

機械波與電訊號之間,究竟是如何在我們神秘的聽覺系統裡做轉換呢?

簡單來說,關鍵是在我們內耳的「毛細胞」,人體的耳朵分成外耳、中耳和內耳,聲波(機械波)經由外耳的耳道傳入,作用於外耳與中耳之間的鼓膜,鼓膜產生相應的振動,並帶動中耳內的聽骨鏈,將振動傳遞至內耳。

聽覺系統的結構。圖/香港衛生署學生健康服務

內耳裡感受聲音刺激的部分稱為耳蝸,裡面充滿著淋巴液,而「毛細胞」便藏在這些淋巴液之中。

當聲音的振動經由中耳的聽骨鏈傳遞至內耳的耳蝸時,淋巴液會因振動而受到推擠,而毛細胞連帶受到擺動的同時,就會誘發連接毛細胞的神經末稍產生神經衝動(電訊號),這些電訊號一旦經由聽神經傳遞至大腦時,我們就能感受到聲音!

如果想要更詳細了解聽覺的詳細產生機制,可以看以下這支影片:

骨傳導耳機設計聯想是如何來的呢?

其實這樣的設計方式十分常見。原有的方法因為受其他的外力因素干擾,導致無法得到想要的結果,因此我們試著找尋是否有第二條、第三條路徑可以得到相同的結果。即使走過的路不同,花費的成本也不一樣,但只要能得到好的結果,便是個好方法。

就像我們平常在搭乘交通工具時,如果前面的路段有嚴重的塞車,那我們可能就會選擇搭乘捷運或是其他可以更加便捷到達目的地的交通工具。

而聲音的傳導也是,若主要的空氣傳導方式受到阻礙,那「骨傳導」也是一種替代方式,協助聽障者利用「骨導式助聽器」聽見外界的聲音。

骨導式耳機式意圖。圖/Wikipedia

這次會聊到「骨導式助聽器」的主題,主要也是想結合最近的時事。其實骨傳導耳機並沒有如噱頭般這麼神奇,它也是利用一種身體的傳聲方式,來達到聽覺產生的效果。

聲音原本就可以在固體、液體、氣體內傳遞,在耳朵亦是如此。

聲音的機械波最終會傳到我們耳朵深處的耳蝸,然而在過程中的傳遞方式並沒有受到任何規範,它能夠經由顳骨的震動傳入,也能夠通過外耳道的空氣震動傳入。

兩者最後只有主觀感受到的聲音清淅度、音量大小的差別。

「骨導式助聽器」因為其瞄準的客戶族群不同,在市場上仍佔有一定的比例。

也因為這項醫材的出現,使得慢性外耳炎、中耳炎、先天性外耳導狹窄或是閉鎖,甚至是單側耳聾的患者,能再度享受到聽覺為生活帶來的便利。

文章難易度
Unmet Needs 臨床工程專欄_96
7 篇文章 ・ 230 位粉絲
「臨床工程專欄」希望從醫工的角度出發,與讀者分享醫材開發背後的巧思。藉由介紹醫材設計的觀點、開發醫材的經驗分享,與整理相關的知識資源,讓大家得知,醫材開發,有跡可循。

0

2
0

文字

分享

0
2
0
什麼!你怎麼用眼睛聽聲音:認識麥格克效應
雅文兒童聽語文教基金會_96
・2022/09/28 ・2905字 ・閱讀時間約 6 分鐘

立即填寫問卷,預約【課程開賣早鳥優惠】與送你【問卷專屬折扣碼】!

 

  • 文/李翊瑞|雅文基金會聽語科學研究中心助理研究員

早晨,鬧鐘聲不停地在耳邊響起,儘管心裡有再多的不甘願,你依然掀開棉被起身,輕揉著眼睛抬頭看了看時間。

在日常生活中,透過耳朵聽聲音、依靠眼睛看東西,兩者獨立運作,似乎是我們不曾懷疑過的事情。然而,人類的視覺及聽覺真的互不影響、毫無關聯嗎?

當朋友與我們說話時,對方的聲音和唇形如果有著明顯不同,又會發生什麼神奇的事呢?

