Loading [MathJax]/extensions/tex2jax.js

0

1
0

文字

分享

0
1
0

電擊去顫:搶救不該死亡的心臟——《心臟的故事》

究竟出版
・2020/04/01 ・3814字 ・閱讀時間約 7 分鐘 ・SR值 524 ・七年級

  • 作者/桑迪普.裘哈爾(Sandeep Jauhar);譯者/陳信宏

除了心臟傳導完全阻滯這種致命的緩慢心律不整,心臟電生理學在 20 世紀中葉設法解決的另一個重大問題,是心室纖維性顫動,在全世界的猝死病例中,絕大多數都是因這種快速的心律不整所引起的。

在 20 世紀初,普雷沃斯特(Jean-Louis Prévost)與巴特利(Frédéric Battelli)這兩位日內瓦大學的研究者發現,電不僅能用來引發心室纖維性顫動,也可以平撫這種現象。他們以相對微弱的交流電在動物身上引發纖維性顫動,再以強烈許多的「去顫」電擊予以終止,並重置心跳。

皮卡丘,快使用十萬伏特(大概直接讓人重生了吧)。圖/GIPHY

數十年後的 1947 年,美國外科醫師貝克首度在手術室裡成功使用電擊去顫,地點在克里夫蘭的凱斯西儲大學醫院,對象是一名在胸腔手術後心跳停止的 14歲男孩。後來那名男孩活了下來並順利出院。

貝克後來寫道,去顫是一項工具,可以用來搶救「不該死亡的心臟」。他認為這種療法「擁有拯救生命的龐大潛力」。

電擊去顫,從體外版開始

如同電子心律調節器,電擊去顫也是先從體外版開始發展。

1956 年,哈佛的佐爾,也就是體外心律調節法的開創者,首度在人類實驗中成功施行了體外心臟去顫術。其他科學家也做出了重大貢獻,其中最引人注意的是約翰霍普金斯大學的電機工程教授考恩霍文(William Kouwenhoven)。他研究體外去顫術長達數十年之久,主要在大鼠與流浪狗身上進行實驗。

-----廣告,請繼續往下閱讀-----

到了 1957 年,考恩霍文已在自己位於約翰霍普金斯醫院 11 樓的研究室裡,組裝了一部去顫器。同年 3 月,一名 42 歲的男子在凌晨兩點來到急診室,指稱自己消化不良。不過,他其實是發生了急性心肌梗塞,結果在更衣時因為心室纖維性顫動而昏倒。

收治這名病患的住院醫師傅里辛格(Gottlieb Friesinger)曾聽過考恩霍文的去顫器,於是在一名實習醫師為病患施行心肺復甦術時,衝上樓去拿那部去顫器。

傅里辛格說服警衛讓他進入考恩霍文的研究室,抬起那部近 90 公斤的沉重裝置,用推車推到急診室。他把一片電極貼在胸骨頂端,另一片貼在乳頭下方,然後發出兩下電擊,救活了這名瀕死的病患。這是對心跳停止施行緊急去顫而獲得成功的世界首例。

心肺復甦術。圖/GIPHY

考恩霍文的研究帶來了一項不尋常且出乎意料的附帶效益。在 1950 年代晚期、利用小狗進行的實驗當中,考恩霍文研究室裡一名叫尼克博克(Guy Knickerbocker)的研究生注意到,就算尚未施加任何電流,去顫電擊板只要一就定位,血壓就會些微上升。

-----廣告,請繼續往下閱讀-----

尼克博克與外科醫師朱德(James Jude)合作,證明了對胸部施壓能夠擠壓心臟,促使血液暫時循環,從而提高血壓。

他的觀察促成了心肺復甦術中按壓胸部的做法,也就是當今的標準程序;不到一年,消防員及其他救援人員便都要學習這種技巧。這項發現後來也機緣巧合地裨益了尼克博克本身。1963 年,他的父親因為心臟病發導致心跳停止,結果在施行心肺復甦術後救活。

體外去顫器的限制

體外去顫器迅速且大量地出現於 1960 年代新設立的心臟加護病房裡。這些機器隨時待命治療心臟疾病造成的心律不整,甚至是心臟疾病本身。這些病房裡的監控證實了,心室纖維性顫動的確是心跳停止與猝死最常見的肇因。

1961 年,哈佛大學一個由羅恩領導的團隊在去顫器中加入了一個計時器,以便與心電圖同步,避免在易顫期對心臟施行電擊。

不過,和心律調節器一樣,體外去顫器也很龐大笨重,而且施加的電擊有時也會造成極大的痛苦(某些罕見的案例中,病患仍很清醒)。此外,體外去顫器必須由他人操作,在緊急情況下實在不盡可靠。因此,一如心律調節器,醫界對於去顫器的目標也是要讓它迷你化、自動化,並且植入體內。

