1

2
1

文字

分享

1
2
1

「負離子」真的有拿~麼厲害?——《化學有多重要,為什麼我從來不知道?》

商周出版_96
・2020/10/15 ・2721字 ・閱讀時間約 5 分鐘 ・SR值 492 ・五年級

立即填寫問卷,預約【課程開賣早鳥優惠】與送你【問卷專屬折扣碼】!

 

  • 作者/陳瑋駿

「負離子」在商品化的過程中算是被徹底濫用了,負離子的走紅,完全可說是拜商業行銷所賜。

什麼是負離子呢?

跟「陰離子」差別又在哪?雖然本質上來說,負離子與陰離子原本應指一樣的事物,只是翻譯上的問題,但若以商品化的初衷,負離子往往被視為「帶有電子的空氣」。

雖然這並不是一個科學正確的名詞,不過為了接下來討論方便,我們先遷就大多數人的慣性稱呼,叫它負離子吧。但別忘了,這裡所說的負離子,是「帶有電子的空氣」

為何讓空氣攜帶電子就可以賣錢?

這跟一個小遊戲有關。你有玩過氣球摩擦頭髮的遊戲嗎?因為氣球本身材質的緣故,與頭髮摩擦時,可從頭髮中得到少量電子,形成所謂的「靜電」。你會發現,氣球在摩擦頭髮後稍微拿開,不要離頭皮太遠,你可以看到髮絲會微微豎起,彷彿被吸附在氣球上。

事實上,氣球能吸附的不僅是頭髮而已,還可以吸起小碎紙片,還有灰塵微粒。同樣回過頭來看,「帶有電子的空氣」就像「帶有電子的氣球」一樣,可以吸附空氣中的小灰塵,進而達到空氣清淨、除塵的效果。不過,無論是空氣或氣球上的電子都無法久留,不消幾分鐘就會跳出去而回到原本不帶電的狀態。

玩氣球摩擦頭髮的遊戲時,將氣球拿開後,可以看到髮絲微微豎起。圖/商周出版

經過解釋之後,你是否覺得負離子並不是什麼特別先進的技術?不過,空氣不像氣球那樣可以抓來摩擦頭髮,那麼要如何吹出充滿負離子的空氣呢?

很簡單,只要在吹風口加裝一個所謂的「負離子產生器」就可以了(這玩意兒超便宜,不信去 Google 看看)!它會透過通電,讓電子們在一個金屬尖端上集合,當空氣通過金屬尖端時,會順手抓了點電子帶走。於是帶著電子的空氣就此啟程,接著就像前述的氣球例子一樣,把空氣中微小的髒汙粒子給吸住啦!

雖然商人口中的負離子不是一個「科學正確」的名詞,但既然有所謂的負離子,相對來講有「正離子」嗎?如果有的話,它們又有什麼用呢?

你有到過瀑布旅行嗎?是不是許多人都會形容,在瀑布旁呼吸時空氣特別清新?沒錯!瀑布周圍的空氣往往比較乾淨。

這不完全是因為森林裡汙染少的緣故,而是瀑布下墜的水珠在與空氣摩擦時,少量的電子會從水珠短暫轉移到空氣中,此時不只是空氣,其實就連小水珠也具有吸附灰塵微粒的功能,而小水珠正是「正離子」。

所以透過正、負離子的幫忙,空氣特別乾淨清爽(同樣的,大雨過後的空氣是不是也很清新?)!

瀑布下墜的水珠在和空氣摩擦時,少量電子會從水珠轉移至空氣中。圖/商周出版

如果還不相信「正離子」的存在,再拿著氣球摩擦頭髮看看吧!當氣球離開頭髮之後,試試看,找一些小紙片靠近頭髮,頭髮是不是一樣可以把紙片吸起來呢?這是因為電子從頭髮跑到氣球的緣故,此時的頭髮短暫失去了一些電子而帶正電,證明了正離子也有一樣吸附塵埃的作用。

日本伴手禮第一負離子吹風機怎麼來的?

負離子的應用還不止於「吸附」,若應用得宜,負離子的另外一個特性—「互斥」也能成為生財工具。例如近年極受歡迎的負離子吹風機,幾乎是所有旅日觀光客搶購家電名單的第一名。許多人使用後發現,一般吹風機是使用大量熱風吹乾頭髮,但吹乾效果卻遠不如負離子吹風機那麼好,這到底是怎麼回事呢?

首先,來談談為什麼吹風機要搭載負離子產生器?