究竟是「聽」別人說話,還是「看」別人說話呢?圖/Pexels

無心插柳柳成蔭:麥格克效應的發現

當一個人說話的聲音與唇形變化不一致時,所產生的聽錯覺現象稱為麥格克效應(McGurk effect)。

麥格克效應最早是由兩位英國心理學家——哈利.麥格克(Harry McGurk)約翰.麥克唐納(John MacDonald)於 1976 年提出[1],有趣的是,這個發現完全是場意料外的事。最初,他們正在進行一項語音知覺的研究,實驗中會讓嬰兒觀看一位母親說話的影片,同時搭配該位母親的配音,並記錄不同月齡的嬰兒對於語音的反應。

在一次實驗中,播放影片以及聲音時並未同步,使得影片中說話者唇形為「ga」,卻播放出「ba」的聲音。神奇的是,麥格克與麥克唐納不約而同聽到卻不是「ga」或「ba」,而是「da」的聲音[2]

說話者唇形為「ga」、播放聲音為「ba」,會聽到「da」的聲音。圖/雅文基金會

感到困惑的兩人,隨後重新設計了實驗,並招募更多受試者參與研究,發現高達 98% 的受試者在唇形為「ga」播放聲為「ba」的情況下都聽到了「da」的聲音。最終,他們將這個出乎意料的發現,發表在著名的科學期刊《Nature》[1],開啟了後續一系列有關聽錯覺以及視聽整合的研究。

聽到你懷疑人生,不存在的聲音從何而來?

麥格克效應的發生,顯示了視覺與聽覺訊息之間會相互作用,使我們得以一窺人類語音知覺系統的神秘面紗。與他人對話時,雙耳會將接收到的刺激(語音)傳遞至大腦的初級聽覺皮質(A1,圖中藍色處),同時雙眼接收到的訊息(嘴唇變化、臉部表情與舌頭動作)則會傳遞到初級視覺皮質(V1,圖中紅色處),這兩個區域所接收到的訊息會進一步傳送到顳上溝(superior temporal sulcus,STS,圖中紫色處)進行整合[3]

因此,我們知覺到的語音就不是單一的視覺(「ga」)或聽覺(「ba」)訊息,而是整合後的「da」。顳上溝在視聽整合的過程中扮演非常關鍵的角色[4],後續研究也發現,麥格克效應較少出現在顳上溝功能異常的受試者,如自閉症兒童及失語症成人[5, 6, 7]

視覺訊息(來自初級聽覺皮質 A1,圖中藍色處)和聽覺訊息(來自初級視覺皮質 V1,圖中紅色處)會在顳上溝(STS,圖中紫色處)進行整合。圖/Lüttke (2018)

既然我們已經知道不存在的聲音是經大腦整合而產生,多聽多看幾次就會漸漸習慣而消失嗎?長期研究麥格克效應的美國心理學家勞倫斯.羅森布拉姆(Lawrence Rosenblum)曾提到:

「即便我已經研究此效應長達二十五年,既看又聽了成千上萬次,它依然會發生在我身上,無法自主地去控制它[8]。」

由此可知,麥格克效應不同於一般的魔術表演,即使已經瞭解了原理,甚至感受到它正在發生,但那個不存在的聲音依舊會在我們腦中迴響。

從戴口罩到追劇,視聽整合的重要性

雖然口罩雖然能有效減少病毒的傳播,卻也增加了與他人對話上的困難,使溝通的品質大打折扣[9]。在口罩會影響溝通的「聲音」與「視覺」線索,該如何為愛防疫無礙溝通?文中就有提到,影響溝通的兩大面向為[10]

  • 聽覺:口罩會降低高頻語音(約 2000 – 7000 赫茲)的音量,影響高頻語音的清晰度,讓聲音聽起來悶悶的。如果聽不清楚,就可能會把「胡先生」聽成「吳先生」、「鞋子」聽成「茄子」等。
  • 視覺:口罩會遮蔽臉部表情與唇形變化,因而缺少了視覺上的線索。像是在餐廳或會議等多人同時說話的吵雜環境,若看不見唇形會較難辨別每句話的來源。

麥格克效應顯示了大腦會整合聽覺與視覺訊息來理解當下的聲音,而佩戴口罩所帶來的不便,不僅影響了聽力正常者,對於聽力受損的族群更是一大挑戰,不僅無法接收到清楚的語音訊息,更不能透過讀唇來理解對話內容。所幸,透明口罩的問世[11],使我們得以看見對方的表情,感受到對方的情緒,更能清楚辨識唇形,兼顧防疫及溝通的需求!