去顫器從體外版改良成植入式

儘管有幾個團隊參與了體外去顫器的發明,但植入式去顫器卻是單一團隊的研發結果:巴爾的摩西奈醫院的一個團隊,由米盧斯基(Michel Mirowski)所領導。

米盧斯基是生長於華沙的猶太人,有個漂泊不定的人生。1939 年,還是青少年的他,在德國入侵並占領波蘭後,離開家人逃出國外(他也是全家唯一的二次大戰倖存者),但他終究還是回到了波蘭。戰爭結束後,他到法國接受醫學訓練。身為猶太復國主義者,他後來搬到了以色列。

-----廣告,請繼續往下閱讀-----
如同許多因心臟猝死悲劇而深受創傷的人,治療心臟疾病也成了米盧斯基終生念茲在茲的目標。圖/pixabay

1966 年,已經是執業心臟科醫師的米盧斯基經歷了一場改變他一生的悲劇:他的良師益友海勒(Harry Heller)死於心室性心搏過速,這是一種惡性心律,往往是心室纖維性顫動的前兆。如同許多因心臟猝死悲劇而深受創傷的人,治療心臟疾病也成了米盧斯基終生念茲在茲的目標。

1968 年,米盧斯基搬到了美國。身為西奈醫院新設的心臟加護病房主任,他爭取時間在醫院研究大樓的地下室從事他自己的研究。海勒去世後,米盧斯基在以色列構想出來的計畫,就是要製造一部植入式去顫器。米盧斯基與同是心臟科醫師的茂爾(Morton Mower)合作,共同設計出了這部裝置的草圖。

米盧斯基知道心室纖維性顫動需要受到強烈電擊才會終止。不過,他認為在進行體外去顫術時,大部分的能量都會因為跑到心臟周圍的組織而浪費掉。於是,他開始設想一個簡單的電容器,認為如果能直接接觸心臟,那麼它所放出的電流說不定就足以終止纖維性顫動。

植入式心律去顫器。圖/Wikipedia

米盧斯基與茂爾找來工程師,合作設計出一套電路,能偵測心室纖維性顫動以啟動電池、讓電容器充電。他們面對的挑戰非常嚴苛:電路的尺寸必須縮得非常小,他們設計的電子裝置也必須確保能施放適度的電擊(同時避免不適當的電擊,以免讓健康的人陷入心室纖維性顫動),並組裝一部有能力針對每次纖維性顫動發作,施放多次電擊的發電機。

他們兩人就像格列巴齊一樣,私下進行研究,也和他一樣,自掏腰包以支付實驗動物與電子元件的費用。他們甚至一度偷取附近一家餐廳的湯匙,好製作植入式電極。米盧斯基擁有強大的專注力與意志力,他遵循的「三大法則」是:不要放棄、不要屈服、打敗那些混蛋。

-----廣告,請繼續往下閱讀-----

植入式去顫器成功救活狗狗

1969 年 8 月,米盧斯基與茂爾把一根金屬導管插入一隻狗的上腔靜脈,再把一枚金屬盤(一個壞掉的去顫器電擊板)放在那條狗的胸部皮膚下。他們利用微弱的電流在易顫期刺激心臟,引發心室纖維性顫動。接著,藉由一道強烈許多的 20 焦耳電擊,終止了纖維性顫動,救活那條狗。

一隻狗因心室纖維性顫動而昏倒,接著在獲得成功去顫後重新站起來。圖片來自《心臟的故事》。

為了宣傳他們的成就,他們拍攝了一部影片,顯示那條狗先是因為心跳停止而昏倒,接著受到植入式去顫器電擊,然後又站起身來,搖著尾巴。

由於有觀者指稱那條狗說不定受過訓練,所以能依照指示癱倒並站起來,於是米盧斯基又另外拍攝影片,同時顯示心電圖,藉此證明小狗的心臟確實陷入纖維性顫動。這部影片讓許多醫師相信,米盧斯基確實獲得了一項具有重大臨床效益潛力的發現。

1970 年春,美敦力的巴肯拜訪米盧斯基,以檢視他的裝置。米盧斯基為這位訪客舉行了一場成功的示範。事後,巴肯問他,如果那隻狗沒去顫,會有什麼後果,米盧斯基於是切斷去顫器的電源,再次引發那隻狗的心室纖維性顫動,然後站在一旁看著牠迅速死亡。

不過,巴肯卻犯了一項重大錯誤,認定米盧斯基的裝置不具商業可行性。由於基本上猝死是隨機發生的,因此他不禁納悶:米盧斯基要怎麼辨識出風險最高的病患?

