0

0
0

文字

分享

0
0
0

深凝細看半人馬座A星系

臺北天文館_96
・2012/06/19 ・1600字 ・閱讀時間約 3 分鐘 ・SR值 517 ・六年級

立即填寫問卷,預約【課程開賣早鳥優惠】與送你【問卷專屬折扣碼】!

 

半人馬座A星系(Centaurus A)另編號為NGC 5128,距離地球約1200萬光年,位在南天的半人馬座方向。這個星系是由英國Parramatta天文臺的天文學家James Dunlop於1826年8月4日發現的。它是個特殊的大質量橢圓星系,星系中心有個超大質量黑洞,也是全天最著名、離地球最近的電波星系(radio galaxy)。天文學家認為:其明亮的核心、強烈的電波輻射及鮮明的噴流特徵,都是其核心高達1億倍太陽質量的超大質量黑洞的傑作。

右圖是歐南天文台(European Southern Observatory,ESO)位在智利La Silla觀測站2.2米MPG/ESO望遠鏡以廣角相機(Wide Field Imager,WFI)所拍攝的半人馬座A星系,不僅彰顯了其橢圓星系的外觀,還顯示星系比較昏暗的外圍部分呈現拉長的型態,像顆雞蛋一樣。半人馬座A星系中的恆星數量多達數千億顆,多半是表面溫度較低的老恆星。但與絕大多數橢圓星系不同之處在於:半人馬座A星系平順的外觀中,有條扭曲的暗色塵埃帶橫亙於星系中心。

這條塵埃帶聚集了大量氣體、塵埃和年輕恆星。在塵埃帶的右上和左下邊緣可見明亮的年輕恆星星團因游離氫氣而發出紅色光輝;塵埃帶有些部分的塵埃量則濃到足以遮蔽後方明亮的背景。這些特徵,加上其顯著的電波輻射,都顯示半人馬座A是兩星系合併的結果。塵埃帶是可能其中一個螺旋星系的殘餘,但在合併成橢圓星系過程中受到重力擾動而顯得扭曲。

來自WFI的這系列嶄新影像,是紅、綠、藍濾鏡,加上氫離子濾鏡和氧離子濾鏡等各自做長時間可曝光後合成的結果。其中離子濾鏡部分,可捕捉半人馬座A的可見光噴流特徵,這個在先前的其他WFI影像中是很難見到的。

  從星系向左上角延伸出兩道紅色的絲狀構造群,這些絲狀構造基本上與電波影像中的噴流平行;這兩道絲狀構造基本上都是恆星誕生區,含有許多熾熱的年輕恆星。在塵埃帶左側上方、較靠星系內側的絲狀構造,距離星系核心30,000光年;而在靠近影像左上角、較外側的絲狀構造,距離星系核心則約65,000光年。另外,可能還有一道非常暗的噴流向影像右下角延伸。不過,天文學家尚不清楚這兩道絲狀結構的來源,目前較可能的原因可能是核心單獨發出的輻射游離此處物質的結果,或是氣體團塊彼此間互相衝擊的結果。

天文學家已利用各種波段、廣泛地研究過半人馬座A星系,其中特別的是電波波段和X射線波段的觀測,為研究星系中心超大質量黑洞的強烈外放能量與黑洞周遭環境交互作用最有利的兩個波段,而天文學家目前也正開始利用位在智利阿塔卡馬沙漠的全球最大電波陣列—ALMA來研究半人馬座A星系,如左圖。此外,天文學家也嘗試利用地面望遠鏡搜尋並研究類似半人馬座A這樣本地星系群以外的星系中的變星;截至目前為止,天文學家已在半人馬座A星系中發現超過200顆新的變星。

若要避開塵埃帶的遮蔽、直擊星系核心部分的內部狀況,天文學家必須使用波長較長的光來觀察半人馬座A。左圖為ALMA利用波長1.3毫米來觀察一氧化碳所發出的輻射。其中各種不同的顏色,是不同氣體雲因分佈與運動所引起的都卜勒效應造成的,綠色代表氣體雲運動方向朝向地球,橘色則代表氣體雲朝向遠離地球的方向運動。塵埃帶左右兩側顏色不同,呈現出半人馬座A這個星系的自轉狀況,或者說是這個星系中的氣體雲繞星系中心公轉的運動狀況。

影像底圖其實是另一座新技術望遠鏡(New Technology Telescope,NTT)的近紅外波段影像。影像中可見一圈以金色顯示的恆星和星團散佈,如塵埃帶一樣,是合併成這個巨型橢圓星系之前的螺旋星系的殘餘物質,在合併過程中受到重力拉扯而扭曲。NTT觀測到的這圈恆星,和ALMA觀察到的氣體雲,其實看到的是半人馬座A的同一結構特徵。