透明口罩幫助我們看見對方的唇形和表情,減少溝通上的阻礙。圖/BBC News

另一方面,疫情的衝擊也帶動串流影音平台的崛起,宅在家收看喜愛的戲劇及電影已蔚為風潮,而追劇的過程其實也是種視聽整合的展現。我們對於劇情的理解,除了劇中角色對話的聲音,影片中的字幕也很關鍵。要知道怎樣追劇可以聽和看得更輕鬆嗎?別錯過追劇沒字幕就聽不到?電視聲音不清楚,你可以這樣做[12]

字幕有助於理解影片的內容。圖/Pexels

參考資料

  1. McGurk, H., & MacDonald, J. (1976). Hearing lips and seeing voices. Nature264(5588), 746–748. https://doi.org/10.1038/264746a0
  2. Massaro, D. W., & Stork, D. G. (1998). Speech Recognition and Sensory Integration: A 240-year-old theorem helps explain how people and machines can integrate auditory and visual information to understand speech. American Scientist, 86(3), 236–244. http://www.jstor.org/stable/27857023
  3. Lüttke, C. S. (2018). What you see is what you hear: Visual influences on auditory speech perception (Doctoral dissertation, [Sl: sn]).
  4. Beauchamp, M. S., Nath, A. R., & Pasalar, S. (2010). fMRI-Guided transcranial magnetic stimulation reveals that the superior temporal sulcus is a cortical locus of the McGurk effect. Journal of Neuroscience30(7), 2414-2417. https://doi.org/10.1523/JNEUROSCI.4865-09.2010
  5. Taylor, N., Isaac, C., & Milne, E. (2010). A comparison of the development of audiovisual integration in children with autism spectrum disorders and typically developing children. Journal of Autism and Developmental Disorders40(11), 1403–1411. https://doi.org/10.1007/s10803-010-1000-4
  6. Redcay E. (2008). The superior temporal sulcus performs a common function for social and speech perception: implications for the emergence of autism. Neuroscience and Biobehavioral Reviews32(1), 123–142. https://doi.org/10.1016/j.neubiorev.2007.06.004 
  7. Hickok, G., Rogalsky, C., Matchin, W., Basilakos, A., Cai, J., Pillay, S., … & Fridriksson, J. (2018). Neural networks supporting audiovisual integration for speech: A large-scale lesion study. Cortex103, 360-371.
  8. BBC Two. (2010). Try this bizarre audio illusion! Retrieved August 12, 2022, from https://www.youtube.com/watch?v=G-lN8vWm3m0.
  9. Chládková, K., Podlipský, V. J., Nudga, N., & Šimáčková, Š. (2021). The McGurk effect in the time of pandemic: Age-dependent adaptation to an environmental loss of visual speech cues. Psychonomic Bulletin & Review28(3), 992–1002. https://doi.org/10.3758/s13423-020-01852-2
  10. 張逸屏(民109年8月11日)。口罩會影響溝通的「聲音」與「視覺」線索,該如何為愛防疫無礙溝通?PanSci泛科學。https://pansci.asia/archives/189531
  11. Taylor-Coleman, J. (2020, May 26). Coronavirus: Call for clear face masks to be ‘the norm’. BBC News. Retrieved August 12, 2022, from https://www.bbc.com/news/world-52764355 。
  12. 洪右真(民109年10月28日) 追劇沒字幕就聽不到?電視聲音不清楚,你可以這樣做。PanSci泛科學。https://pansci.asia/archives/192941
雅文兒童聽語文教基金會_96
40 篇文章 ・ 201 位粉絲
雅文基金會提供聽損兒早期療育服務,近年來更致力分享親子教養資訊、推動聽損兒童融合教育,並普及聽力保健知識,期盼在家庭、學校和社會埋下良善的種子,替聽損者營造更加友善的環境。

1

2
0

文字

分享

1
2
0
高音唱不上去可以降 KEY,高頻聽不清楚可以……?──談助聽器降頻技術
雅文兒童聽語文教基金會_96
・2022/07/23 ・3793字 ・閱讀時間約 7 分鐘

立即填寫問卷,預約【課程開賣早鳥優惠】與送你【問卷專屬折扣碼】!

 

  • 文/雅文基金會聽語科學研究中心 張逸屏

在 KTV 歡唱時,當挑戰高音不成,還偏偏硬是要唱,就會用大絕招──降 key!但你知道嗎?其實助聽器也有類似降 key 的功能喔!也就是所謂的「降頻技術」。但是,助聽器降頻技術到底是怎麼運作的呢?對於聽損者的語音理解真的有幫助嗎?