-----廣告,請繼續往下閱讀-----

後來米盧斯基決定聚焦於心跳曾停止過卻存活下來的病患。至於患有心臟疾病但沒有心跳停止病史的病患,是否能受益於植入式去顫器,則是米盧斯基無法回答的問題,也是心臟科醫師至今仍在思索的問題。

此外,巴肯也質疑米盧斯基要怎麼測試他的裝置?是不是必須讓人陷入心跳停止狀態,才能確認他的裝置確實能發揮效果?這種做法豈不是極不道德嗎?

第一次人體試驗:僅僅一道電擊,救活了她

儘管如此,米盧斯基與他的團隊仍持續努力,不因此灰心,大致上也沒有獲得任何資助。1980 年 2 月 4 日,他們終於舉行了第一次人類試驗。

圖/pixabay

擔任試驗對象的 54 歲加州女子曾多次發生心跳停止。在手術中,約翰霍普金斯醫院的外科醫師把一個電極植入她的上腔靜脈,將另一個電極貼片縫在左心室表面,再將發電機裝在她的腹部(如同某些醫學院大體,早期的心律調節器與去顫器發電器都安裝在腹腔)。

接著,為了測試這個裝置,他們讓她陷入心室纖維性顫動。這個裝置一開始並沒有啟動。在 15 秒鐘的時間裡,米盧斯基與他的同事全神貫注地看著那名女子陷入昏迷。他們正準備動用體外去顫器時,植入式去顫器終於在此時施放了電擊。

-----廣告,請繼續往下閱讀-----

僅僅一道電擊,就把她救活了過來。

《新英格蘭醫學期刊》雖然拒絕了米盧斯基針對他的動物實驗所寫的第一篇論文,卻立刻刊登了他描寫自己對於前三名病患的經驗,這篇論文的標題為〈以人類體內的植入式自動去顫器終止惡性心室心律不整〉。五年後,美國食品藥物管理局在 1985 年核准了這種裝置的商業生產。

——本文摘自《心臟的故事》,2019 年 9 月,究竟出版

-----廣告,請繼續往下閱讀-----
文章難易度
究竟出版
3 篇文章 ・ 2 位粉絲

0

0
0

文字

分享

0
0
0
拆解邊緣AI熱潮:伺服器如何提供穩固的運算基石?
鳥苷三磷酸 (PanSci Promo)_96
・2025/05/21 ・5071字 ・閱讀時間約 10 分鐘

本文與 研華科技 合作,泛科學企劃執行。

每次 NVIDIA 執行長黃仁勳公開發言,總能牽動整個 AI 產業的神經。然而,我們不妨設想一個更深層的問題——如今的 AI 幾乎都倚賴網路連線,那如果哪天「網路斷了」,會發生什麼事?

想像你正在自駕車打個盹,系統突然警示:「網路連線中斷」,車輛開始偏離路線,而前方竟是萬丈深谷。又或者家庭機器人被駭,開始暴走跳舞,甚至舉起刀具向你走來。

這會是黃仁勳期待的未來嗎?當然不是!也因為如此,「邊緣 AI」成為業界關注重點。不靠雲端,AI 就能在現場即時反應,不只更安全、低延遲,還能讓數據當場變現,不再淪為沉沒成本。

什麼是邊緣 AI ?

邊緣 AI,乍聽之下,好像是「孤單站在角落的人工智慧」,但事實上,它正是我們身邊最可靠、最即時的親密數位夥伴呀。

當前,像是企業、醫院、學校內部的伺服器,個人電腦,甚至手機等裝置,都可以成為「邊緣節點」。當數據在這些邊緣節點進行運算,稱為邊緣運算;而在邊緣節點上運行 AI ,就被稱為邊緣 AI。簡單來說,就是將原本集中在遠端資料中心的運算能力,「搬家」到更靠近數據源頭的地方。

-----廣告,請繼續往下閱讀-----

那麼,為什麼需要這樣做?資料放在雲端,集中管理不是更方便嗎?對,就是不好。

當數據在這些邊緣節點進行運算,稱為邊緣運算;而在邊緣節點上運行 AI ,就被稱為邊緣 AI。/ 圖片來源:MotionArray

第一個不好是物理限制:「延遲」。
即使光速已經非常快,數據從你家旁邊的路口傳到幾千公里外的雲端機房,再把分析結果傳回來,中間還要經過各種網路節點轉來轉去…這樣一來一回,就算只是幾十毫秒的延遲,對於需要「即刻反應」的 AI 應用,比如說工廠裡要精密控制的機械手臂、或者自駕車要判斷路況時,每一毫秒都攸關安全與精度,這點延遲都是無法接受的!這是物理距離與網路架構先天上的限制,無法繞過去。

第二個挑戰,是資訊科學跟工程上的考量:「頻寬」與「成本」。
你可以想像網路頻寬就像水管的粗細。隨著高解析影像與感測器數據不斷來回傳送,湧入的資料數據量就像超級大的水流,一下子就把水管塞爆!要避免流量爆炸,你就要一直擴充水管,也就是擴增頻寬,然而這樣的基礎建設成本是很驚人的。如果能在邊緣就先處理,把重要資訊「濃縮」過後再傳回雲端,是不是就能減輕頻寬負擔,也能節省大量費用呢?