ALMA預定將於2013年全部竣工,屆時可有66座高精度天線同時運轉。ALMA目前僅完成設置約一半天線,但已完成的部分已經展現驚人的觀測能力。

資料來源:

  1. A Deeper Look at Centaurus A[2012.05.16]
  2. ALMA Turns its Eyes to Centaurus A [2012.05.31]

轉載自台北天文館之網路天文館網站

文章難易度
臺北天文館_96
482 篇文章 ・ 27 位粉絲
臺北市立天文科學教育館是國內最大的天文社教機構,我們以推廣天文教育為職志,做為天文知識和大眾間的橋梁,期盼和大家一起分享天文的樂趣!

1

133
3

文字

分享

1
133
3
AI 是理科「主場」? AI 也可以成為文科人的助力!
研之有物│中央研究院_96
・2022/08/13 ・5646字 ・閱讀時間約 11 分鐘

立即填寫問卷,預約【課程開賣早鳥優惠】與送你【問卷專屬折扣碼】!

 

本文轉載自中央研究院研之有物,泛科學為宣傳推廣執行單位。

  • 採訪撰文/田偲妤
  • 美術設計/蔡宛潔

AI 的誕生,文理缺一不可

人工智慧(Artificial Intelligence,簡稱 AI)在 21 世紀的今日已大量運用在生活當中,近期掀起熱議的聊天機器人 LaMDA、特斯拉自駕系統、AI 算圖生成藝術品等,都是 AI 技術的應用。多數 AI 的研發秉持改善人類生活的人文思維,除了仰賴工程師的先進技術,更需要人文社會領域人才的加入。

中央研究院「研之有物」專訪院內人文社會科學研究中心蔡宗翰研究員,帶大家釐清什麼是 AI?文科人與工程師合作時,需具備什麼基本 AI 知識?AI 如何應用在人文社會領域的工作當中?

中央研究院人文社會科學研究中心蔡宗翰研究員。圖/研之有物

詩詞大對決:人與 AI 誰獲勝?

一場緊張刺激的詩詞對決在線上展開!人類代表是有「AI 界李白」稱號的蔡宗翰研究員,AI 代表則是能秒速成詩的北京清華九歌寫詩機器人,兩位以「人工智慧」、「類神經」為命題創作七言絕句,猜猜看以下兩首詩各是誰的創作?你比較喜歡哪一首詩呢?

猜猜哪首詩是 AI 做的?哪首詩是人類做的?圖/研之有物

答案揭曉!A 詩是蔡宗翰研究員的創作,B 詩是寫詩機器人的創作。細細賞讀可發覺,A 詩的內容充滿巧思,為了符合格律,將「類神經」改成「類審經」;詩中的「福落天赦」是「天赦福落」的倒裝,多念幾次會發現,原來是 Google 開發的機器學習開源軟體庫「Tensor Flow」的音譯;而「拍拓曲」則是 Facebook 開發的機器學習庫「Pytorch」的音譯,整首詩創意十足,充滿令人會心一笑的魅力!

相較之下,B 詩雖然有將「人工」兩字穿插引用在詩中,但整體內容並沒有呼應命題,只是在詩的既有框架內排列字句。這場人機詩詞對決明顯由人類獲勝!

由此可見,當前的 AI 缺乏創作所需的感受力與想像力,無法做出超越預先設定的創意行為。然而,在不久的將來,AI 是否會逐漸產生情感,演變成電影《A.I. 人工智慧》中渴望人類關愛的機器人?

AI 其實沒有想像中聰明?

近期有一則新聞「AI 有情感像 8 歲孩童?Google 工程師爆驚人對話遭停職」,讓 AI 是否已發展出「自我意識」再度成為眾人議論的焦點。蔡宗翰研究員表示:「當前的 AI 還是要看過資料、或是看過怎麼判讀資料,經過對應問題與答案的訓練才能夠運作。換而言之,AI 無法超越程式,做它沒看過的事情,更無法替人類主宰一切!