圖一:助聽器除了將音量放大外,某些型號也有降頻功能,針對高頻的聲音做處理,希望能讓聽損者更加享受聆聽的生活樂趣。圖/Unsplash

一般我們聆聽到的各種聲音,包含了許多高低不同的頻率,低頻的聲音像是打雷、海浪、抽油煙機和語音/ㄨ/等,而高頻的聲音則是像鳥叫、哨子、指甲刮黑板和語音/ㄙ/等聲音。但事實上,絕大多數的聲音都是由許多高低不同的頻率所組成,只是每個聲音的組成成份當中,高低頻的比例不同而已。

所以當我們說這是一個高頻的聲音或語音時,只是意味其中高頻聲音的佔比較多,並不代表當中完全沒有低頻的成份。因此,在討論聽力損失時,除了損失程度(類似近視度數)之外,對不同頻率聲音的接收程度也是需要考量的面向。例如,有些聽損者可能是從低頻到高頻的聽損程度都差不多,有些則在不同頻帶聽損程度變化很大。

一般而言,對於降頻技術使用反應較好的聽力損失者,是屬於高頻區域聽力受損較重的,主要是陡降型聽損和高頻型聽損這兩大族群(如圖二)。受限於助聽器放大強度的限制,無法將高頻的聲音放大到這些聽損者可利用的程度。再者,即使可放大到足夠大聲,但聽損者常有耳蝸死區 [註 1] 和頻率解析能力 [註 2] 不足的狀況,導致大腦無法接收及運用這些被放大後的高頻語音。

因此,某些廠牌型號的助聽器,便具備降頻的功能,將降頻功能開啟後,聽損者在較小的音量時就能聽得到高頻的語音,讓高頻的聽力察覺閾值 [註 3] 能夠降低。如此一來,許多聽損者容易錯失的高頻語音,像是/ㄙ、ㄐ、ㄔ、ㄈ/等就都可以聽得到了,也可能比較不會產生誤聽的狀況,例如將「舌頭」聽成「額頭」(沒聽到/ㄕ/)[註 4]

圖二:臨床上使用助聽器降頻功能後,效果較好的兩種聽損類型(此處聽力圖類型僅為示意)。圖/雅文基金會

三種降頻技術,概念相似、作法不同 

那麼當助聽器的降頻功能開啟時,是怎麼進行訊號處理的呢?降頻技術的原文是 frequency lowering,有時也稱作移頻技術(frequency shifting),顧名思義就是將聽損者聽不到的、較高頻率帶的聲音,挪移到聽損者聽力較好的低頻率帶,讓聽損者能聽到。

在訊號處理方面,通常會依據個案的聽力圖先決定一個起始頻率,針對比起始頻率要高的頻帶來進行降頻處理。而訊號處理的方式大致可分為三種類型(不同廠牌的助聽器可能會使用不同的處理方式),包括:頻率搬移(frequency transposition)、頻率合成(frequency composition,有時亦稱為頻率轉換,即 frequency translation)和頻率壓縮(frequency compression)。[1]

如圖三(a)所示,頻率搬移是將起始頻率以上的聲音直接搬移到低頻帶,和低頻帶原本的聲音重疊在一起,而且被移走的部份並不保留,如同圖三(a)中,兩個紫色方形移到低頻的區域,原本高頻帶的地方變成灰色,表示沒有訊號。

圖三:降頻技術共分為三種類型。圖/修改自 Oticon Whitepaper

頻率合成則和頻率搬移很相似,只是在搬移之前會把高頻帶的聲音先進行壓縮,如同圖三(b)中,搬移到橘黃色方形上方的兩個紫色方形疊在一起了(頻寬變小),而且在高頻帶仍然保留原本的聲音。

而第三種是如圖三(c)的頻率壓縮,是把高頻帶的聲音以不同壓縮比例的方式往低頻率帶擠壓,因為有不同的壓縮比例,也就是非線性的,故有時也稱作非線性頻率壓縮(non-linear frequency compression; NFC)。

「聽得到」和「聽得清楚」的拉鋸戰

這三種降頻技術都是將原本聽損者聽不到的高頻聲音,搬移到聽損者聽力較好的低頻帶,藉此讓助聽器使用者能聽到原本無法聽到的聲音。但是,有別於 KTV 的降 key 是全部聲音往低頻搬移,助聽器的降頻技術只有針對部份高頻的聲音處理,所以整體來說會有某種程度的扭曲 [2]。若以視覺來比喻,降頻技術則有點類似遊樂園的哈哈鏡(曲面鏡),對於不同區域採用不同方式的反射,所以會有扭曲現象。