要知道,負離子與負離子之間並不是互相吸引,而是互相排斥。在負離子被吹送到頭髮之後,電子跳到頭髮上面,頭髮之間便「相看兩厭」不容易糾纏在一起,進而維持髮絲之間的秩序,頭髮便相對容易快乾。

許多人認為負離子吹風機吹乾效果比一般吹風機好,但真的是負離子的功勞嗎?圖/giphy

但這樣子講對負離子來說的確是有些過譽,因為要快速吹乾頭髮還得考慮風量、溫度等因素,不同機種的參數也不盡相同,或許負離子還不是最關鍵,只是讓價格水漲船高的推手之一。

如果要證明負離子縮短了多少時間,最科學的方法,便是將吹風機的負離子產生器移除掉,用一模一樣的手法、在一模一樣的環境下吹頭髮。不過對業者來說,這也許是一個相當冒險的實驗,要是吹乾時間相去不遠,「負離子」可能就此跌落神壇,所以市面上似乎還看不到同款吹風機做出搭載與不搭載負離子的版本,也許就是這個原因吧?

今晚,我想來點負離子粉……

不過,要產生負離子的手段還不只有透過摩擦或通電來達成,只要觀察琳瑯滿目市售的負離子商品,相信不難看到負離子水壺、負離子床墊、負離子涼被⋯⋯負離子如此百搭,彷彿食衣住行都可以 feat. 負離子。

但這些日用品可沒有藏著一隻「皮卡丘」,偷偷幫你放電來聚集電子,其中的奧祕,便是在這些商品的製造過程中,摻入所謂的「負離子粉」

負離子粉其實也不是什麼神祕的黑科技,而是摻入了一些具有放射性的成分在裡面,在之後的章節我們會談到輻射線,現在你只要知道,這股能量足以讓空氣裡的電子短暫的脫逃,產生正、負離子。

但這類的負離子產品就不得不小心看待,因為這類輻射線能量較高的產品,如果是設計為長時間穿戴,就必須當心是否輻射劑量過高,如劑量越高,長久下來對人體造成傷害的風險也就越高。

所以,有「負離子」就有保庇嗎?

說到這裡,我想你一定能明白,不管我們用哪種手段製造出所謂的「負離子」,本質上就只是帶有電子的空氣。然而,如果你追求的是療效,目前在醫學上還沒有明確且一致的證據支持負離子對人體有益處。

因此想要購入負離子的商品來求個心安的同時,最重要的還是留意產品是否符合安全規範,否則讓來路不明的商品傷了身,還賠了荷包裡的辛苦錢,這個嘔氣的心理傷害也許比生理上的傷害還來得顯著吧!

——本文摘自泛科學2020年10月選書《化學有多重要,為什麼我從來不知道?》,2020 年 8月,商周出版
文章難易度
商周出版_96
101 篇文章 ・ 344 位粉絲
閱讀商周,一手掌握趨勢,感受愜意生活!商業出版為專業的商業書籍出版公司,期望為社會推動基礎商業知識和教育。

0

1
0

文字

分享

0
1
0
大自然中的空氣清淨機:氫氧負離子!
鳥苷三磷酸 (PanSci Promo)_96
・2022/11/23 ・1719字 ・閱讀時間約 3 分鐘

本文由 諾康生醫 委託,泛科學企劃執行。

環境中的負離子是怎麼來的?

在森林裡能感受到芬多精,在瀑布附近能感受到空氣特別清新。科圖/Pexels

在大自然環境中,走到森林裡就能感受到被芬多精的沐浴淨化,走到瀑布附近就能感受到空氣特別清新。科學家經過仔細計算,發現在不同的空間裡,每立方公分的空氣中的負離子含量都不同:(由高至低排序為)

  1. 天然森林與大瀑布區 約 50,000 ions/cc
  2. 高山及海邊 約 5,000 ions/cc
  3. 郊外與田野 約 700~1,500 ions/cc
  4. 都市公園 約 400~600 ions/cc
  5. 街道綠化區 約 100~200 ions/cc
  6. 都市住宅區 約 40~80 ions/cc 

※ions/cc 是負離子濃度的單位,指每 1cc 的空氣中含多少個負離子。

但是,這些負離子是怎麼來的呢?以瀑布為例,大量的瀑布水從高處落到低處,擊打到瀑潭周圍的岩石會激起大量的霧狀水花,這些落下飛散的水花(水粒子)與周圍空氣摩擦發生「電荷分離現象」就可能產生大量的負離子。而水分子正是大自然環境中最容易離子化的的分子之一。

這些飄散在空氣中的負離子會吸納空氣中的塵埃、惡臭等細小汙染物,隨後附著到樹木、岩石或溶入到水中,達到淨化空氣的作用,這種大自然的自淨作用又稱為「萊納德效用」。除此之外,在雷雨時大氣分子也會發生「電荷分離現象」,進而產生負離子。