會產生 AI 可能發展出情感、甚至主宰人類命運的傳言,多半是因為我們對 AI 的訓練流程認識不足,也缺乏實際使用 AI 工具的經驗,因而對其懷抱戒慎恐懼的心態。這種狀況特別容易發生在文科人身上,更延伸到文科人與理科人的合作溝通上,因不了解彼此領域而產生誤會與衝突。如果文科人可以對 AI 的研發與應用有基本認識,不僅能讓跨領域的合作更加順利,還能在工作中應用 AI 解決許多棘手問題。

「職場上常遇到的狀況是,由於文科人不了解 AI 的訓練流程,因此對 AI 產生錯誤的期待,認為辛苦標注的上千筆資料,應該下個月就能看到成果,結果還是錯誤百出,準確率卡在 60、70% 而已。如果工程師又不肯解釋清楚,兩方就會陷入僵局,導致合作無疾而終。」蔡宗翰研究員分享多年的觀察與建議:

如果文科人了解基本的 AI 訓練流程,並在每個訓練階段協助分析:錯誤偏向哪些面向?AI 是否看過這方面資料?文科人就可以補充缺少的資料,讓 AI 再進行更完善的訓練。

史上最認真的學生:AI

認識 AI 的第一步,我們先從分辨什麼是 AI 做起。現在的數位工具五花八門,究竟什麼才是 AI 的應用?真正的 AI 有什麼樣的特徵?

基本上,有「預測」功能的才是 AI,你無法得知每次 AI 會做出什麼判斷。如果只是整合資料後視覺化呈現,而且人類手工操作就辦得到,那就不是 AI。

數位化到 AI 自動化作業的進程與舉例。圖/研之有物

蔡宗翰研究員以今日常見的語音辨識系統為例,大家可以試著對 Siri、Line 或 Google 上的語音辨識系統講一句話,你會發現自己無法事先知曉將產生什麼文字或回應,結果可能正是你想要的、也可能牛頭不對馬嘴。此現象點出 AI 與一般數位工具最明顯的不同:AI 無法百分之百正確!

因此,AI 的運作需建立在不斷訓練、測試與調整的基礎上,盡量維持 80、90% 的準確率。在整個製程中最重要的就是訓練階段,工程師彷彿化身老師,必須設計一套學習方法,提供有助學習的豐富教材。而 AI 則是史上最認真的學生,可以穩定、一字不漏、日以繼夜地學習所有課程。

AI 的學習方法主要分為「非監督式學習」、「監督式學習」。非監督式學習是將大批資料提供給 AI,讓其根據工程師所定義的資料相似度算法,逐漸學會將相似資料分在同一堆,再由人類檢視並標注每堆資料對應的類別,進而產生監督式學習所需的訓練資料。而監督式學習則是將大批「資料」和「答案」提供給 AI,讓其逐漸學會將任意資料對應到正確答案。

圖/研之有物

學習到一定階段後,工程師會出試題,測試 AI 的學習狀況,如果成績只有 60、70 分,AI 會針對答錯的地方調整自己的觀念,而工程師也應該與專門領域專家一起討論,想想是否需補充什麼教材,讓 AI 的準確率可以再往上提升。

就算 AI 最後通過測試、可以正式上場工作,也可能因為時事與技術的推陳出新,導致準確率下降。這時,AI 就要定時進修,針對使用者回報的錯誤進行修正,不斷補充新的學習內容,讓自己可以跟得上最新趨勢。

在了解 AI 的基本特徵與訓練流程後,蔡宗翰研究員建議:文科人可以看一些視覺化的操作影片,加深對訓練過程的認識,並實際參與檢視與標注資料的過程。現在網路上也有很多 playground,可以讓初學者練習怎麼訓練 AI,有了上述基本概念與實務經驗,就可以跟工程師溝通無礙了。

AI 能騙過人類,全靠「自然語言處理」

AI 的應用領域相當廣泛,而蔡宗翰研究員專精的是「自然語言處理」。問起當初想投入該領域的原因,他充滿自信地回答:因為自然語言處理是「AI 皇冠上的明珠」!這顆明珠開創 AI 發展的諸多可能性,可以快速讀過並分類所有資料,整理出能快速檢索的結構化內容,也可以如同真人般與人類溝通。

著名的「圖靈測試」(Turing Test)便證明了自然語言處理如何在 AI 智力提升上扮演關鍵角色。1950 年代,傳奇電腦科學家艾倫・圖靈(Alan Turing)設計了一個實驗,用來測試 AI 能否表現出與人類相當的智力水準。首先實驗者將 AI 架設好,並派一個人操作終端機,再找一個第三者來進行對話,判斷從終端機傳入的訊息是來自 AI 或真人,如果第三者無法判斷,代表 AI 通過測試。

