0

1
0

文字

分享

0
1
0

電擊去顫:搶救不該死亡的心臟——《心臟的故事》

究竟出版
・2020/04/01 ・3814字 ・閱讀時間約 7 分鐘 ・SR值 524 ・七年級

  • 作者/桑迪普.裘哈爾(Sandeep Jauhar);譯者/陳信宏

除了心臟傳導完全阻滯這種致命的緩慢心律不整,心臟電生理學在 20 世紀中葉設法解決的另一個重大問題,是心室纖維性顫動,在全世界的猝死病例中,絕大多數都是因這種快速的心律不整所引起的。

在 20 世紀初,普雷沃斯特(Jean-Louis Prévost)與巴特利(Frédéric Battelli)這兩位日內瓦大學的研究者發現,電不僅能用來引發心室纖維性顫動,也可以平撫這種現象。他們以相對微弱的交流電在動物身上引發纖維性顫動,再以強烈許多的「去顫」電擊予以終止,並重置心跳。

皮卡丘,快使用十萬伏特(大概直接讓人重生了吧)。圖/GIPHY

數十年後的 1947 年,美國外科醫師貝克首度在手術室裡成功使用電擊去顫,地點在克里夫蘭的凱斯西儲大學醫院,對象是一名在胸腔手術後心跳停止的 14歲男孩。後來那名男孩活了下來並順利出院。

貝克後來寫道,去顫是一項工具,可以用來搶救「不該死亡的心臟」。他認為這種療法「擁有拯救生命的龐大潛力」。

電擊去顫,從體外版開始

如同電子心律調節器,電擊去顫也是先從體外版開始發展。

1956 年,哈佛的佐爾,也就是體外心律調節法的開創者,首度在人類實驗中成功施行了體外心臟去顫術。其他科學家也做出了重大貢獻,其中最引人注意的是約翰霍普金斯大學的電機工程教授考恩霍文(William Kouwenhoven)。他研究體外去顫術長達數十年之久,主要在大鼠與流浪狗身上進行實驗。

-----廣告,請繼續往下閱讀-----

到了 1957 年,考恩霍文已在自己位於約翰霍普金斯醫院 11 樓的研究室裡,組裝了一部去顫器。同年 3 月,一名 42 歲的男子在凌晨兩點來到急診室,指稱自己消化不良。不過,他其實是發生了急性心肌梗塞,結果在更衣時因為心室纖維性顫動而昏倒。

收治這名病患的住院醫師傅里辛格(Gottlieb Friesinger)曾聽過考恩霍文的去顫器,於是在一名實習醫師為病患施行心肺復甦術時,衝上樓去拿那部去顫器。

傅里辛格說服警衛讓他進入考恩霍文的研究室,抬起那部近 90 公斤的沉重裝置,用推車推到急診室。他把一片電極貼在胸骨頂端,另一片貼在乳頭下方,然後發出兩下電擊,救活了這名瀕死的病患。這是對心跳停止施行緊急去顫而獲得成功的世界首例。

心肺復甦術。圖/GIPHY

考恩霍文的研究帶來了一項不尋常且出乎意料的附帶效益。在 1950 年代晚期、利用小狗進行的實驗當中,考恩霍文研究室裡一名叫尼克博克(Guy Knickerbocker)的研究生注意到,就算尚未施加任何電流,去顫電擊板只要一就定位,血壓就會些微上升。

-----廣告,請繼續往下閱讀-----

尼克博克與外科醫師朱德(James Jude)合作,證明了對胸部施壓能夠擠壓心臟,促使血液暫時循環,從而提高血壓。

他的觀察促成了心肺復甦術中按壓胸部的做法,也就是當今的標準程序;不到一年,消防員及其他救援人員便都要學習這種技巧。這項發現後來也機緣巧合地裨益了尼克博克本身。1963 年,他的父親因為心臟病發導致心跳停止,結果在施行心肺復甦術後救活。

體外去顫器的限制

體外去顫器迅速且大量地出現於 1960 年代新設立的心臟加護病房裡。這些機器隨時待命治療心臟疾病造成的心律不整,甚至是心臟疾病本身。這些病房裡的監控證實了,心室纖維性顫動的確是心跳停止與猝死最常見的肇因。