雷雨時大氣分子會發生電荷分離。圖/Pexels

「氫氧負離子」超強淨化力

在我們所處的環境中,空氣充斥著各種細小塵埃、細菌、病毒、黴菌、揮發性有機化合物、花粉、香菸臭味……等,被人體吸入將造成健康損害。

而氫氧負離子能夠淨化各項空汙因子,如香菸臭味、甲硫醇、甲醛等臭氣分子,就連蟎蟲、花粉等等過敏源都能吸附帶走,使得我們呼吸空氣的範圍是清新無害的。就連禽流感病毒、新型流感病毒,黴菌、大腸桿菌、沙門氏菌、金黃色葡萄球菌……等,碰觸到氫氧負離子也會因其氧化並改變結構、進而喪失活性。

空氣充斥著各種對健康有害的物質。圖/Pexels

若能將「氫氧負離子」帶著走,豈不是很棒的一件事嗎?

除了大自然環境中的負離子之外,市面上也越來越多負離子式空氣清淨機與其他相關功能產品!但是空氣清淨機只能在一定範圍內(空間)使用,若能把「氫氧負離子」裝瓶隨身帶著走,那是不是更便利使用呢?現在科技技術只要將水分子進行電解,就可以辦到!

諾康生醫透過獨家專利技術,將水分子經過專利電解技術,將水分子的其中一個氫鍵切斷,形成獨立的氫氧負離子水溶液;最終製成擁有 192 億兆個氫氧負離子(544ppm)的電解納米離子水。

製造過程中,全程透過物理方法,無須額外添加、不產生化學廢物,不僅對人體友善也做到環境友善。經醫學大學新興病毒感染中心證明,能有效阻擋 AB 型流感、腸病毒、克沙奇病毒。此外,就連大腸桿菌、沙門氏菌,甚至是新冠病毒 Delta 變異株也能抑制!將氫氧負離子裝進你手裡,隨時享受瀑布般的潔淨力!

諾康生醫商品 landing page:
https://www.nanopluslife.com/products/ohtrust-mouth-spray

參考資料

  1. 負離子的原理及應用|讀專文
  2. 淺談負離子
  3. 負離子商品後市場管理 > 常見問題
  4. 行走就能享受芳療!來國家森林遊樂區做森林療癒SPA
  5. 研究:國家森林遊樂區負離子濃度比都市高三倍,芬多精殺菌抗發炎焦慮
  6. 空氣清淨機技術揭密6 ! 負離子真的這麼神?迷思大解析!
鳥苷三磷酸 (PanSci Promo)_96
155 篇文章 ・ 268 位粉絲
充滿能量的泛科學品牌合作帳號!相關行銷合作請洽:contact@pansci.asia

0

1
0

文字

分享

0
1
0
跨越五十年的醣化學之旅——翁啟惠院長專訪
研之有物│中央研究院_96
・2022/11/19 ・7078字 ・閱讀時間約 14 分鐘

本文轉載自中央研究院研之有物,泛科學為宣傳推廣執行單位。

台灣知名科學家:翁啟惠院長

如果問民眾「臺灣有哪些知名的科學家?」翁啟惠肯定是經常出現的答案。翁啟惠是國際知名醣化學家,曾擔任兩屆中央研究院院長,任期內積極將基礎科學與生醫產業串連起來。另一方面,翁啟惠也是投身研究 50 年的資深學者與好老師,共培養超過 500 位優秀弟子;他同時也是中研院、美國國家科學院的院士,更獲得沃爾夫化學獎、威爾許化學獎、四面體化學獎等榮譽。中研院「研之有物」專訪院內基因體研究中心合聘特聘研究員翁啟惠院士,向讀者介紹他一路走來的心路歷程。

圖│研之有物(資料來源|翁啟惠)

從臺大、中研院到 MIT的化學之旅

翁啟惠學術能量依舊飽滿,他是斯克里普斯研究院(Scripps Research)與中研院合聘的研究人員,兩邊各自都有實驗室和學生,受訪當天他本人在美國加州,透過視訊與「研之有物」團隊連線。

至今已 74 歲的醣化學大師翁啟惠,他是嘉義出生的子弟,初中考上臺南一中,高中三年級本已保送清華大學化學系,不過因為想挑戰臺大醫學系而赴考,可惜生物不好,加上自己喜歡化學,便進了第二志願臺大農業化學系。大學畢業,退伍後他隨即投身於科學研究,算算日子,已經是漫長的 50 年時光。

翁啟惠原本就喜歡研究,他退伍後跟著恩師臺大化學系王光燦教授擔任助教一年後,再跟王教授來到中研院擔任助理,當時(1972 年)正值中研院生物化學研究所草創時期。後來翁啟惠升任「助理研究員」(類似大學的講師,目前已無此職位),前後服務長達 8 年,期間於 1977 年在職獲得碩士學位,碩論主要為臺灣蛇毒蛋白的合成,是翁啟惠多年來的研究成果。