第三個挑戰:系統「可靠性」與「韌性」。
如果所有運算都仰賴遠端的雲端時,一旦網路不穩、甚至斷線,那怎麼辦?很多關鍵應用,像是公共安全監控或是重要設備的預警系統,可不能這樣「看天吃飯」啊!邊緣處理讓系統更獨立,就算暫時斷線,本地的 AI 還是能繼續運作與即時反應,這在工程上是非常重要的考量。

所以你看,邊緣運算不是科學家們沒事找事做,它是順應數據特性和實際應用需求,一個非常合理的科學與工程上的最佳化選擇,是我們想要抓住即時數據價值,非走不可的一條路!

邊緣 AI 的實戰魅力:從工廠到倉儲,再到你的工作桌

知道要把 AI 算力搬到邊緣了,接下來的問題就是─邊緣 AI 究竟強在哪裡呢?它強就強在能夠做到「深度感知(Deep Perception)」!

-----廣告,請繼續往下閱讀-----

所謂深度感知,並非僅僅是對數據進行簡單的加加減減,而是透過如深度神經網路這類複雜的 AI 模型,從原始數據裡面,去「理解」出更高層次、更具意義的資訊。

研華科技為例,旗下已有多項邊緣 AI 的實戰應用。以工業瑕疵檢測為例,利用物件偵測模型,快速將工業產品中的瑕疵挑出來,而且由於 AI 模型可以使用同一套參數去檢測,因此品管上能達到一致性,減少人為疏漏。尤其在高產能工廠中,檢測速度必須快、狠、準。研華這套 AI 系統每分鐘最高可處理 8,000 件產品,替工廠節省大量人力,同時確保品質穩定。這樣的效能來自於一台僅有膠囊咖啡機大小的邊緣設備—IPC-240。

這樣的效能來自於一台僅有膠囊咖啡機大小的邊緣設備—IPC-240。/ 圖片提供:研華科技

此外,在智慧倉儲場域,研華與威剛合作,研華與威剛聯手合作,在 MIC-732AO 伺服器上搭載輝達的 Nova Orin 開發平台,打造倉儲系統的 AMR(Autonomous Mobile Robot) 自走車。這跟過去在倉儲系統中使用的自動導引車 AGV 技術不一樣,AMR 不需要事先規劃好路線,靠著感測器偵測,就能輕鬆避開障礙物,識別路線,並且將貨物載到指定地點存放。

當然,還有語言模型的應用。例如結合檢索增強生成 ( RAG ) 跟上下文學習 ( in-context learning ),除了可以做備忘錄跟排程規劃以外,還能將實務上碰到的問題記錄下來,等到之後碰到類似的問題時,就能詢問 AI 並得到解答。

你或許會問,那為什麼不直接使用 ChatGPT 就好了?其實,對許多企業來說,內部資料往往具有高度機密性與商業價值,有些場域甚至連手機都禁止員工帶入,自然無法將資料上傳雲端。對於重視資安,又希望運用 AI 提升效率的企業與工廠而言,自行部署大型語言模型(self-hosted LLM)才是理想選擇。而這樣的應用,並不需要龐大的設備。研華的 SKY-602E3 塔式 GPU 伺服器,體積僅如後背包大小,卻能輕鬆支援語言模型的運作,實現高效又安全的 AI 解決方案。

但問題也接著浮現:要在這麼小的設備上跑大型 AI 模型,會不會太吃資源?這正是目前 AI 領域最前沿、最火熱的研究方向之一:如何幫 AI 模型進行「科學瘦身」,又不減智慧。接下來,我們就來看看科學家是怎麼幫 AI 減重的。

-----廣告,請繼續往下閱讀-----

語言模型瘦身術之一:量化(Quantization)—用更精簡的數位方式來表示知識

當硬體資源有限,大模型卻越來越龐大,「幫模型減肥」就成了邊緣 AI 的重要課題。這其實跟圖片壓縮有點像:有些畫面細節我們肉眼根本看不出來,刪掉也不影響整體感覺,卻能大幅減少檔案大小。

模型量化的原理也是如此,只不過對象是模型裡面的參數。這些參數原先通常都是以「浮點數」表示,什麼是浮點數?其實就是你我都熟知的小數。舉例來說,圓周率是個無窮不循環小數,唸下去就會是3.141592653…但實際運算時,我們常常用 3.14 或甚至直接用 3,也能得到夠用的結果。降低模型參數中浮點數的精度就是這個意思! 