1961 年,哈佛大學一個由羅恩領導的團隊在去顫器中加入了一個計時器,以便與心電圖同步,避免在易顫期對心臟施行電擊。

不過,和心律調節器一樣,體外去顫器也很龐大笨重,而且施加的電擊有時也會造成極大的痛苦(某些罕見的案例中,病患仍很清醒)。此外,體外去顫器必須由他人操作,在緊急情況下實在不盡可靠。因此,一如心律調節器,醫界對於去顫器的目標也是要讓它迷你化、自動化,並且植入體內。

去顫器從體外版改良成植入式

儘管有幾個團隊參與了體外去顫器的發明,但植入式去顫器卻是單一團隊的研發結果:巴爾的摩西奈醫院的一個團隊,由米盧斯基(Michel Mirowski)所領導。

米盧斯基是生長於華沙的猶太人,有個漂泊不定的人生。1939 年,還是青少年的他,在德國入侵並占領波蘭後,離開家人逃出國外(他也是全家唯一的二次大戰倖存者),但他終究還是回到了波蘭。戰爭結束後,他到法國接受醫學訓練。身為猶太復國主義者,他後來搬到了以色列。

-----廣告,請繼續往下閱讀-----
如同許多因心臟猝死悲劇而深受創傷的人,治療心臟疾病也成了米盧斯基終生念茲在茲的目標。圖/pixabay

1966 年,已經是執業心臟科醫師的米盧斯基經歷了一場改變他一生的悲劇:他的良師益友海勒(Harry Heller)死於心室性心搏過速,這是一種惡性心律,往往是心室纖維性顫動的前兆。如同許多因心臟猝死悲劇而深受創傷的人,治療心臟疾病也成了米盧斯基終生念茲在茲的目標。

1968 年,米盧斯基搬到了美國。身為西奈醫院新設的心臟加護病房主任,他爭取時間在醫院研究大樓的地下室從事他自己的研究。海勒去世後,米盧斯基在以色列構想出來的計畫,就是要製造一部植入式去顫器。米盧斯基與同是心臟科醫師的茂爾(Morton Mower)合作,共同設計出了這部裝置的草圖。

米盧斯基知道心室纖維性顫動需要受到強烈電擊才會終止。不過,他認為在進行體外去顫術時,大部分的能量都會因為跑到心臟周圍的組織而浪費掉。於是,他開始設想一個簡單的電容器,認為如果能直接接觸心臟,那麼它所放出的電流說不定就足以終止纖維性顫動。

植入式心律去顫器。圖/Wikipedia

米盧斯基與茂爾找來工程師,合作設計出一套電路,能偵測心室纖維性顫動以啟動電池、讓電容器充電。他們面對的挑戰非常嚴苛:電路的尺寸必須縮得非常小,他們設計的電子裝置也必須確保能施放適度的電擊(同時避免不適當的電擊,以免讓健康的人陷入心室纖維性顫動),並組裝一部有能力針對每次纖維性顫動發作,施放多次電擊的發電機。

他們兩人就像格列巴齊一樣,私下進行研究,也和他一樣,自掏腰包以支付實驗動物與電子元件的費用。他們甚至一度偷取附近一家餐廳的湯匙,好製作植入式電極。米盧斯基擁有強大的專注力與意志力,他遵循的「三大法則」是:不要放棄、不要屈服、打敗那些混蛋。

-----廣告,請繼續往下閱讀-----

植入式去顫器成功救活狗狗

1969 年 8 月,米盧斯基與茂爾把一根金屬導管插入一隻狗的上腔靜脈,再把一枚金屬盤(一個壞掉的去顫器電擊板)放在那條狗的胸部皮膚下。他們利用微弱的電流在易顫期刺激心臟,引發心室纖維性顫動。接著,藉由一道強烈許多的 20 焦耳電擊,終止了纖維性顫動,救活那條狗。

一隻狗因心室纖維性顫動而昏倒,接著在獲得成功去顫後重新站起來。圖片來自《心臟的故事》。

為了宣傳他們的成就,他們拍攝了一部影片,顯示那條狗先是因為心跳停止而昏倒,接著受到植入式去顫器電擊,然後又站起身來,搖著尾巴。

由於有觀者指稱那條狗說不定受過訓練,所以能依照指示癱倒並站起來,於是米盧斯基又另外拍攝影片,同時顯示心電圖,藉此證明小狗的心臟確實陷入纖維性顫動。這部影片讓許多醫師相信,米盧斯基確實獲得了一項具有重大臨床效益潛力的發現。