王光燦(左)帶領翁啟惠(右)進入化學的研究殿堂,圖為 1999 年王光燦的退休餐會上,翁啟惠贈與恩師紀念品。
圖│翁啟惠

儘管翁啟惠出國前已發表超過 30 篇論文,小有所成,他依然希望更上層樓,因此 1979 年前往美國的麻省理工學院深造,接受恩師化學系教授喬治·懷特賽茲(George M. Whitesides)的指導。翁啟惠回憶,自己後來教育學生的理念與作法,多源自懷特賽茲的啟發。具備相當基礎之下,翁啟惠花費 3 年取得有機化學博士學位,又經歷 1 年哈佛大學的博士後研究,1983 年他就成為德州農工大學(Texas A&M University)的助理教授。

冷門且困難的「醣化學」

翁啟惠擅長的領域是「酵素化學」與「醣化學」,醣化學是什麼呢?翁啟惠解釋,維繫生命的蛋白質、核酸、脂質、醣類這些物質,以醣類最為複雜。除了材料化學的應用之外,翁啟惠選擇探索醣分子在生物醫學方面的應用。

醣類的結構變化多端,而且不容易人工合成。而翁啟惠的過人之處,正是出色的醣類合成能力!後來讓他奠定宗師地位的一鍋式酵素合成法程式化一鍋合成法醣晶片,到最近的廣效去醣化疫苗等研究主題,都歸功於他堅強的化學合成基礎。

我們已經知道翁啟惠是醣化學的先驅,不過其實到博士畢業前,他大部分仍著重於蛋白質的合成,直到獨當一面後,才正式投身醣類。因為在當時的學界,核酸、蛋白質才是顯學,醣化學是非常冷門的領域,即便今日也不算太熱門,更是難以想像應用於研究疾病。

因此,翁啟惠早期在美國當助理教授時,曾經無法申請到研究經費,甚至有計畫評審認為他誤入歧途,所幸他的前瞻理念於 1986 年受到美國總統年青化學家獎(Presidential Young Investigator in Chemistry)的賞識,支持他站穩腳步,1987 年升任教授,才有後來的持續突破。

使用「酵素」來合成醣類

過去醣類研究不但冷門,而且難以合成,翁啟惠為什麼有勇氣選擇如此困難的題材?他的信心來自「酵素」 ,也就是生物用來催化反應的特殊蛋白質。傳統化學手段難以合成的複雜產物,有機會利用酵素來克服。

翁啟惠提到,1970 年代分子生物學興起,新問世的基因改造潛力無窮,人造胰島素開啟生技產業的濫觴;但是 1980 年代時,化學家多半仍很少接觸基因重組技術。他算是首波使用基因重組酵素,實現醣分子的化學合成。

翁啟惠強調,很多新聞報導說他是生物醫學或生物科技專家,但其實他本質上一直是化學家,探索分子層次的操作,研究醣分子與醣蛋白的有機合成,只是醣化學研究的應用涉及生物醫學領域,介於化學和生物的交界。

做出過人成績後,翁啟惠成為各大研究機構爭邀合作的化學人才,本來預備前往加州的史丹佛大學。不過同樣在加州的斯克里普斯研究院(Scripps Research)半途冒出,院長勒納(Richer Lerner)親自邀請他過去瞧瞧。當時擅長生醫的 Scripps 想拓展至化學領域,正在招募人才,而涉足生物的化學專家翁啟惠正是合適人選。

Scripps 研究院是世界最好的研究機構之一,只收博士生,不僅有多位諾貝爾獎得主,更培育出不計其數的人才。翁啟惠回憶,他原本也對 Scripps 研究院不熟,Scripps 當時還沒有化學部門,但沒想到相談甚歡,1989 年他受邀擔任新成立的化學系講座教授,一做就做到 2006 年。現在,Scripps 研究院在化學生物領域是全美第一。

圖│翁啟惠

Scripps 研究院不僅環境怡人,學術資源也豐沛,讓翁啟惠能專注研究,而不必為經費擔憂。如今,他再度成為 Scripps 研究院的講座教授(Chair Professor),美國講座教授會有一筆來自民間的捐助基金,有充裕的學術資源可供自由運用。翁啟惠感慨地說,臺灣的學術捐款多為建造大樓等硬體,可是支持人才更重要, 這是未來臺灣值得學習的方向。

醣化學原本是乏人問津的領域,然而翁啟惠開創了醣分子的有機合成方法,讓醣化學逐漸受到重視,他也獲得一系列耀眼成就。翁啟惠 2002 年當選美國國家科學院的院士,接著又榮獲多項化學領域的一級大獎:2014 年得到沃爾夫獎(The Wolf Prize),2021 年是威爾許獎(Welch Award),2022 年又獲頒四面體獎(Tetrahedron Prize)。

翁啟惠近年在化學領域不斷獲獎,也讓許多人好奇,再來會是諾貝爾化學獎嗎?