然而,量化並不是那麼容易的事情。而且實際上,降低精度多少還是會影響到模型表現的。因此在設計時,工程師會精密調整,確保效能在可接受範圍內,達成「瘦身不減智」的目標。

當硬體資源有限,大模型卻越來越龐大,「幫模型減肥」就成了邊緣 AI 的重要課題。/ 圖片來源:MotionArray

模型剪枝(Model Pruning)—基於重要性的結構精簡

建立一個 AI 模型,其實就是在搭建一整套類神經網路系統,並訓練類神經元中彼此關聯的參數。然而,在這麼多參數中,總會有一些參數明明佔了一個位置,卻對整體模型沒有貢獻。既然如此,不如果斷將這些「冗餘」移除。

這就像種植作物的時候,總會雜草叢生,但這些雜草並不是我們想要的作物,這時候我們就會動手清理雜草。在語言模型中也會有這樣的雜草存在,而動手去清理這些不需要的連結參數或神經元的技術,就稱為 AI 模型的模型剪枝(Model Pruning)。

-----廣告,請繼續往下閱讀-----

模型剪枝的效果,大概能把100變成70這樣的程度,說多也不是太多。雖然這樣的縮減對於提升效率已具幫助,但若我們要的是一個更小幾個數量級的模型,僅靠剪枝仍不足以應對。最後還是需要從源頭著手,採取更治本的方法:一開始就打造一個很小的模型,並讓它去學習大模型的知識。這項技術被稱為「知識蒸餾」,是目前 AI 模型壓縮領域中最具潛力的方法之一。

知識蒸餾(Knowledge Distillation)—讓小模型學習大師的「精髓」

想像一下,一位經驗豐富、見多識廣的老師傅,就是那個龐大而強悍的 AI 模型。現在,他要培養一位年輕學徒—小型 AI 模型。與其只是告訴小型模型正確答案,老師傅 (大模型) 會更直接傳授他做判斷時的「思考過程」跟「眉角」,例如「為什麼我會這樣想?」、「其他選項的可能性有多少?」。這樣一來,小小的學徒模型,用它有限的「腦容量」,也能學到老師傅的「智慧精髓」,表現就能大幅提升!這是一種很高級的訓練技巧,跟遷移學習有關。

舉個例子,當大型語言模型在收到「晚餐:鳳梨」這組輸入時,它下一個會接的詞語跟機率分別為「炒飯:50%,蝦球:30%,披薩:15%,汁:5%」。在知識蒸餾的過程中,它可以把這套機率表一起教給小語言模型,讓小語言模型不必透過自己訓練,也能輕鬆得到這個推理過程。如今,許多高效的小型語言模型正是透過這項技術訓練而成,讓我們得以在資源有限的邊緣設備上,也能部署愈來愈強大的小模型 AI。

但是!即使模型經過了這些科學方法的優化,變得比較「苗條」了,要真正在邊緣環境中處理如潮水般湧現的資料,並且高速、即時、穩定地運作,仍然需要一個夠強的「引擎」來驅動它們。也就是說,要把這些經過科學千錘百鍊、但依然需要大量計算的 AI 模型,真正放到邊緣的現場去發揮作用,就需要一個強大的「硬體平台」來承載。

-----廣告,請繼續往下閱讀-----

邊緣 AI 的強心臟:SKY-602E3 的三大關鍵

像研華的 SKY-602E3 塔式 GPU 伺服器,就是扮演「邊緣 AI 引擎」的關鍵角色!那麼,它到底厲害在哪?

一、核心算力
它最多可安裝 4 張雙寬度 GPU 顯示卡。為什麼 GPU 這麼重要?因為 GPU 的設計,天生就擅長做「平行計算」,這正好就是 AI 模型裡面那種海量數學運算最需要的!

你想想看,那麼多數據要同時處理,就像要請一大堆人同時算數學一樣,GPU 就是那個最有效率的工具人!而且,有多張 GPU,代表可以同時跑更多不同的 AI 任務,或者處理更大流量的數據。這是確保那些科學研究成果,在邊緣能真正「跑起來」、「跑得快」、而且「能同時做更多事」的物理基礎!