哈哈鏡的扭曲影像讓人發笑,但降頻技術若導致聲音過度扭曲而無法辨識,那可不好玩!所以,降頻技術雖然可以提升「察覺」高頻聲音的表現,但能否提升「理解」就不一定了。也就是說,即便降頻技術讓聽損者能聽到/ㄙ、ㄐ、ㄔ、ㄈ/等高頻語音,但聽起來也許已經不像這些聲音了,有些人或許透過訓練和適應後能辨識這些語音,但也有些人會完全無法適應。因此,如同圖四,降頻技術就是「聽到」和「扭曲聲音」兩者之間的權衡取捨 [3]

圖四:降頻技術雖然可以讓原本聽不到的聲音變成聽得到,但代價是聲音或多或少地被扭曲了。因此必需在聽到(察覺)和聽懂(理解)之間取得平衡。圖/修改自 Flaticon

有一項針對高頻聽損者的研究,分析使用降頻技術的效益和高頻帶平均聽力閾值間的關係,發現高頻聽力閾值愈高(高頻聽力相對較差),使用降頻技術後在聽能表現的提升愈顯著 [3],因為對這些聽損者而言,能聽到高頻的聲音是比較重要的,因此可以接受一點聲音扭曲的代價,來換取聽得到高頻聲音的效益。

但對高頻聽力相對較好的人來說,可能原本可以聽得到一些高頻語音,因此也比較會感受到聲音被扭曲了。這樣的研究發現讓我們了解,降頻技術並不一定適合每個聽損者。

參數設定和聆聽情境是關鍵

除了要選擇合適的對象來使用降頻技術之外,聽力師也需要針對聲音處理技術的參數做合適的設定,才能在「聽到」和「扭曲聲音」兩者之間找到完美的平衡點。因為研究也發現,當降頻處理的程度愈大,也就是起始頻率愈低或壓縮程度愈大,那麼搬移/壓縮的聲音就愈多、聲音特性改變的幅度也愈大,此時助聽器使用者也容易覺得音質變差了 [3]。因此,挑選到合適的參數設定,才能在音質變化不大的情況下,享受到改善高頻語音察覺的益處!

此外,對降頻技術效益有影響的因素還包括了聆聽的情境,例如環境是安靜/吵雜、或內容是語音/音樂。相對於安靜的環境,在吵雜的環境中,助聽器使用者較能接受大程度的降頻處理 [3],可能是在安靜情境下較能感受到降頻處理帶來的音質改變,而在吵雜時,「聽得到」的重要性會更加凸顯。

而相較於語音,降頻技術可能會對聆聽音樂產生負面影響 [4]。對語音來說,頻率的搬移和壓縮影響比較小,因為許多高頻子音其實有點類似寬頻的噪音,所以即使頻率被悄悄偷天換日到低頻帶了,再加上情境和上下文的線索,聽者仍然能理解接收到的語音。但在聆聽音樂時,精準的頻率是很重要的。概念上可以從「和絃」來理解,和絃中的組成音符,每個音都必須在正確的頻率上,組合起來的和絃才會是正確而且悅耳。這樣就不難理解降頻技術可能會對於聆聽音樂造成較大的負面影響,造成聲音聽起來不和諧。

圖五:助聽器降頻技術可能對於音樂聆聽來說有較大的負面影響。圖/Irasutoya

和聽力師共同尋求最佳解方

綜合以上的研究發現,我們知道聽損者和聽力師針對降頻技術的討論,除了自己是否適合使用外,也要嘗試不同的參數設定,甚至是在不同聆聽環境中選擇是否開啟降頻功能、或設定不同的參數。其實就和所有的助聽器選配和調整一樣,都需要和聽力師密切討論、並說明在使用上的感受,才能讓助聽器發揮最理想的效果。

總結來說,降頻助聽器可能可以提升聽損者的聽音表現,但不見得適用於每個人。而且,若降頻處理的範圍或壓縮程度較大,也可能會讓聲音的音質改變、或語音的特性被扭曲,而導致聽不清楚的狀況。總結來說,使用降頻助聽器時,關鍵就是要以「最少的聲音扭曲」來換取「聽得到」高頻音的好處 [2]