1970 年春,美敦力的巴肯拜訪米盧斯基,以檢視他的裝置。米盧斯基為這位訪客舉行了一場成功的示範。事後,巴肯問他,如果那隻狗沒去顫,會有什麼後果,米盧斯基於是切斷去顫器的電源,再次引發那隻狗的心室纖維性顫動,然後站在一旁看著牠迅速死亡。

不過,巴肯卻犯了一項重大錯誤,認定米盧斯基的裝置不具商業可行性。由於基本上猝死是隨機發生的,因此他不禁納悶:米盧斯基要怎麼辨識出風險最高的病患?

-----廣告,請繼續往下閱讀-----

後來米盧斯基決定聚焦於心跳曾停止過卻存活下來的病患。至於患有心臟疾病但沒有心跳停止病史的病患,是否能受益於植入式去顫器,則是米盧斯基無法回答的問題,也是心臟科醫師至今仍在思索的問題。

此外,巴肯也質疑米盧斯基要怎麼測試他的裝置?是不是必須讓人陷入心跳停止狀態,才能確認他的裝置確實能發揮效果?這種做法豈不是極不道德嗎?

第一次人體試驗:僅僅一道電擊,救活了她

儘管如此,米盧斯基與他的團隊仍持續努力,不因此灰心,大致上也沒有獲得任何資助。1980 年 2 月 4 日,他們終於舉行了第一次人類試驗。

圖/pixabay

擔任試驗對象的 54 歲加州女子曾多次發生心跳停止。在手術中,約翰霍普金斯醫院的外科醫師把一個電極植入她的上腔靜脈,將另一個電極貼片縫在左心室表面,再將發電機裝在她的腹部(如同某些醫學院大體,早期的心律調節器與去顫器發電器都安裝在腹腔)。

接著,為了測試這個裝置,他們讓她陷入心室纖維性顫動。這個裝置一開始並沒有啟動。在 15 秒鐘的時間裡,米盧斯基與他的同事全神貫注地看著那名女子陷入昏迷。他們正準備動用體外去顫器時,植入式去顫器終於在此時施放了電擊。

-----廣告,請繼續往下閱讀-----

僅僅一道電擊,就把她救活了過來。

《新英格蘭醫學期刊》雖然拒絕了米盧斯基針對他的動物實驗所寫的第一篇論文,卻立刻刊登了他描寫自己對於前三名病患的經驗,這篇論文的標題為〈以人類體內的植入式自動去顫器終止惡性心室心律不整〉。五年後,美國食品藥物管理局在 1985 年核准了這種裝置的商業生產。

——本文摘自《心臟的故事》,2019 年 9 月,究竟出版

-----廣告,請繼續往下閱讀-----
文章難易度
究竟出版
3 篇文章 ・ 2 位粉絲

0

1
0

文字

分享

0
1
0
ECU: 汽車大腦的演化與挑戰
鳥苷三磷酸 (PanSci Promo)_96
・2025/07/02 ・3793字 ・閱讀時間約 7 分鐘

本文與 威力暘電子 合作,泛科學企劃執行。

想像一下,當你每天啟動汽車時,啟動的不再只是一台車,而是一百台電腦同步運作。但如果這些「電腦」突然集體當機,後果會有多嚴重?方向盤可能瞬間失靈,安全氣囊無法啟動,整台車就像失控的高科技廢鐵。這樣的「系統崩潰」風險並非誇張劇情,而是真實存在於你我日常的駕駛過程中。

今天,我們將深入探討汽車電子系統「逆天改運」的科學奧秘。究竟,汽車的「大腦」—電子控制單元(ECU),是如何從單一功能,暴增至上百個獨立系統?而全球頂尖的工程師們,又為何正傾盡全力,試圖將這些複雜的系統「砍掉重練」、整合優化?

第一顆「汽車大腦」的誕生

時間回到 1980 年代,當時的汽車工程師們面臨一項重要任務:如何把汽油引擎的每一滴燃油都壓榨出最大動力?「省油即省錢」是放諸四海皆準的道理。他們發現,關鍵其實潛藏在一個微小到幾乎難以察覺的瞬間:火星塞的點火時機,也就是「點火正時」。

如果能把點火的精準度控制在「兩毫秒」以內,這大約是你眨眼時間的百分之一到千分之一!引擎效率就能提升整整一成!這不僅意味著車子開起來更順暢,還能直接省下一成的油耗。那麼,要如何跨過這道門檻?答案就是:「電腦」的加入!