對於這個問題,翁啟惠認為可遇不可求,得獎也講究機運。不過每次獲獎,他都覺得是很好的鼓勵,激勵他繼續往前走。更重要的是,翁啟惠不是單打獨鬥,每次獎項表揚的成就,背後都是整個團隊的努力,因此這些榮譽正是對他整個團隊的肯定。

教師之夢:遍布全世界的學生

說到培養人才,這也是翁啟惠的強項,可惜過去媒體報導翁啟惠時卻很少觸及教育。談論如何作育英才的心得,翁啟惠眼睛炯炯有神,隔著太平洋都能感受到湧出螢幕的教育熱情。

翁啟惠表示他小學時就想當老師,也是一輩子的志願。看到學生有成就,就會覺得很欣慰。他至今指導過的學生與博士後超過 500 位,遍及世界各地,包含美國、日本、韓國、英國、法國、德國、比利時等國家。儘管他自嘲也不是全世界都有,像是北韓就沒有學生。

翁啟惠對教學的想法,奠基於博士班老師懷特賽茲和自己長年的實踐經驗。談到臺灣學生,他特別指出必須加強兩點訓練:獨立思考與表達能力

表達為什麼重要?試想,一個人花費多年辛苦取得學位,去應徵工作,卻只有幾分鐘能夠展現。善於表達,才能讓人覺得你的工作重要,呈現意圖以實現目標。而翁老師的第一課,總是在他與學生第一次碰面立刻開始:「為什麼找我當指導教授?」。給他滿意的回答,才能成為他的學生,成績並非最優先的考量。

翁啟惠(左1)對教學的想法,奠基於博士班老師懷特賽茲(右1)和自己長年的實踐經驗。談到臺灣學生,他特別指出必須加強兩點訓練:獨立思考與表達能力。
圖│翁啟惠

培養學生獨立思考與研究的能力

翁啟惠的指導理念是「指示不要太詳細」,讓學生自己想問題、找資料、設計實驗。他只負責給大方向、從旁協助。因為講的太過具體,反而會限制學生獨立發展的空間。

翁啟惠更精闢地剖析: 由學生獨立完成的成果,才會認為是自己的成績。否則即使成果再好,學生也可能覺得那是老師的東西,不是自己的成就。當學生獲得成功經驗,對自己有信心,此後便能更加獨立,建立正向循環。

另一方面,由於學生有大片空白可以填補,所以想法和能力不會受到過去積習所影響。翁啟惠提到,他有很多超乎預期的重要研究,是來自學生自己的嘗試。例如,研發出自動化一鍋式合成醣分子的歐曼(Ian Ollmann),原本在博士班四年級仍苦無突破,翁啟惠建議他發揮寫程式的專長,果然順利完成發表,後來甚至還轉戰高科技龍頭蘋果公司,至今已工作超過 20 年。

不過,讓學生自己摸索,失敗怎麼辦?翁啟惠認為失敗為成功之基礎,學生經歷失敗,才能培養耐心,累積應付挫折的經驗,打下未來成功的基礎。做研究的關鍵在於興趣,只要保持興趣,失敗也能學到新東西,而成功則能增強信心,有利於繼續成功。翁啟惠也鼓勵學生,與其等待老師指導,不如勇於嘗試、放手去做。

程式化一鍋多醣合成技術示意圖。
圖│研之有物(資料來源|中研院基因體中心資訊組)

研究院院長時期:積極推動產學交流與合作

翁啟惠任職 Scripps 研究院的期間,茁壯為世界第一流學者,各國爭相合作。如此耀眼的旅外人才,自然也受到當時中研院院長李遠哲賞識,促成翁啟惠於 2003 年回到臺灣,並在 2006 年到 2016 年擔任了兩屆院長。

翁啟惠除了提升中研院的學術水準,他最重要的任務莫過於推動生物科技產業。因為翁啟惠認為產學互利共生很重要,有好的產業才能吸收廣泛的人才,例如臺灣的半導體產業,可以讓理工科系學生不愁出路,產生正向循環。

但另一方面,生物科技已成為各個科技大國的明星產業,臺灣每年有大批醫藥、生技的人才,卻沒有相應規模的產業,無法人盡其才。

為了推動生技產業,法規制度與產學合作園區都不可或缺。翁啟惠參考美國 1980 年的拜杜法案(Bayh-Dole Act),與專家合作完成臺灣版本的法規,將產學合作、技術轉移制度化。