二、工程適應性——塔式設計。
邊緣環境通常不是那種恆溫恆濕的標準機房,有時是在工廠角落、辦公室一隅、或某個研究實驗室。這種塔式的機箱設計,體積相對緊湊,散熱空間也比較好(這對高功耗的 GPU 很重要!),部署起來比傳統機架式伺服器更有彈性。這就是把高性能計算,進行「工程化」,讓它能適應台灣多樣化的邊緣應用場景。

三、可靠性
SKY-602E3 用的是伺服器等級的主機板、ECC 糾錯記憶體、還有備援電源供應器等等。這些聽起來很硬的規格,背後代表的是嚴謹的工程可靠性設計。畢竟在邊緣現場,系統穩定壓倒一切!你總不希望 AI 分析跑到一半就掛掉吧?這些設計確保了部署在現場的 AI 系統,能夠長時間、穩定地運作,把實驗室裡的科學成果,可靠地轉化成實際的應用價值。

-----廣告,請繼續往下閱讀-----
研華的 SKY-602E3 塔式 GPU 伺服器,體積僅如後背包大小,卻能輕鬆支援語言模型的運作,實現高效又安全的 AI 解決方案。/ 圖片提供:研華科技

台灣製造 × 在地智慧:打造專屬的邊緣 AI 解決方案

研華科技攜手八維智能,能幫助企業或機構提供客製化的AI解決方案。他們的技術能力涵蓋了自然語言處理、電腦視覺、預測性大數據分析、全端軟體開發與部署,及AI軟硬體整合。

無論是大小型語言模型的微調、工業瑕疵檢測的模型訓練、大數據分析,還是其他 AI 相關的服務,都能交給研華與八維智能來協助完成。他們甚至提供 GPU 與伺服器的租借服務,讓企業在啟動 AI 專案前,大幅降低前期投入門檻,靈活又實用。

台灣有著獨特的產業結構,從精密製造、城市交通管理,到因應高齡化社會的智慧醫療與公共安全,都是邊緣 AI 的理想應用場域。更重要的是,這些情境中許多關鍵資訊都具有高度的「時效性」。像是產線上的一處異常、道路上的突發狀況、醫療設備的即刻警示,這些都需要分秒必爭的即時回應。

如果我們還需要將數據送上雲端分析、再等待回傳結果,往往已經錯失最佳反應時機。這也是為什麼邊緣 AI,不只是一項技術創新,更是一條把尖端 AI 科學落地、真正發揮產業生產力與社會價值的關鍵路徑。讓數據在生成的那一刻、在事件發生的現場,就能被有效的「理解」與「利用」,是將數據垃圾變成數據黃金的賢者之石!

👉 更多研華Edge AI解決方案
👉 立即申請Server租借

-----廣告,請繼續往下閱讀-----
-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

0

0
0

文字

分享

0
0
0
從風險到希望:經導管主動脈瓣置換術的革命性突破!
careonline_96
・2024/10/16 ・2565字 ・閱讀時間約 5 分鐘

-----廣告,請繼續往下閱讀-----

圖/照護線上

主動脈瓣位於左心室與主動脈之間,如果主動脈瓣變硬、變厚,便可能無法在左心室收縮時完全開啟,讓血液無法順利通過,稱為主動脈瓣狹窄。高醫心臟血管外科主任謝炯昭醫師指出,主動脈瓣狹窄初期沒有症狀,隨著主動脈瓣狹窄惡化,可能出現胸悶、胸痛、頭暈、昏厥等症狀,嚴重可能猝死。

「針對嚴重主動脈瓣狹窄,傳統的做法是利用開心手術進行主動脈瓣置換。」謝炯昭醫師說,「傳統主動脈瓣置換手術,必須先要開胸,接上心肺機,並讓心臟暫時停止跳動,對於年紀較大或身體狀況較差的病人而言,手術風險較高。」受惠於科技的進步,經導管主動脈瓣膜置換術(TAVI)已成為解決主動脈瓣狹窄的利器。

經導管主動脈瓣膜置換術TAVI
圖/照護線上

經導管主動脈瓣膜置換術(TAVI/ Transcatheter Aortic Valve Implantation)的發展提供給患者不同的選擇。謝炯昭醫師說,經導管主動脈瓣膜置換術是從股動脈放入導管,在影像系統的輔助下,讓導管通過主動脈瓣,確認位置後,便可展開導管上的人工瓣膜,取代病變的主動脈瓣。

相較於傳統開胸手術,經導管主動脈瓣膜置換術不須讓心臟停止跳動、不須使用體外循環、傷口較小、手術時間較短、住院天數較短,對年紀較大、共病很多的患者而言,手術風險較低,可以降低術後死亡率。經過多年追蹤,目前 10 年的文獻統計顯示,經導管主動脈瓣膜的耐久性還是很不錯的。

-----廣告,請繼續往下閱讀-----

「雖然經導管主動脈瓣膜置換術常常可以在很短的時間內完成,但是很多時候並不是所有的病例都可以那麼簡單!」謝炯昭醫師說,「畢竟高科技也是要配合適當的操作,在術前、術中、術後整個團隊都需要密切配合、小心謹慎。」