-----廣告,請繼續往下閱讀-----

工程師們引入了「微控制器」(Microcontroller),你可以把它想像成一顆專注於特定任務的迷你電腦晶片。它能即時讀取引擎轉速、進氣壓力、油門深度、甚至異常爆震等各種感測器的訊號。透過內建的演算法,在千分之一秒、甚至微秒等級的時間內,精準計算出最佳的點火角度,並立刻執行。

從此,引擎的性能表現大躍進,油耗也更漂亮。這正是汽車電子控制單元(ECU)的始祖—專門負責點火的「引擎控制單元」(Engine Control Unit)。

汽車電子控制單元的始祖—專門負責點火的「引擎控制單元」(Engine Control Unit)/ 圖片來源:shutterstock

ECU 的失控暴增與甜蜜的負荷

第一顆 ECU 的成功,在 1980 年代後期點燃了工程師們的想像:「這 ECU 這麼好用,其他地方是不是也能用?」於是,ECU 的應用範圍不再僅限於點火,燃油噴射量、怠速穩定性、變速箱換檔平順度、ABS 防鎖死煞車,甚至安全氣囊的引爆時機……各種功能都交給專屬的 ECU 負責 。

然而,問題來了:這麼多「小電腦」,它們之間該如何有效溝通?

-----廣告,請繼續往下閱讀-----

為了解決這個問題,1986 年,德國的博世(Bosch)公司推出了一項劃時代的發明:控制器區域網路(CAN Bus)。你可以將它想像成一條專為 ECU 打造的「神經網路」。各個 ECU 只需連接到這條共用的線路上,就能將訊息「廣播」給其他單元。

更重要的是,CAN Bus 還具備「優先通行」機制。例如,煞車指令或安全氣囊引爆訊號這類攸關人命的重要訊息,絕對能搶先通過,避免因資訊堵塞而延誤。儘管 CAN Bus 解決了 ECU 之間的溝通問題,但每顆 ECU 依然需要獨立的電源線、接地線,並連接各種感測器和致動器。結果就是,一輛汽車的電線總長度可能達到 2 到 4 公里,總重量更高達 50 到 60 公斤,等同於憑空多載了一位乘客的重量。

另一方面,大量的 ECU 與錯綜複雜的線路,也讓「電子故障」開始頻繁登上汽車召回原因的榜首。更別提這些密密麻麻的線束,簡直是設計師和維修技師的惡夢。要檢修這些電子故障,無疑讓人一個頭兩個大。

大量的 ECU 與錯綜複雜的線路,也讓「電子故障」開始頻繁登上汽車召回原因的榜首。/圖片來源:shutterstock

汽車電子革命:從「百腦亂舞」到集中治理

到了2010年代,汽車電子架構迎來一場大改革,「分區架構(Zonal Architecture)」搭配「中央高效能運算(HPC)」逐漸成為主流。簡單來說,這就像在車內建立「地方政府+中央政府」的管理系統。

-----廣告,請繼續往下閱讀-----

可以想像,整輛車被劃分為幾個大型區域,像是車頭、車尾、車身兩側與駕駛艙,就像數個「大都會」。每個區域控制單元(ZCU)就像「市政府」,負責收集該區所有的感測器訊號、初步處理與整合,並直接驅動該區的馬達、燈光等致動器。區域先自理,就不必大小事都等中央拍板。

而「中央政府」則由車用高效能運算平台(HPC)擔任,統籌負責更複雜的運算任務,例如先進駕駛輔助系統(ADAS)所需的環境感知、物體辨識,或是車載娛樂系統、導航功能,甚至是未來自動駕駛的決策,通通交由車輛正中央的這顆「超級大腦」執行。

乘著這波汽車電子架構的轉型浪潮中, 2008 年成立的台灣本土企業威力暘電子,便精準地切入了這個趨勢,致力於開發整合 ECU 與區域控制器(Domain Controller)功能的模組化平台。他們專精於開發電子排檔、多功能方向盤等各式汽車電子控制模組。為了確保各部件之間的溝通順暢,威力暘提供的解決方案,就像是將好幾個「分區管理員」的職責,甚至一部分「超級大腦」的功能,都整合到一個更強大的硬體平台上。