法規的主要精神,就是由政府補助學術研究,做出初步成果後,再技術轉移給業者尋求商業化,後續再回饋給學術形成正向循環。園區方面,國家生技研究園區、中研院南部院區,都隨著翁啟惠的規劃步上軌道,讓基礎研究和產業創新能夠連結。

當然,產學間的轉換並不總是那麼順利。不過翁啟惠認為,如果學者發表的論文成果,同時也能促進產業,讓社會一同受益更好。這倒不是說所有學者都要投入產學合作,而是要慢慢建立起產學合作的文化,將研發成果回饋給社會。

往好處看,臺灣的生技產業與產值都持續進步中,而這條路依然任重而道遠。

產學合作的新潛力

翁啟惠是純學術研究出身,為什麼後來卻相當熟悉產學合作呢?時光要回溯到 1985 年。那時翁啟惠獲頒席艾勒學者生物醫學獎(Searle Scholar Award in Biomedical Sciences)——這是他少數獲得的生醫獎項之一,加上總統年青化學家獎,使他在美國學術界站穩腳步,也讓他有擔任企業顧問的機會。

從杜邦公司開始,初出茅廬的翁啟惠自認什麼都不懂,跟著前輩們邊看邊學,解決一家又一家企業的疑難雜症,而業界的顧問經驗同時也支持著自己想做的研究。翁啟惠逐漸累積產業經驗後,發現產學目標很不一樣,學者要優先發表論文,企業則是產品導向,講究解決問題。

訪談之中,翁啟惠回顧幾件很有意思的顧問經驗。例如,有公司希望解決可樂中代糖「阿斯巴甜」(Aspartame)在高溫下產生甲醇毒素的問題。也有公司想要改良汽車外層鍍膜,避免鳥糞腐蝕。

另外還有一個香菸公司的邀請讓翁啟惠印象深刻,那時很多重度菸癮者抽到頭痛,產品只能先緊急下架,菸商損失慘重;後來查明是製菸的紙漿中存在微量有害物質,若短時間抽很多根菸,大量攝取下會有立即危害。

這些顧問工作,很多都和翁啟惠醣化學的本業無關,卻帶給他開闊的視野與企業經驗。我們也可以注意到,美國政府與產業界相當有心培育有潛力的人才,即便尚無業界經驗,也願意讓新人去嘗試擔任顧問。

翁啟惠提到,美國東岸的新英格蘭周邊,是產業歷史最悠久的地區,也分佈許多老牌大企業;西岸的加州則不同,主要是新創小公司。不同地方各有特色,衍生出多變的產學文化。

相比之下,臺灣也具備潛力,就看經營出什麼文化。翁啟惠認為,我們已經建立民主自由的社會,若要更上層樓,臺灣萬萬不可孤立,要主動與國際交流,並發展自己的特色。

有交流,創意的火花才有可能碰撞,或許那個坐在你隔壁的人,就是未來的合作夥伴!翁啟惠提到,總部位於加州聖地牙哥,以基因定序闖出名號,至今仍蓬勃發展的因美納(Illumina)公司,其共同創辦人沃特(David Walt),正是他在麻省理工學院實驗室的同儕!有次邀請沃特到 Scripps 演講,剛好聽眾中有兩位感興趣的投資者,演講結束之後,沃特便與兩位投資者私下討論,就創辦了 Illumina 公司。

醣無所不在!未解的謎題還等著研究

儘管投身學術研究 50 年,醣化學將近 40 年,翁啟惠絲毫沒有停下腳步的意思。當訪問到「醣化學還有什麼潛力?」,一如談教育時的熱情,翁啟惠又展現出科學家對研究的熱愛。

在翁啟惠眼中,醣類有太多謎團等待解答。生物基因以 DNA 承載遺傳訊息,製作蛋白質行使功能,但是時常還要加上醣的參與,偏偏醣類不像核酸、蛋白質容易摸索。醣分子無法複製,只能用化學合成,細胞表面佈滿的醣分子結構不對,功能就不同。

以抗體為例,抗體是一種醣蛋白,我們知道抗體靠著專一性辨識去附著目標,消滅病毒。相對卻少有人意識到,抗體的一端附著目標後,另一端還要連接免疫細胞轉入後續反應才能消滅病毒,這步正是依靠醣分子,因此醣類會影響抗體的免疫功能

相對的,病毒需要依賴宿主細胞以便大量複製。不同細胞會賦予蛋白質產物不同的醣化修飾。研究發現即使遺傳物質相同的病毒,假如病毒外頭的醣化修飾不同,也會影響感染能力及免疫反應。由上呼吸道細胞產生的新冠病毒,感染力就比其他細胞更強。