經導管主動脈瓣膜置換術TAVI有何優點
圖/照護線上

舉例來說,進行 TAVI 手術的導管大概跟原子筆一樣粗,如果高齡患者的動脈較細或硬化,便可能在手術的過程中遭遇動脈破裂、出血的狀況;也可能遇到瓣膜鈣化很嚴重的病人,在展開瓣膜後,不容易貼合,而出現不同程度的測漏。謝炯昭醫師補充「由於每個人的解剖構造都有些差異,瓣膜鈣化的狀況也不一樣,所以術前會運用電腦斷層影像、心臟超音波,評估主動脈瓣膜的結構、尺寸、鈣化狀況,做好手術計畫、選擇合適的瓣膜以及尺寸大小、決定置放的深度及面對各種手術狀況的備案。」

經驗豐富的手術團隊會在術前擬定詳盡的治療計畫,並針對各種狀況進行沙盤推演,以高雄醫學大學附設醫院為例,TAVI 團隊包括心臟外科、心臟內科、影像醫學科、麻醉科、放射師、體循師及護理師等,在各領域不同專長的密切合作下,十多年來已成功為數百位主動脈瓣狹窄的年長者完成手術,患者的心臟衰竭與生活品質皆明顯改善。「手術過程中必須隨機應變,迅速處理各種突發狀況,盡力提高成功率、減少併發症。我們也養成了好的習慣,每次完成手術後,團隊也會回放檢視手術過程,持續學習精進。」謝炯昭醫師說

經導管主動脈瓣膜置換術TAVI仰賴周延的術前規劃
圖/照護線上

謝炯昭醫師說,高醫團隊也相當重視病人瓣膜的生命週期管理,會站在病人的角度做長遠的規劃,並選擇合適的人工瓣膜和手術方式。「我們都會與患者詳細討論,盡可能讓患者了解,幫助他們做決定。例如在選擇人工瓣膜時也要評估患者預期的剩餘壽命,如果患者相對比較年輕,便得考慮十年後可能需要接受瓣中瓣手術放入第二顆人工瓣膜的狀況。如果患者未來可能會因為心血管疾病而需要做心導管手術,可以考慮選擇瓣架較短的人工瓣膜,避免擋住冠狀動脈開口而造成冠狀動脈介入的困難。」

-----廣告,請繼續往下閱讀-----

經驗豐富的 TAVI 團隊不僅擬定詳盡手術計畫,盡力確保手術成功,做好術後照護與追蹤,同時也考慮病人未來可能的治療需求,幫助患者達到較佳的預後!

筆記重點整理

  • 主動脈瓣狹窄初期沒有症狀,隨著主動脈瓣狹窄惡化,可能出現胸悶、胸痛、頭暈、昏厥等症狀,嚴重可能猝死。
  • 傳統主動脈瓣置換手術,必須開胸,接上心肺機,並讓心臟暫時停止跳動,對於年紀較大或身體狀況較差的病人而言,手術風險較高。
  • 經導管主動脈瓣膜置換術不須讓心臟停止跳動、不須使用體外循環、傷口較小、手術時間較短、住院天數較短,對年紀較大、共病很多的患者而言,風險較低,可以降低術後死亡率。
  • 進行經導管主動脈瓣膜置換術需要留意一些併發症,例如出血、感染、血栓、心律不整、主動脈剝離、心包膜填塞、冠狀動脈開口阻塞等。經驗豐富的手術團隊與詳盡的術前規劃能夠提高成功率、減少併發症。
  • 術前規劃的部分會運用心臟超音波、電腦斷層影像檢查,評估主動脈瓣膜的結構、尺寸、鈣化狀況。在選擇人工瓣膜時也要評估患者預期壽命,考慮十年後可能需要接受瓣中瓣手術放入第二顆人工瓣膜的狀況。如果患者未來可能有需要做心導管介入手術,可以考慮選擇瓣架較短的人工瓣膜避免擋住冠狀動脈開口。

-----廣告,請繼續往下閱讀-----

討論功能關閉中。

0

2
0

文字

分享

0
2
0
從運動場到急診室:肥厚型心肌病的潛在危機
careonline_96
・2024/09/11 ・2473字 ・閱讀時間約 5 分鐘

圖/照護線上

肥厚型心肌病是種因為心臟肌肉的變化而帶來的問題。通常是因為基因體顯性遺傳,影響了肌小節的肌纖維排列,導致心臟肌肉變得肥厚,尤其是左心室與右心室之間分隔的心肌最容易出現肥厚變化。除了心肌變肥厚,還會讓左心室變得僵硬、延展性小,因此帶來不少問題。

心臟肌肉變得肥厚,會出現什麼問題嗎?