這些模組不僅擁有強大的晶片運算能力,可同時支援 ADAS 與車載娛樂,還能兼容多種通訊協定,大幅簡化車內網路架構。如此一來,車廠在追求輕量化和高效率的同時,也能顧及穩定性與安全性。

-----廣告,請繼續往下閱讀-----
2008 年威力暘電子致力於開發整合 ECU 與區域控制器(Domain Controller)功能的模組化平台 /圖片來源:shutterstock

萬無一失的「汽車大腦」:威力暘的四大策略

然而,「做出來」與「做好」之間,還是有差別。要如何確保這顆集結所有功能的「汽車大腦」不出錯?具體來說,威力暘電子憑藉以下四大策略,築起其產品的可靠性與安全性:

  1. AUTOSAR : 導入開放且標準化的汽車軟體架構 AUTOSAR。分為應用層、運行環境層(RTE)和基礎軟體層(BSW)。就像在玩「樂高積木」,ECU 開發者能靈活組合模組,專注在核心功能開發,從根本上提升軟體的穩定性和可靠性。
  2. V-Model 開發流程:這是一種強調嚴謹、能在早期發現錯誤的軟體開發流程。就像打勾 V 字形般,左側從上而下逐步執行,右側則由下而上層層檢驗,確保每個階段的安全要求都確實落實。
  3. 基於模型的設計 MBD(Model-Based Design) 威力暘的工程師們會利用 MatLab®/Simulink® 等工具,把整個 ECU 要控制的系統(如煞車),用數學模型搭建起來,然後在虛擬環境中進行大量的模擬和測試。這等於在實體 ECU 誕生前,就能在「數位雙生」世界中反覆演練、預先排除設計缺陷,,並驗證安全機制是否有效。
  4. Automotive SPICE (ASPICE) : ASPICE 是國際公認的汽車軟體「品質管理系統」,它不直接評估最終 ECU 產品本身的安全性,而是深入檢視團隊在軟體開發的「整個過程」,也就是「方法論」和「管理紀律」是否夠成熟、夠系統化,並只根據數據來評估品質。

既然 ECU 掌管了整輛車的運作,其能否正常運作,自然被視為最優先項目。為此,威力暘嚴格遵循汽車業中一本堪稱「安全聖經」的國際標準:ISO 26262。這套國際標準可視為一本針對汽車電子電氣系統(特別是 ECU)的「超嚴格品管手冊」和「開發流程指南」,從概念、設計、測試到生產和報廢,都詳細規範了每個安全要求和驗證方法,唯一目標就是把任何潛在風險降到最低

有了上述這四項策略,威力暘確保其產品從設計、生產到交付都符合嚴苛的安全標準,才能通過 ISO 26262 的嚴格檢驗。

然而,ECU 的演進並未就此停下腳步。當ECU 的數量開始精簡,「大腦」變得更集中、更強大後,汽車產業又迎來了新一波革命:「軟體定義汽車」(Software-Defined Vehicle, SDV)。

-----廣告,請繼續往下閱讀-----

軟體定義汽車 SDV:你的愛車也能「升級」!

未來的汽車,會越來越像你手中的智慧型手機。過去,車輛功能在出廠時幾乎就「定終身」,想升級?多半只能換車。但在軟體定義汽車(SDV)時代,汽車將搖身一變成為具備強大運算能力與高速網路連線的「行動伺服器」,能夠「二次覺醒」、不斷升級。透過 OTA(Over-the-Air)技術,車廠能像推送 App 更新一樣,遠端傳送新功能、性能優化或安全修補包到你的車上。

不過,這種美好願景也將帶來全新的挑戰:資安風險。當汽車連上網路,就等於向駭客敞開潛在的攻擊入口。如果車上的 ECU 或雲端伺服器被駭,輕則個資外洩,重則車輛被遠端鎖定或惡意操控。為了打造安全的 SDV,業界必須遵循像 ISO 21434 這樣的車用資安標準。