圖靈測試:AI(A)與真人(B)同時傳訊息給第三者(C),如果 C 分不出訊息來自 A 或 B,代表 AI 通過實驗。圖/研之有物

換而言之,AI 必須擁有一定的智力,才可能成功騙過人類,讓人類不覺得自己在跟機器對話,而這有賴自然語言處理技術的精進。目前蔡宗翰的研究團隊有將自然語言處理應用在:人文研究文本分析、新聞真偽查核,更嘗試以合成語料訓練臺灣人專用的 AI 語言模型。

讓 AI 替你查資料,追溯文本的起源

目前幾乎所有正史、許多地方志都已經數位化,而大量數位化的經典更被主動分享到「Chinese Text Project」平台,讓 AI 自然語言處理有豐富的文本資料可以分析,包含一字不漏地快速閱讀大量文本,進一步畫出重點、分門別類、比較相似之處等功能,既節省整理文本的時間,更能橫跨大範圍的文本、時間、空間,擴展研究的多元可能性。

例如我們想了解經典傳說《白蛇傳》是怎麼形成的?就可以應用 AI 進行文本溯源。白蛇傳的故事起源於北宋,由鎮江、杭州一帶的說書人所創作,著有話本《西湖三塔記》流傳後世。直至明代馮夢龍的《警世通言》二十八卷〈白娘子永鎮雷峰塔〉,才讓流傳 600 年的故事大體成型。

我們可以透過「命名實體辨識技術」標記文本中的人名、地名、時間、職業、動植物等關鍵故事元素,接著用這批標記好的語料來訓練 BERT 等序列標注模型,以便將「文本向量化」,進而找出給定段落與其他文本的相似之處。

經過多種文本的比較之後發現,白蛇傳的原型可追溯自印度教的那伽蛇族故事,傳說那伽龍王的三女兒轉化成佛、輔佐觀世音,或許與白蛇誤食舍利成精的概念有所關連,推測印度神話應該是跟著海上絲路傳進鎮江與杭州等通商口岸。此外,故事的雛型可能早從唐代便開始醞釀,晚唐傳奇《博異志》便記載了白蛇化身美女誘惑男子的故事,而法海和尚、金山寺等關鍵人物與景點皆真實存在,金山寺最初就是由唐宣宗時期的高僧法海所建。

白蛇傳中鎮壓白娘子的雷峰塔。最早為五代吳越王錢俶於 972 年建造,北宋宣和二年(1120 年)曾因戰亂倒塌,大致為故事雛形到元素齊全的時期。照片中雷峰塔為 21 世紀重建。圖/Wikimedia

在 AI 的協助之下,我們得以跨時空比較不同文本,了解說書人如何結合印度神話、唐代傳奇、在地的真人真事,創作出流傳千年的白蛇傳經典。

最困難的挑戰:AI 如何判斷假新聞

除了應用在人文研究文本分析,AI 也可以查核新聞真偽,這對假新聞氾濫的當代社會是一大福音,但對 AI 來說可能是最困難的挑戰!蔡宗翰研究員指出 AI 的弱點:

如果是答案和數據很清楚的問題,就比較好訓練 AI。如果問題很複雜、變數很多,對 AI 來說就會很困難!

困難點在於新聞資訊的對錯會變動,可能這個時空是對的,另一個時空卻是錯的。雖然坊間有一些以「監督式學習」、「文本分類法」訓練出的假新聞分類器,可輸入當前的新聞讓機器去判讀真假,但過一段時間可能會失準,因為新的資訊源源不絕出現。而且道高一尺、魔高一丈,當 AI 好不容易能分辨出假新聞,製造假新聞的人就會破解偵測,創造出 AI 沒看過的新模式,讓先前的努力功虧一簣。

因此,現在多應用「事實查核法」,原理是讓 AI 模仿人類查核事實的過程,尋找權威資料庫中有無類似的陳述,可用來支持新聞上描述的事件、主張與說法。目前英國劍橋大學為主的學者群、Facebook 與 Amazon 等業界研究人員已組成 FEVEROUS 團隊,致力於建立英文事實查核法模型所能運用的資源,並透過舉辦國際競賽,廣邀全球學者專家投入研究。

蔡宗翰教授團隊 2021 年參加 FEVEROUS 競賽勇奪全球第三、學術團隊第一後,也與合作夥伴事實查核中心及資策會討論,正著手建立中文事實查核法模型所需資源。預期在不久的將來,AI 就能幫讀者標出新聞中所有說法的資料來源,節省讀者查證新聞真偽的時間。