註解

註 1:相對於聽力損失是耳蝸中的毛細胞不健全或功能異常,耳蝸死區(cochlear dead regions)則是某些區域完全沒有毛細胞,導致有某些特定頻率的聲音,再怎麼放大也無法聽到。

註 2:頻率解析能力為分辨兩個不同頻率聲音的能力,一般來說聽損者的頻率解析能力也會較差。

註 3:「聽力察覺閾值」為某一頻率下,個人能聽到(察覺)聲音的最小音量。閾值愈高,表示要愈大聲才聽得到,聽損的程度就愈重。

註 4:想了解更多關於「高頻聽力損失」和「微聽損」相關資訊,可參閱雅文基金會「微聽損網站」和「如果小美人魚失去的是聽力,幸福也沒有比較容易:談輕微聽力損失『微聽損』」一文。

參考資料

  1. Angelo, K., Alexander, J. M., Christiansen, T. U., Simonsen, C. S., & Jespersgaard, C. F. C. (2015). Oticon Frequency Lowering: Access to high-frequency speech sounds with Speech Rescue technology. Oticon Whitepaper.
  2. McCreery, R.W. (2016, October). 20Q: Frequency lowering ten years later – evidence for benefit. AudiologyOnline, Article 18370.
  3. Souza, P. E., Arehart, K. H., Kates, J. M., Croghan, N. B., & Gehani, N. (2013). Exploring the limits of frequency lowering. Journal of Speech, Language, and Hearing Research, 56(5), 1349–1363.
  4. Chasin, M. (n.d.). The Problem with Frequency Compression and Music.
所有討論 1
雅文兒童聽語文教基金會_96
40 篇文章 ・ 201 位粉絲
雅文基金會提供聽損兒早期療育服務,近年來更致力分享親子教養資訊、推動聽損兒童融合教育,並普及聽力保健知識,期盼在家庭、學校和社會埋下良善的種子,替聽損者營造更加友善的環境。

0

5
3

文字

分享

0
5
3
來塊很 Jazz 的「聽覺乳酪蛋糕」!卡路里消耗、大腦訓練、心情愉悅一次滿足
雅文兒童聽語文教基金會_96
・2022/06/22 ・3588字 ・閱讀時間約 7 分鐘

立即填寫問卷,預約【課程開賣早鳥優惠】與送你【問卷專屬折扣碼】!

 

  • 文/雅文基金會聽語科學研究中心 張殷綮 研究助理

在美國哈佛大學心理學教授平克(Steven Pinker)的眼裡,音樂不過是一塊「聽覺的乳酪蛋糕」(auditory cheesecake),對人類的生存、繁衍一點用處也沒有,只是在演化的路上被選擇出來的娛樂附屬品。然而,音樂卻承載著人類的歷史文化,具有豐富多變的形式。

在淵遠流長的時間長河下,難道音樂真的一點用武之地也沒有嗎?喔不,誤會可大了!其實音樂就像一塊生乳酪蛋糕,只要將其中的基本元素加以烹調,就能變成像是說話、唱歌般的輕乳酪和重乳酪蛋糕!高熱量會讓大腦 up up 動起來消耗卡路里,不僅會分泌多巴胺,還能強健體魄,就讓我們來告訴你關於聽覺乳酪蛋糕可能會讓你很意外的 point 吧!

享受音樂就像是吃了一塊乳酪蛋糕。圖/Pexels

音樂、說話和唱歌,就像是生乳酪、輕乳酪和重乳酪蛋糕

試著打開 Google 翻譯,請 Google 小姐唸唸看「紅鯉魚與綠鯉魚與驢」或是「紅鳳凰黃鳳凰藍鳳凰粉紅鳳凰」,你是否發現,相較於真實語言,少了那麼點韻味呢?其實,口說語言的自然語韻就蘊含著音樂成分,節律及語調不僅暗藏著溝通線索,其中的音高、節奏與音量變化所組織而成的旋律,還能夠製造情緒的張力!