威力暘電子運用前面提到的四大核心策略,確保自家產品能符合從 ISO 26262 到 ISO 21434 的國際認證。從品質管理、軟體開發流程,到安全認證,這些努力,讓威力暘的模組擁有最高的網路與功能安全。他們的產品不僅展現「台灣智造」的彈性與創新,也擁有與國際大廠比肩的「車規級可靠度」。憑藉這些實力,威力暘已成功打進日本 YAMAHA、Toyota,以及歐美 ZF、Autoliv 等全球一線供應鏈,更成為 DENSO 在台灣少數核准的控制模組夥伴,以商用車熱系統專案成功打入日系核心供應鏈,並自 2025 年起與 DENSO 共同展開平台化量產,驗證其流程與品質。

毫無疑問,未來車輛將有更多運作交由電腦與 AI 判斷,交由電腦判斷,比交由人類駕駛還要安全的那一天,離我們不遠了。而人類的角色,將從操作者轉為監督者,負責在故障或斷網時擔任最後的保險。透過科技讓車子更聰明、更安全,人類甘願當一個「最弱兵器」,其實也不錯!

-----廣告,請繼續往下閱讀-----
-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

0

0
0

文字

分享

0
0
0
從風險到希望:經導管主動脈瓣置換術的革命性突破!
careonline_96
・2024/10/16 ・2565字 ・閱讀時間約 5 分鐘

-----廣告,請繼續往下閱讀-----

圖/照護線上

主動脈瓣位於左心室與主動脈之間,如果主動脈瓣變硬、變厚,便可能無法在左心室收縮時完全開啟,讓血液無法順利通過,稱為主動脈瓣狹窄。高醫心臟血管外科主任謝炯昭醫師指出,主動脈瓣狹窄初期沒有症狀,隨著主動脈瓣狹窄惡化,可能出現胸悶、胸痛、頭暈、昏厥等症狀,嚴重可能猝死。

「針對嚴重主動脈瓣狹窄,傳統的做法是利用開心手術進行主動脈瓣置換。」謝炯昭醫師說,「傳統主動脈瓣置換手術,必須先要開胸,接上心肺機,並讓心臟暫時停止跳動,對於年紀較大或身體狀況較差的病人而言,手術風險較高。」受惠於科技的進步,經導管主動脈瓣膜置換術(TAVI)已成為解決主動脈瓣狹窄的利器。

經導管主動脈瓣膜置換術TAVI
圖/照護線上

經導管主動脈瓣膜置換術(TAVI/ Transcatheter Aortic Valve Implantation)的發展提供給患者不同的選擇。謝炯昭醫師說,經導管主動脈瓣膜置換術是從股動脈放入導管,在影像系統的輔助下,讓導管通過主動脈瓣,確認位置後,便可展開導管上的人工瓣膜,取代病變的主動脈瓣。

相較於傳統開胸手術,經導管主動脈瓣膜置換術不須讓心臟停止跳動、不須使用體外循環、傷口較小、手術時間較短、住院天數較短,對年紀較大、共病很多的患者而言,手術風險較低,可以降低術後死亡率。經過多年追蹤,目前 10 年的文獻統計顯示,經導管主動脈瓣膜的耐久性還是很不錯的。

-----廣告,請繼續往下閱讀-----

「雖然經導管主動脈瓣膜置換術常常可以在很短的時間內完成,但是很多時候並不是所有的病例都可以那麼簡單!」謝炯昭醫師說,「畢竟高科技也是要配合適當的操作,在術前、術中、術後整個團隊都需要密切配合、小心謹慎。」

經導管主動脈瓣膜置換術TAVI有何優點
圖/照護線上

舉例來說,進行 TAVI 手術的導管大概跟原子筆一樣粗,如果高齡患者的動脈較細或硬化,便可能在手術的過程中遭遇動脈破裂、出血的狀況;也可能遇到瓣膜鈣化很嚴重的病人,在展開瓣膜後,不容易貼合,而出現不同程度的測漏。謝炯昭醫師補充「由於每個人的解剖構造都有些差異,瓣膜鈣化的狀況也不一樣,所以術前會運用電腦斷層影像、心臟超音波,評估主動脈瓣膜的結構、尺寸、鈣化狀況,做好手術計畫、選擇合適的瓣膜以及尺寸大小、決定置放的深度及面對各種手術狀況的備案。」