AI 的無限可能:專屬於你的療癒「杯麵」

想像與 AI 共存的未來,蔡宗翰研究員驚嘆於 AI 的學習能力,只要提供夠好、夠多的資料,幾乎都可以訓練到讓人驚訝的地步!圖/研之有物

AI 的未來充滿無限可能,不僅可以成為分類與查證資料的得力助手,還能照護並撫慰人類的心靈,這對邁入高齡化社會的臺灣來說格外重要!許多青壯年陷入三明治人(上有老、下有小要照顧)的困境,期待有像動畫《大英雄天團》的「杯麵」(Baymax)機器人出現,幫忙分擔家務、照顧家人,在身心勞累時給你一個溫暖的擁抱。

機器人陪伴高齡者已是現在進行式,新加坡南洋理工大學 Gauri Tulsulkar 教授等學者於 2021 年發表了一項部署在長照機構的機器人實驗。這名外表與人類相似的機器人叫「娜丁」(Nadine),由感知、處理、互動等三層架構組成,可以透過麥克風、3D和網路鏡頭感知用戶特徵、所處環境,並將上述資訊發送到處理層。處理層會依據感知層提供的資訊,連結該用戶先前與娜丁互動的記憶,讓互動層可以進行適當的對話、變化臉部表情、用手勢做出反應。

長照機構的高齡住戶多數因身心因素、長期缺乏聊天對象,或對陌生事物感到不安,常選擇靜默不語,需要照護者主動引導。因此,娜丁內建了注視追蹤模型,當偵測到住戶已長時間處於被動狀態,就會自動發起話題。

實驗發現,在娜丁進駐長照機構一段時間後,住戶有一半的天數會去找她互動,而娜丁偵測到的住戶情緒多為微笑和中性,其中有 8 位認知障礙住戶的溝通能力與心理狀態有明顯改善。

照護機器人娜丁的運作架構。圖/研之有物

至於未來的改進方向,研究團隊認為「語音辨識系統」仍有很大的改進空間,需要讓機器人能配合老年人緩慢且停頓較長的語速,音量也要能讓重聽者可以清楚聽見,並加強對方言與多語混雜的理解能力。

臺灣如要發展出能順暢溝通的機器人,首要任務就是要開發一套臺灣人專用的 AI 語言模型,包含華語、臺語、客語、原住民語及混合以上兩種語言的理解引擎。這需花費大量人力與經費蒐集各種語料、發展預訓練模型,期待政府能整合學界與業界的力量,降低各行各業導入 AI 相關語言服務的門檻。

或許 AI 無法發展出情感,但卻可以成為人類大腦的延伸,協助我們節省處理資料的時間,更可以心平氣和地回應人們的身心需求。與 AI 共存的未來即將來臨,如何讓自己的行事邏輯跟上 AI 時代,讓 AI 成為自己的助力,是值得你我關注的課題。

延伸閱讀

文章難易度
所有討論 1
研之有物│中央研究院_96
253 篇文章 ・ 2220 位粉絲
研之有物,取諧音自「言之有物」,出處為《周易·家人》:「君子以言有物而行有恆」。探索具體研究案例、直擊研究員生活,成為串聯您與中研院的橋梁,通往博大精深的知識世界。 網頁:研之有物 臉書:研之有物@Facebook

0

8
3

文字

分享

0
8
3
發現最靠近地球的黑洞:Gaia BH1
全國大學天文社聯盟
・2022/11/30 ・2897字 ・閱讀時間約 6 分鐘

立即填寫問卷,預約【課程開賣早鳥優惠】與送你【問卷專屬折扣碼】!

 

  • 文/林彥興|清大天文所碩士生、EASY 天文地科團隊主編、全國大學天文社聯盟監事

本月初 [1],「最靠近地球的黑洞」這個紀錄被刷新了!以天文學家 Kareem El-Badry 為首的團隊,利用蓋亞(Gaia)衛星極度精準的天體位置資料,加上多座望遠鏡聯合進行的徑向速度量測,成功確認了約 1550 光年外位於蛇夫座的一顆恆星,正與黑洞互相繞行,打破離地球最近的黑洞紀錄。

狩獵隱身巨獸的方法

人類搜尋黑洞已經有數十年的歷史。對於正在「進食」,也就是正在吸積物質的黑洞,由於其周遭的吸積盤和噴流等結構會在無線電、X 射線等多個波段發出強烈的電磁輻射,因此相對容易看到;但沒有在進食的黑洞,就要難找許多。

畢竟黑洞之所以被叫做黑洞,就是因為它本身幾乎不會發光。想要尋找這些「沉默」黑洞的方法,通常只能靠著黑洞的重力對其週遭的影響,間接推測黑洞的存在。

其中最常見的方法,就是尋找「繞著看不見的物體旋轉的恆星」。一般來說,恆星在天空中移動的軌跡應只受恆星的視差和自行影響,但如果恆星在與另一個大質量的天體互相繞行,比如我們的目標:沉默的黑洞,那恆星的軌跡就會受到黑洞影響。