當聽到心臟肌肉變肥厚,或許有人會誤以為這是件好事,會讓心臟肌肉變得功能更強大,其實不然。左心室的任務是在舒張時接收從左心房來的血液,再收縮將心室內的血液送往主動脈。過度肥厚的心臟肌肉會讓左心室的空間變小,承收不了太多的血液,阻擾了血流的正常運行,讓心肌還要收縮地更出力才能運送血液進主動脈。左心室內阻力變高的時候,同時也會影響二尖瓣的功能,血液更容易逆流回到左心房。

肥厚型心肌病的影響
圖/照護線上

就算沒有阻塞心臟血流運行,心肌在收縮的時候並不會因為心肌變肥厚而有力,反而是變得比較僵硬,比較難適當地延展。當血流從左心房送往左心室時,心臟肌肉需要延展,才有利於”hold”住足量的血液。當心肌變得肥厚僵硬的時候,左心室難以延展讓血流進入,之後左心室能打出去送往主動脈的血液量就變少了。

另外一個影響到的是心臟肌肉纖維的排列,若從顯微鏡下觀察肥厚型心肌病者的心臟肌肉排列,會看到心肌細胞排的並不規律,亂亂的,與正常狀況排的整整齊齊的樣子並不同。因此,這些不整齊的心肌排列會影響到心臟內電路訊息的傳遞,甚至更容易刺激出心律不整。

-----廣告,請繼續往下閱讀-----

肥厚型心肌病的症狀

許多患者並不知道自己有肥厚型心肌病,因為症狀可能不嚴重,會甚至根本沒有症狀。若有症狀,常常是從青春期之後開始出現。

  • 運動時,吃飽飯後,或活動量大的時候,感覺到胸痛及喘不過氣
  • 容易在運動中或運動後感到疲憊,頭重腳輕,快暈倒的樣子
  • 心跳突然變很快,撞擊很大的感覺,也就是心律不整
肥厚型心肌病的症狀
圖/照護線上

肥厚型心肌病的併發症

雖然有些人帶有造成肥厚型心肌病的遺傳基因,卻一輩子都沒有症狀;也有些人雖然有症狀,但並不嚴重,不需要每天服用藥物控制。基本上,多數肥厚型心肌病患者可以有與一般人相同的預期壽命年限,也能維持不錯的生活品質,但還是要注意幾件事:

  • 心因性猝死

肥厚型心肌病會引發心室頻脈等心律不整,因此是 35 歲以下突發心因性猝死最常見的原因。有些運動員突然在田徑場上猝死的原因就是肥厚型心肌病。

  • 心臟衰竭

心臟是個幫浦,將血液送往主動脈,再到全身。心臟衰竭代表心臟身為幫浦的功能變差了,無法打出足量的血液到主動脈。前面提到肥厚型心肌病會讓左心室的空間變少,延展彈性變小,進入左心室的血液變少,也就比較難打出足量的血液進到主動脈,因而導致心臟衰竭。

-----廣告,請繼續往下閱讀-----

肥厚型心肌病的檢查與治療

當醫師從患者家族病史、個人病史、身體檢查等狀況懷疑有肥厚型心肌病的可能時,會安排心臟超音波檢查,看看是否有心室中膈變肥厚的證據。針對有家族遺傳史,但自身無症狀的人來說,可以考慮在 30 歲之後定期每三年接受心電圖與心臟超音波檢查。

在治療方面,要看患者的臨床症狀與心臟超音波檢查的結果而定。對沒有症狀的患者來說,調整生活習慣,減少劇烈運動活動或許就已足夠。另外一定要讓患者了解,務必「避免脫水」。因為有肥厚型心肌病的時候,進到左心室的血流本身就比較少,若再因為喝的水分不足脫水,在炎熱天氣下脫水,或使用了利尿劑或血管擴張劑,都會讓症狀加劇。

肥厚型心肌病的處理方式
圖/照護線上

對已有胸痛、喘不過氣的人來說,可以用乙型阻斷劑藥物或鈣離子阻斷劑,放慢心跳速度。心跳速度慢一點,可以增加左心室放鬆舒張的時間,盡量增加左心室內的血流量,之後左心室收縮打出血液的效率會比較好。

如果藥物的成效不彰,要考慮侵入性治療,像是利用手術或燒灼方式改變心室中膈的厚度,減少心肌肥厚造成心室空間減少的影響。萬一患者家族裡有人曾有心因性猝死,本身曾經暈倒好幾次,曾有心律不整,或有嚴重的臨床症狀,就要考慮放置心臟節律器來避免猝死。若肥厚型心肌病已經造成心臟衰竭,心臟移植就成了治療選項之一。

-----廣告,請繼續往下閱讀-----
-----廣告,請繼續往下閱讀-----

討論功能關閉中。