經驗豐富的手術團隊會在術前擬定詳盡的治療計畫,並針對各種狀況進行沙盤推演,以高雄醫學大學附設醫院為例,TAVI 團隊包括心臟外科、心臟內科、影像醫學科、麻醉科、放射師、體循師及護理師等,在各領域不同專長的密切合作下,十多年來已成功為數百位主動脈瓣狹窄的年長者完成手術,患者的心臟衰竭與生活品質皆明顯改善。「手術過程中必須隨機應變,迅速處理各種突發狀況,盡力提高成功率、減少併發症。我們也養成了好的習慣,每次完成手術後,團隊也會回放檢視手術過程,持續學習精進。」謝炯昭醫師說

經導管主動脈瓣膜置換術TAVI仰賴周延的術前規劃
圖/照護線上

謝炯昭醫師說,高醫團隊也相當重視病人瓣膜的生命週期管理,會站在病人的角度做長遠的規劃,並選擇合適的人工瓣膜和手術方式。「我們都會與患者詳細討論,盡可能讓患者了解,幫助他們做決定。例如在選擇人工瓣膜時也要評估患者預期的剩餘壽命,如果患者相對比較年輕,便得考慮十年後可能需要接受瓣中瓣手術放入第二顆人工瓣膜的狀況。如果患者未來可能會因為心血管疾病而需要做心導管手術,可以考慮選擇瓣架較短的人工瓣膜,避免擋住冠狀動脈開口而造成冠狀動脈介入的困難。」

-----廣告,請繼續往下閱讀-----

經驗豐富的 TAVI 團隊不僅擬定詳盡手術計畫,盡力確保手術成功,做好術後照護與追蹤,同時也考慮病人未來可能的治療需求,幫助患者達到較佳的預後!

筆記重點整理

  • 主動脈瓣狹窄初期沒有症狀,隨著主動脈瓣狹窄惡化,可能出現胸悶、胸痛、頭暈、昏厥等症狀,嚴重可能猝死。
  • 傳統主動脈瓣置換手術,必須開胸,接上心肺機,並讓心臟暫時停止跳動,對於年紀較大或身體狀況較差的病人而言,手術風險較高。
  • 經導管主動脈瓣膜置換術不須讓心臟停止跳動、不須使用體外循環、傷口較小、手術時間較短、住院天數較短,對年紀較大、共病很多的患者而言,風險較低,可以降低術後死亡率。
  • 進行經導管主動脈瓣膜置換術需要留意一些併發症,例如出血、感染、血栓、心律不整、主動脈剝離、心包膜填塞、冠狀動脈開口阻塞等。經驗豐富的手術團隊與詳盡的術前規劃能夠提高成功率、減少併發症。
  • 術前規劃的部分會運用心臟超音波、電腦斷層影像檢查,評估主動脈瓣膜的結構、尺寸、鈣化狀況。在選擇人工瓣膜時也要評估患者預期壽命,考慮十年後可能需要接受瓣中瓣手術放入第二顆人工瓣膜的狀況。如果患者未來可能有需要做心導管介入手術,可以考慮選擇瓣架較短的人工瓣膜避免擋住冠狀動脈開口。

-----廣告,請繼續往下閱讀-----

討論功能關閉中。

0

2
0

文字

分享

0
2
0
從運動場到急診室:肥厚型心肌病的潛在危機
careonline_96
・2024/09/11 ・2473字 ・閱讀時間約 5 分鐘

圖/照護線上

肥厚型心肌病是種因為心臟肌肉的變化而帶來的問題。通常是因為基因體顯性遺傳,影響了肌小節的肌纖維排列,導致心臟肌肉變得肥厚,尤其是左心室與右心室之間分隔的心肌最容易出現肥厚變化。除了心肌變肥厚,還會讓左心室變得僵硬、延展性小,因此帶來不少問題。

心臟肌肉變得肥厚,會出現什麼問題嗎?