因此觀測恆星的移動軌跡,是尋找沉默黑洞的重要方法之一。這個方法最著名的例子,就是 2020 年諾貝爾物理獎得主 Reinhard Genzel 與 Andrea Ghez 藉由長時間觀測銀河系中心的恆星運動(位置與徑向速度),從而確認了銀河系中心超大質量黑洞的存在。

UCLA 的銀河中心觀測團隊即是以觀測恆星的運動確認銀河系中央超大質量黑洞的存在。圖/UCLA Galactic Center Group – W.M. Keck Observatory Laser Team

但由於方法間接,用這類方式尋找黑洞時往往很難確定那個「看不見的物體」到底是不是黑洞。舉例來說,2020 年歐南天文台的天文學家宣布發現 HR 6819 是一個包含黑洞的三星系統,卻在更多更仔細的研究後遭到推翻。因此從恆星的運動來尋找「黑洞候選者」相對不難,但是想要消滅所有其他的可能性,「確定」黑洞的存在,就不是一件容易的事。

多方聯合|鎖定真身

那麼,這次的新研究是怎麼「確定」黑洞的存在的呢?

第一步,天文學家們先把目標鎖定在「形跡詭異」的恆星。因為當一顆恆星與黑洞互相繞行時,恆星在天上的運行軌跡會因為黑洞的引力而有週期性的擺盪。所以,如果我們看到有個恆星的軌跡歪歪扭扭,這顆恆星很可能就是受到黑洞重力影響的候選者。

而目前,蓋亞衛星(Gaia)提供的天體位置資料是當之無愧的首選。蓋亞是歐洲太空總署(ESA)於 2013 年發射的太空望遠鏡,與著名的韋伯太空望遠鏡一樣運行在日地第二拉格朗日點。

但與十項全能的韋伯不同,蓋亞是「天體測量學 Astrometry」的專家,專門以微角秒等級的超高精確度測量天體的位置。每隔幾年,蓋亞團隊就會整理並公布他們的觀測結果,稱為資料發布(Data Release)。目前最新的「第三次資料發布 DR3」之中,就包含了超過 18 億顆天體的海量資料。

歐洲太空總署(ESA)的蓋亞衛星(Gaia)是當前測量天體位置和距離無庸置疑的首選。圖/ESA/ATG medialab; background: ESO/S. Brunier

經過篩選,團隊發現一顆名為 Gaia DR3 4373465352415301632 的恆星看起來格外可疑。這是一顆視星等 13.77(大概比肉眼可見極限暗 1300 倍,但以天文學的角度來說算是相當亮)、與太陽十分相似的恆星,距離地球約 1550 光年。

畫面中央的明亮恆星即是這次的主角 Gaia BH1。圖/Panstarrs

找到可能的候選者後,團隊一方面翻閱過去觀測這顆恆星的歷史資料,另一方面也申請多座望遠鏡,進行了四個月的光譜觀測。同時使用從蓋亞衛星的位置(赤經、赤緯、視差)以及從光譜獲得的徑向速度資訊,團隊可以精確地計算出這顆恆星應當是正在繞行一個 9.6 倍太陽質量的天體運轉。

這麼大的質量,卻幾乎不發出任何光,黑洞幾乎是唯一可能的解釋。

但以現有的觀測資料,天文學家仍不能確定它到底是一顆黑洞,還是有兩顆黑洞以相當近地軌道互相繞行,然後恆星再以較大的軌道繞著兩顆黑洞運轉。但無論是一顆或兩顆,Gaia BH1 都刷新了離地球最近黑洞的紀錄,距離僅有 1550 光年,比上一個紀錄保持人(LMXB A0620-00)要近了三倍。從銀河系的尺度來看,這幾乎可說是就在自家後院。

結合蓋亞與其他多座望遠鏡的光譜觀測,天文學家可以計算出 Gaia BH1 在天空中的移動軌跡(左圖黑線)與其軌道形狀(右圖)。注意除了恆星與黑洞互繞所造成的移動外,恆星在天上的位置也受視差和自行影響,兩者在左圖中以藍色虛線表示。圖/El-Badry et al. 2022.
天文學家計算出的 Gaia BH1 徑向速度(RV)變化(黑線)與觀測結果(各顏色的點)。圖/El-Badry et al. 2022.