對於開發疫苗,翁啟惠近年投入不少心血。疫苗刺激產生的抗體講究專一性,研發者要想辦法針對病毒結構來調整抗體及 T 細胞反應。翁啟惠與研究團隊的思路卻是另闢蹊徑,並非將病毒露出來的表面設為目標,而是要去掉病毒外層的「醣」衣,也就是「去醣化疫苗」。

因為病毒暴露在外的部分會持續改變,躲避特定抗體,但是被醣基包裹的位置不太會變,或許是人體免疫記憶更好的訓練對象。以此概念製成的蛋白質或 mRNA 疫苗,若是成功,便有機會成為所謂的「廣效疫苗」,接種一款疫苗就能應付病毒的多型變化,特別是難纏多變的流感病毒、冠狀病毒(例如 SARS-CoV-2)。

新冠病毒(SARS-CoV-2)的棘蛋白上面有醣化修飾(標示為橘色),醣基包裹的位置不太容易突變,因此去除表面的醣化修飾之後,可以進一步製成廣效疫苗。
圖│研之有物(資料來源|翁啟惠、中研院基因體中心)

除此之外,翁啟惠團隊也持續開發廣效癌症疫苗。用抗體對付癌症的想法十分誘人,其難處在於,疫苗刺激產生抗體,辨識外來入侵的異物加以攻擊;但是癌細胞是人體細胞變異産生,上頭存在的成分正常細胞常常也有,設定癌細胞打擊,反而會造成自體免疫的悲劇。

好消息是,癌細胞外頭有些醣化修飾,不同於正常細胞。翁啟惠的隊伍尋獲 Globo H 等幾個醣類分子,適合作為疫苗針對的目標。相關技術已經轉移給業者,正在進行第三期人體臨床試驗。這些圍繞醣分子作文章的創新疫苗令人期待,最終是否能投入實戰,仍有待分曉。

關於醣化學,翁啟惠將持續探究細胞表面醣分子所扮演的角色,以及醣分子和疾病的關係。

給年輕學生的話:「興趣是研究的動力

翁啟惠語重心長地提到,醣化學領域如今的樣貌取決於他們這些開拓者,未來則要看能否引發年輕人的興趣,因為未來是年輕人的。

現今教育強調跨領域,翁啟惠自己無疑也是跨領域的知名化學家,但是他提醒年輕人,跨領域絕對不等於什麼都要學、都要會。基礎還是要打好,跨領域的關鍵是有能力與其他領域的人互動合作。

翁啟惠近期便以國家生技醫療產業策進會會長的角色,積極促進醫界與電子業的對話。因為醫界知道市場需求,但不懂得製造;電子業擅長製造,但是對醫療需求沒有深刻理解。他希望營造合作交流的環境,創造新的可能性。

最後,翁啟惠提醒學生,做研究一定要長期投入,深入鑽研,若是短短幾年就轉換領域,只會愈來愈迷茫。興趣對研究生涯最重要,有興趣才有動力,而興趣的培養則來自日常的自我探索。

翁啟惠建議學生在跨領域之前,基礎還是要打好,而跨領域的關鍵是有能力與其他領域的人互動合作。
圖│翁啟惠
研之有物│中央研究院_96
253 篇文章 ・ 2202 位粉絲
研之有物,取諧音自「言之有物」,出處為《周易·家人》:「君子以言有物而行有恆」。探索具體研究案例、直擊研究員生活,成為串聯您與中研院的橋梁,通往博大精深的知識世界。 網頁:研之有物 臉書:研之有物@Facebook

4

6
4

文字

分享

4
6
4
石蕊試紙的「石蕊」是什麼東西?為什麼碰到酸鹼會變色?
許阿鳥_96
・2022/03/25 ・2105字 ・閱讀時間約 4 分鐘

立即填寫問卷,預約【課程開賣早鳥優惠】與送你【問卷專屬折扣碼】!

 

國中、國小自然課做實驗常用的石蕊試紙,大家應該都很熟悉,也知道石蕊試紙碰到酸性物質時會變成紅色,碰到鹼性物質時會變成藍色。不過,你知道石蕊試紙變色的原理是什麼嗎?

還記得實驗課常用的石蕊試紙嗎?圖/Wikipedia

「石蕊」是什麼?