當聽到心臟肌肉變肥厚,或許有人會誤以為這是件好事,會讓心臟肌肉變得功能更強大,其實不然。左心室的任務是在舒張時接收從左心房來的血液,再收縮將心室內的血液送往主動脈。過度肥厚的心臟肌肉會讓左心室的空間變小,承收不了太多的血液,阻擾了血流的正常運行,讓心肌還要收縮地更出力才能運送血液進主動脈。左心室內阻力變高的時候,同時也會影響二尖瓣的功能,血液更容易逆流回到左心房。

肥厚型心肌病的影響
圖/照護線上

就算沒有阻塞心臟血流運行,心肌在收縮的時候並不會因為心肌變肥厚而有力,反而是變得比較僵硬,比較難適當地延展。當血流從左心房送往左心室時,心臟肌肉需要延展,才有利於”hold”住足量的血液。當心肌變得肥厚僵硬的時候,左心室難以延展讓血流進入,之後左心室能打出去送往主動脈的血液量就變少了。

另外一個影響到的是心臟肌肉纖維的排列,若從顯微鏡下觀察肥厚型心肌病者的心臟肌肉排列,會看到心肌細胞排的並不規律,亂亂的,與正常狀況排的整整齊齊的樣子並不同。因此,這些不整齊的心肌排列會影響到心臟內電路訊息的傳遞,甚至更容易刺激出心律不整。

-----廣告,請繼續往下閱讀-----

肥厚型心肌病的症狀

許多患者並不知道自己有肥厚型心肌病,因為症狀可能不嚴重,會甚至根本沒有症狀。若有症狀,常常是從青春期之後開始出現。

  • 運動時,吃飽飯後,或活動量大的時候,感覺到胸痛及喘不過氣
  • 容易在運動中或運動後感到疲憊,頭重腳輕,快暈倒的樣子
  • 心跳突然變很快,撞擊很大的感覺,也就是心律不整
肥厚型心肌病的症狀
圖/照護線上

肥厚型心肌病的併發症

雖然有些人帶有造成肥厚型心肌病的遺傳基因,卻一輩子都沒有症狀;也有些人雖然有症狀,但並不嚴重,不需要每天服用藥物控制。基本上,多數肥厚型心肌病患者可以有與一般人相同的預期壽命年限,也能維持不錯的生活品質,但還是要注意幾件事:

  • 心因性猝死

肥厚型心肌病會引發心室頻脈等心律不整,因此是 35 歲以下突發心因性猝死最常見的原因。有些運動員突然在田徑場上猝死的原因就是肥厚型心肌病。

  • 心臟衰竭

心臟是個幫浦,將血液送往主動脈,再到全身。心臟衰竭代表心臟身為幫浦的功能變差了,無法打出足量的血液到主動脈。前面提到肥厚型心肌病會讓左心室的空間變少,延展彈性變小,進入左心室的血液變少,也就比較難打出足量的血液進到主動脈,因而導致心臟衰竭。

-----廣告,請繼續往下閱讀-----

肥厚型心肌病的檢查與治療

當醫師從患者家族病史、個人病史、身體檢查等狀況懷疑有肥厚型心肌病的可能時,會安排心臟超音波檢查,看看是否有心室中膈變肥厚的證據。針對有家族遺傳史,但自身無症狀的人來說,可以考慮在 30 歲之後定期每三年接受心電圖與心臟超音波檢查。

在治療方面,要看患者的臨床症狀與心臟超音波檢查的結果而定。對沒有症狀的患者來說,調整生活習慣,減少劇烈運動活動或許就已足夠。另外一定要讓患者了解,務必「避免脫水」。因為有肥厚型心肌病的時候,進到左心室的血流本身就比較少,若再因為喝的水分不足脫水,在炎熱天氣下脫水,或使用了利尿劑或血管擴張劑,都會讓症狀加劇。

肥厚型心肌病的處理方式
圖/照護線上

對已有胸痛、喘不過氣的人來說,可以用乙型阻斷劑藥物或鈣離子阻斷劑,放慢心跳速度。心跳速度慢一點,可以增加左心室放鬆舒張的時間,盡量增加左心室內的血流量,之後左心室收縮打出血液的效率會比較好。

如果藥物的成效不彰,要考慮侵入性治療,像是利用手術或燒灼方式改變心室中膈的厚度,減少心肌肥厚造成心室空間減少的影響。萬一患者家族裡有人曾有心因性猝死,本身曾經暈倒好幾次,曾有心律不整,或有嚴重的臨床症狀,就要考慮放置心臟節律器來避免猝死。若肥厚型心肌病已經造成心臟衰竭,心臟移植就成了治療選項之一。

-----廣告,請繼續往下閱讀-----
-----廣告,請繼續往下閱讀-----

討論功能關閉中。