更多黑洞就在前方

最後讓我們來聊聊,找到「離地球最近的黑洞」有什麼意義呢?

「離地球最近的黑洞」這個紀錄本身是沒有太多意義的。雖然說從銀河系的尺度來說,1550 光年幾乎可說是自家後院,但是這顆黑洞並不會對太陽系、地球或是大家的日常生活產生任何影響。既然如此,為什麼天文學家還會努力尋找這些黑洞呢?

其中一大原因,是因為尋找這些與恆星互相繞行的黑洞,可以幫助天文學家了解恆星演化的過程。在銀河系漫長的演化歷史中,曾有數不清的恆星誕生又死亡。我們看不到這些已經死亡的恆星,但可以藉由這次研究的方法,去尋找這些大質量恆星死亡後留下的黑洞 [2],從而推測雙星過去是如何演化,留下的遺骸才會是如今看到的樣子。

除了 Gaia BH1,天文學家也在持續研究 Gaia DR3 之中其他「形跡可疑」的恆星/黑洞雙星候選系統。而隨著蓋亞衛星的持續觀測,更多這類黑洞候選者將會越來越多。研究這些系統,將幫助天文學家進一步了解雙星系統演化的奧秘。

註解

[1] 嚴格來說,論文九月中就已經出現在 arXiv 上了。

[2] 嚴格來說,恆星質量黑洞(stellar mass black hole)是大質量恆星的遺骸。超大質量黑洞(supermassive black hole)就不一定了。

延伸閱讀

  1. El-Badry, K., Rix, H. W., Quataert, E., Howard, A. W., Isaacson, H., Fuller, J., … & Wojno, J. (2022). A Sun-like star orbiting a black hole. Monthly Notices of the Royal Astronomical Society518(1), 1057-1085.
  2. [2209.06833] A Sun-like star orbiting a black hole
  3. Astronomers Discover Closest Black Hole to Earth | Center for Astrophysics
  4. The Dormant Stellar-Mass Black Hole that Actually Is | astrobites
  5. Astronomers find a sun-like star orbiting a nearby black hole
  6. 狩獵隱身巨獸:天文學家發現沉默的恆星質量黑洞? – PanSci 泛科學
  7. 「最靠近地球的黑洞」其實不是黑洞
  8. 人們抬頭所遙望的星空是恆定不變嗎? – 科學月刊Science Monthly

0

1
2

文字

分享

0
1
2
被吸進黑洞會怎樣?黑洞和一般的洞,哪裡不一樣?——《宇宙大哉問》
天下文化_96
・2022/09/24 ・2414字 ・閱讀時間約 5 分鐘

立即填寫問卷,預約【課程開賣早鳥優惠】與送你【問卷專屬折扣碼】!

 

  • 作者/豪爾赫.陳、丹尼爾.懷森
  • 譯者/徐士傑、葉尚倫

如果我被吸進黑洞會怎麼樣?

很多人似乎都有這個疑問。

如果路上突然出現一個黑洞,會發生什麼事?圖/天下文化提供

「進入黑洞後會發生什麼事呢?」在許多科學書籍中都有提到,也是我們聽眾和讀者經常提出的問題。但是為什麼大家對這問題特別有興趣呢?難道公園裡處處都是黑洞?或是有人計畫在黑洞附近野餐,但又擔心放任他們的孩子在旁邊跑來跑去會發生問題?

可能不是。這個問題的吸睛度與實際上會不會發生無關,而是源自我們對迷人太空物體的基本好奇心。眾人皆知,黑洞是神祕莫測的奇怪空間區域,是時空結構中與宇宙實體完全脫節的「空洞」,任何東西都無法逃脫。

不過,掉入黑洞是什麼感覺呢?一定會死嗎?和掉進普通洞裡的感覺有什麼不同?你會在洞內發現宇宙深處的祕密,還是看到時空在你的眼皮子底下伸展開來?在黑洞裡面,眼睛(或大腦)能正常發揮功能嗎?