音樂的發展其實和語言同步,人類約需要花費 25 到 50 毫秒來辨認不同樂器的音色,而在提取話語中每一個音節的音素,所耗費的秒數也差不多。在媽咪的子宮時,我們就透過媽咪的聲音進行聽能訓練,學著將聲音與情緒連結。

初來乍到這個世上時,我們更是保留了對於各種聲音的敏感度,直到 6 個月大時,才逐漸被身處的文化習染,偏好特定的語言與音樂表現形式,為日後的發展奠下基石。因此,我們從小講話就不像 Google 小姐平直呆板,而是能隨著自身的狀態與情緒發聲(ENT & Audiology News, 2016; Brandt et al., 2012)。

原來,一字一句,不僅是平上去入的分別,還有著音高的起伏、節奏的快慢、音量大小的變化,宛如歌唱一般。我們很自然地懂得要將「紅鯉魚與綠鯉魚與驢」的「與」放輕,也懂得在不同顏色的「鳳凰」之間稍作停頓。如果想強調某個詞彙,便會加重語氣,比如在句末把「驢」字拉長,同時拔尖聲音、提高音量。如此一來,就更能讓聽者注意到「驢」的存在——「池塘裡明明游著紅鯉魚與綠鯉魚,怎麼突然出現驢子呢?」

由此看來,音樂、歌唱和說話的核心元素似乎沒有太多不同。透過這些高低起伏的韻律、有快有慢的節奏等特徵,都能讓對方聽得更輕鬆、理解更順暢!

享受蛋糕前,大腦得要 one more two more 動起來

要感受旋律的音高與和聲變化,需要倚靠聽覺系統順利運行,但大腦這台超級電腦可沒那麼簡單。一首曼妙的舞曲通常需要結合不同的腦區互相合作,溝通往來,例如「音調」便可能同時牽涉到小腦與前額葉皮質的運作(The Kennedy Center 50, n.d.)。那麼,音樂當中許多不同的組成元素,又分別由哪些腦區協調、操控呢?

嘻哈歌手動感又富含節奏性的饒舌歌曲,平平仄仄平,自成韻律,是音樂中不可或缺的元素。不管是用手指頭輕輕叩打桌面,還是拿起鼓棒奮力向鼓面一擊,都會牽涉到小腦運動皮質的運作。從西方的古典音樂到藍調、民謠,甚至是爵士樂與搖滾樂,不同的音樂風格都有既定的模式,久而久之,人們便有了預期心理,而大腦的前額葉皮質便有偵測節奏是否規律,判斷音程、調性是否合理的功用。

然而,也正是這種機制的存在,人們對意想不到的編曲會感到驚喜,而情緒的引發又有賴於小腦伏隔核杏仁核的運作。如果要在音樂會演奏一場曲目,更是會牽涉到小腦視覺皮質感覺皮質運動皮質的同步運作,就算有譜可以偷瞄一眼,也必須練到滾瓜爛熟,讓記憶能儲存到海馬迴。畢竟,不看指揮,指揮可是會生氣的呢(The Kennedy Center 50, n.d.)! 

不同的腦區協力運作,才能對聽到的歌曲感到放鬆愉悅,甚至順利將其演奏出來。
圖/The Kennedy Center

既能像乳酪蛋糕帶來愉悅,又能像彈力帶般健腦凍齡

近來健身風氣盛行,上班族坐久了,下班都需要活絡筋骨,而音樂也像是大腦聽覺系統的健身器材,讓每一條聽覺神經更為強健、敏銳。

所謂的音樂訓練講究主動參與,是一種高強度的認知訓練,不僅講求每一個音符和表情符號都要達到有效的情緒溝通與渲染效果,還必須對聲音的細節,諸如音高、時值、音色等,保持敏銳的感受力,甚至涉及工作記憶(working memory)、執行功能(executive function)以及多重感官的整合,學會如何分辨不同的聲部,跟著主旋律,與其他歌手、樂手合作表演。每一次的練習,都是在強化耳蝸腦幹聽覺皮質間的迴路,形成一反饋系統——這就是為什麼音樂家對於聽覺訊號會特別敏感,甚至能預測音樂進行走向的緣故(Kraus & Chandrasekaran, 2010)。

在神經科學的研究中,就發現音樂家的腦波活動異於常人,不但對高音出現更明顯的反應,在偵測非語言訊號(像是嬰兒的哭鬧聲)等,反應也比未接受過音樂訓練的人強烈。大量的聽覺刺激使音樂家對於言語中的基礎頻率、時值變化、諧波組成成分,以及子音過渡到母音的起始點更為敏銳,甚至是在聽覺相關的注意力、記憶力都有較好的表現,能在嘈雜的環境中辨識語音。音樂訓練可說是練就了音樂家耳聽八方的能力,促進其聽能技巧的發展(Kraus & Chandrasekaran, 2010)。