編按:作者於 2022 年 3 月 27 日進行勘誤。

石蕊試紙當中會變色的原料,是由地衣提煉出來的。

地衣是真菌和藻類的共生體:真菌形成外殼,提供藻類保護;藻類行光合作用,提供真菌養分。雖然長得有點像苔蘚,不過它們並不是植物。由於地衣對空氣中的化學成分很敏感,常被當作空氣汙染的指標。除此之外,地衣的生命力強韌,它們通常都是一片荒蕪的環境中的先驅,在植物長出來之前,地衣就會先一步到達,把岩石分解成土壤,為之後的生態系打下基礎。在嚴寒的極地,地衣也是馴鹿等野生動物度冬重要的食物來源。

而其中,「石蕊」就是石蕊科(Cladoniaceae)、石蕊屬(Cladonia)的地衣。它們生長在中高海拔向陽的岩石上,屬於枝狀地衣,形狀就像一支支直立起來的粉綠色小喇叭。有些種類的石蕊邊上會長出鮮紅色的繁殖構造子囊果(ascocarp),就像戴著紅色帽子的英國士兵,因此又稱為「英國士兵地衣(British Soldier Lichen)」。雖然石蕊試紙是稱為石蕊試紙,但其實許多類群的地衣都可以作為石蕊試紙的原料,反倒是石蕊本人較不常被作為石蕊試紙使用。

石蕊。攝影/Cleyera Chou

延伸閱讀:十種常見的地衣

那麼,石蕊試紙變色的原理是什麼呢?要解答這個問題,我們必須先了解「顏色」和「酸鹼」的本質。

「顏色」是什麼?

為什麼我們看到紅色的東西,會覺得它是紅色;而看到藍色的東西,會覺得它是藍色呢?

這是因為,不同的物體會吸收、反射不同波長的光,當光照到物體上,沒有被吸收、而是被物體反射的光波,傳到我們的眼睛裡面,就會被大腦解讀為顏色。

例如,假如一個物體反射紅光,吸收其他波長的光,那個物體我們在白光下看起來就會是紅色的。另外,如果一個物體吸收所有光的波長,那個物體我們在白光下看起來就會是黑色的;反之,如果那個物體反射所有光的波長,那個物體我們在白光下看起來就會是白色的。

一張含有 時鐘 的圖片

自動產生的描述
光的吸收與反射圖解。繪圖/許阿鳥

那麼,為什麼不同物體會吸收、反射不同波長的光?這是因為它們的化學結構長得不一樣。換句話說,一個物體的化學結構若是改變了,吸收、反射的光波長也會跟著改變,外顯的顏色也就會變得不一樣了。

「酸鹼」是什麼?

知道了「顏色」本質上的差別是什麼,現在,我們要來談談什麼是「酸鹼」?溶液中,如果含有氫離子(H+),那這個溶液就會呈現酸性,溶液中的氫離子越多,pH 值就越小、越偏酸性;而溶液中如果含有氫氧根(OH),那個溶液就會呈現鹼性,氫氧根越多,pH值就越大、也就越偏鹼性。

回到石蕊試紙

現在回到石蕊試紙上面。石蕊中含有一種化學物質「 7-羥基吩噁嗪酮」(7-hydroxyphenoxazone,以下以 C12H7NO3 代稱。),是石蕊試紙變色的關鍵。C12H7NO3 是由三個環狀結構所組成的,帶有一個羥基(下圖中的HO-)。

7-羥基吩噁嗪酮的化學結構式。圖/Wikipedia

還記得前面說到的,酸性溶液含有氫離子,鹼性溶液含有氫氧根嗎?

當 C12H7NO3 碰到酸性溶液時,溶液中的氫離子會鍵結到環狀結構的氮(上圖中的 N)上面,造成結構改變;而當 C12H7NO3 碰到鹼性溶液時,羥基上的氫則會被溶液中的氫氧根(OH)搶走,造成結構改變。這兩種結構的改變如下圖所示。

正如前面所說的,不同結構的化學物質,會吸收、反射不同波長的光,因此看起來顏色就會不同。得到一個氫離子的 C12H7NO3,會反射紅光,吸收其他的光;失去一個氫離子的 C12H7NO3,則會反射藍光,吸收其他的光。

因此,石蕊試紙會變色的原因就是:酸鹼溶液會改變 C12H7NO3 的結構,當石蕊試紙中的 C12H7NO3 結構改變了,會吸收、反射的光波長也改變了,顏色也因此看起來不一樣了。

現在大家都了解石蕊試紙變色的原理了,下回使用石蕊試紙時,就知道它為什麼會變色囉!

參考資料

  1. Wikipedia. (2022). Litmus. Wikipedia.
  2. Yee, Thomas. (2018). Why do acids turn litmus paper red? Quora
  3. Warzecha, Klaus-Dieter. (2017). Can the colour change in litmus paper be explained by conjugated systems? Acid base.
所有討論 4
許阿鳥_96
2 篇文章 ・ 5 位粉絲
台大生態學與演化生物學研究所畢業。火星上的人類學家。