只有一種方法可以找到答案,那就是跳進黑洞。所以抓起你的野餐墊,和你的孩子說聲再見(也許是永別),然後牢牢抓緊,因為我們即將深入黑洞公園展開終極冒險。

讓我們跳進黑洞尋找答案吧!圖/天下文化提供

接近黑洞

當你接近黑洞時,注意到的第一件事可能是,黑洞確實看起來就像「黑色的洞」。黑洞是絕對黑色,本身完全不發射或反射光線,任何擊中黑洞的光都會被困在裡面。所以當你觀察黑洞時,眼睛看不到任何光子,大腦會將其解釋為黑色。

黑洞也是個不折不扣的洞。你可以將黑洞視為空間球體,任何進入黑洞的東西都會永遠留在裡面。這是因為已經留在黑洞內的東西所造成的重力效應:質量在黑洞中被壓縮得十分密集,進而產生巨大的重力影響。

為什麼?因為離有質量的東西愈近,重力愈強,而質量被壓縮代表你可以十分靠近質量中心。質量很大的東西通常分布得相當分散。以地球為例,地球質量大約與一公分寬(大約一個彈珠大小)的黑洞等同大小。如果你與這個黑洞距離一個地球半徑長,感受到的重力就如同站在地球表面一樣,都是 1g。

如果你與黑洞距離一個地球半徑長,感受到的重力就如同站在地球表面一樣。圖/天下文化提供

但是當你分別接近兩者中心時,會發生截然不同的狀況。當你愈靠近地球中心點,愈感覺不到地球重力。那是因為地球圍繞著你,把你平均的往各個方向拉。相反的,當你離黑洞愈近,感受到的重力愈大,因為整個地球質量近在咫尺的作用在你身上。這就是黑洞強大的威力,超緊緻質量對周圍事物立即產生巨大影響。

當你離地球中心越近,就越感受不到重力,但當你離黑洞中心愈近,感受到的重力卻越大。圖/天下文化提供

真正緊緻的質量會在自身周圍產生極大重力,並且在一定距離處,把空間扭曲到連光都無法逃脫(請記住,重力不僅會拉動物體,還會扭曲空間)。光不能逃脫的臨界點稱為「事件視界」,在「某種程度」上,事件視界定義了黑洞從何處開始,以此距離為半徑的黑色球體則稱為黑洞。

黑洞的大小會隨著擠進多少質量而發生變化。如果你把地球壓縮得足夠小,會得到一個彈珠大小的黑洞,因為在大約一公分距離內,光再也無法逃脫。但是如果你再壓縮更多質量,黑洞半徑就會更大。例如,你把太陽壓縮變小,空間扭曲程度更高,事件視界更遠,大約發生在距離中心點三公里處,因此黑洞寬度約六公里。質量愈大,黑洞愈大。

黑洞的大小會隨著擠進多少質量而發生變化。圖/天下文化提供

其實,黑洞的大小並沒有理論限制。在太空中我們已探測到的黑洞寬度,最小約有二十公里,最大可達數百億公里。實際上,黑洞形成的限制只有周圍環繞物質的多寡,以及所允許的形成時間。

當你接近黑洞時,可能會注意到的第二件事是,黑洞通常不孤單寂寞。有時你會看到周圍東西掉進黑洞。或者更準確的說,你會看到東西在黑洞周圍旋轉等待落入。

這種東西稱為「吸積盤」,是由氣體、塵埃和其他物質組成。這些物質沒有被直接吸入黑洞,而是在軌道上盤旋等待、螺旋進入黑洞。這景象對於小黑洞而言,可能不是那麼令人印象深刻,但如果是超大質量黑洞,確實值得一看。氣體和塵埃以超高速度飛來飛去,產生非常強烈的純粹摩擦力,導致物質被撕裂,釋放出許多能量,創造出宇宙中最強大的光源。這些類恆星(或稱類星體)的亮度,有時比單個星系中所有恆星的亮度總和還要高數千倍。

超大質量黑洞能釋放出許多能量,創造出宇宙中最強大的光源。圖/天下文化提供

幸運的是,並不是所有黑洞,甚至是超大質量黑洞,都會形成類星體(或耀星體,就此而言,像是吃了類固醇的類星體)。大多數時候,吸積盤並沒有合適的東西或條件來創造如此戲劇化的場景。這也算是一樁美事,否則的話,你一靠近活動劇烈的類星體,可能會讓你在瞥見黑洞之前就氣化了。希望你選擇落入的黑洞周圍有個漂亮的、相對平靜的吸積盤,讓你有機會接近並好好欣賞。

——本文摘自《宇宙大哉問:20個困惑人類的問題與解答》,2022 年 8 月,天下文化,未經同意請勿轉載。

天下文化_96
113 篇文章 ・ 597 位粉絲
天下文化成立於1982年。一直堅持「傳播進步觀念,豐富閱讀世界」,已出版超過2,500種書籍,涵括財經企管、心理勵志、社會人文、科學文化、文學人生、健康生活、親子教養等領域。每一本書都帶給讀者知識、啟發、創意、以及實用的多重收穫,也持續引領台灣社會與國際重要管理潮流同步接軌。