音樂家(紅線)對高音以及嬰兒哭聲的腦波反應比未經過音樂訓練的人(黑線)來得強烈。圖/Nature

不用人人都是蛋糕師傅,純享用也可以

相信學音樂的人一定對「我沒學過音樂啦!不懂啦!」這句話不陌生。不管是樂團主唱還是合唱團員,也時常聽到對方聲稱自己不會唱歌,彷彿音樂訓練是一種標誌,是享有特權的人才能擁有的專利。

然而,生活周遭中的音樂俯拾即是,不管是戴著耳機播放自己建立的最愛清單、關注最新的歌曲排行榜,還是看電影、玩遊戲時,使人身歷其境、驚心動魄的背景音樂,或是唱卡拉 OK、參加演唱會時,不自覺的身體律動等等,都會讓人潛移默化,足以吸取對特定文化背後所富藏的音樂相關知識(Putkinen et al., 2013)。

研究更指出,早年的音樂活動可能會帶動聽能技巧注意力的發展,進而對學齡後的語言表現造成正面影響。而在電生理訊號的研究中,參與音樂活動的多寡又與 2 到 3 歲孩童對聽覺刺激反應的偵測能力相關。此時,你是不是正回想著小時候有沒有乖乖去操場跳早操,然後好好上音樂課、吹直笛呢(Putkinen et al., 2013)? 

音樂活動有助於提升聽能技巧與注意力的發展。圖/Pexels

關於聽覺乳酪蛋糕可能讓你很意外的 point

音樂的「健耳」功效也常用在聽損療育。相較於正常耳蝸有著高達 3,500 個毛細胞,能處理 20 到 20,000 赫茲間的聲音頻率,人工電子耳只有 12 到 22 個電極來處理 200 到 8,500 赫茲之間的語音頻率。

因此,配戴電子耳的人,面對較為細緻的聲音處理(如語言韻律與情緒感知)需要更大的音高變異性,才能察覺其中的分別;另外,有研究指出,在分辨中文聲調時,這些人也會遇到困難(Jiam & Limb, 2020)。

此時,在聽能復健中導入音樂便十分重要,因為許多歌曲就涵蓋大量重複、輪替的編曲技巧,不僅能讓聽損者仔細聆聽,也有說唱的機會,更能增加互動性、增強自信心、提升社交生活品質(Torppa & Huotilainen, 2019)。

人在年老時,聽覺神經的反應會逐漸下降,但根據陸續進行中的相關研究,晚期音樂的介入還是能達到終身音樂學習的效果,只是幅度較小。此外,音樂不僅有抗老化的作用,還能提高老人家參加社交活動的機會。透過節奏來帶動感官認知與運動整合,還能防止老人家摔倒(Kraus & White-Schwoch, 2017)。

此時此刻,你是不是想打開音樂軟體,盡情地享受這塊營養又美味的乳酪蛋糕呢?

參考文獻

  1. Brandt, A., Gebrian, M., & Slevc, L. R. (2012). Music and early language acquisition. Front. Psychology3:327.
  2. Garrido, C. (2016). Why does music move us? Music as auditory signals of emotion. ENT & Audiology News.
  3. Jiam, T. N., & Limb, C. (2020). Music perception and training for pediatric cochlear implant usersExpert Review of Medical Devices, 17:11, 1193-1206.
  4. Kraus, N., & Chandrasekaran, B. (2010). Music training for the development of auditory skillsNat Rev Neurosci11, 599–605.
  5. Kraus, N., & White-Schwoch, T. (2017). Music Keeps the Hearing Brain Young. Hearing Journal, 70(11), 44–46.
  6. Putkinen, V., Saarikivi, K., & Tervaniemi, M. (2013). Do informal musical activities shape auditory skill development in preschool-age children?Front. Psychol., 4:572.
  7. McCollum, S. (2019). Your Brain on Music: The Sound System Between Your Ears. The Kennedy Center.
  8. Torppa, R., & Huotilainen, M. (2019). Why and how music can be used to rehabilitate and develop speech and language skills in hearing-impaired children. Hearing Research, 380:108–122.
雅文兒童聽語文教基金會_96
40 篇文章 ・ 201 位粉絲
雅文基金會提供聽損兒早期療育服務,近年來更致力分享親子教養資訊、推動聽損兒童融合教育,並普及聽力保健知識,期盼在家庭、學校和社會埋下良善的種子,替聽損者營造更加友善的環境。