0

0
1

文字

分享

0
0
1

【鼠科學】老鼠不只會躲貓,更懂躲貓貓

Yubari
・2020/01/24 ・1566字 ・閱讀時間約 3 分鐘 ・SR值 496 ・六年級

-----廣告,請繼續往下閱讀-----

躲貓貓,又叫做捉迷藏,是大多數人的童年回憶,這個看似簡單的遊戲,事實上參與者需要一定程度的心智能力才能進行。在 2019 年 9 月的一篇科學文章中,一群科學家們發表了他們如何透過實驗,發現老鼠竟然也懂得玩捉迷藏,甚至看起來樂在其中。

看影片找靈感,玩捉迷藏發論文

德國洪堡大學(Humboldt university) 的神經科學家 Michael Brecht,某一天看了一則飼主跟寵物鼠玩捉迷藏的影片,這讓他開始好奇這個影片是否只是個誤會,又或者是老鼠真的會玩捉迷藏?

Brecht看的不是youtube,是科學。

於是他和團隊設計了一個 30 平方公尺大的房間,並且利用厚紙板和來製造遮蔽,放置了數個透明或不透明的盒子。他們一共製作了七個藏匿地點給老鼠,以及三個藏匿地點給學生 Reinhold。

-----廣告,請繼續往下閱讀-----

當老鼠當鬼時,Reinhold 會把老鼠放進盒子後蓋起來,接著跑去躲起來,再利用遙控器將蓋子打開。經過訓練後,老鼠開始知道蓋子打開是代表可以去尋找 Reinhold 的信號,當老鼠找到她之後便會收到獎勵。

老鼠當鬼尋找 Reinhold,找到後獲得獎勵

換 Reinhold 當鬼時,她會打開盒子並蹲在旁邊,等待老鼠跳出盒子並躲到藏匿處,老鼠被找到後一樣會獲得獎勵。和一般動物訓練不一樣的是,實驗中用搔癢和撫摸作為獎勵而非給予食物。

經過兩周的訓練,六隻老鼠中共有五隻學會玩捉迷藏,不會在遊戲途中混淆或變更角色。

-----廣告,請繼續往下閱讀-----

為了瞭解老鼠在玩捉迷藏的狀態,他們在老鼠的腦中植入了可攜帶的裝置,在主導記憶學習的前額葉皮質區域,紀錄了 180 個神經元的電子訊號。當 Reinhold 關起盒蓋,提示老鼠誰要當鬼時,有大約三分之一的細胞開始產生訊號。Brecht 表示這些現象代表這些區域可能對於學習規則相當敏感。

不只會玩,老鼠還會為了娛樂而玩

除了對遊戲的基本認知的,實驗中有幾隻老鼠甚至表現出意料外的能力,當 Reinhold 搜尋房間時,老鼠會偷偷移動到它已經看過的地點,彷彿它們推測這些地方不會再次被搜尋。另外在躲藏時,老鼠也更喜歡躲在不透明的盒子中並且保持安靜,好讓自己較不容易被發現。Brecht 認為這些行為都顯示老鼠有能力從其他生物的角度去思考,表示老鼠比想像中來得聰明。

躲在不同地點的老鼠,下方統計表格中可以看出躲在透明盒子(灰色圖例)的次數明顯較少。

而另一件令人好奇的是,老鼠玩遊戲是為了娛樂或是獎勵。

Brecht指出實驗中老鼠有好幾個行為都顯示它們是為了娛樂而玩,例如當老鼠發現研究者時,會展現出快樂的跳躍 (freudensprung)。這個動作在哺乳類動物中很常見,兔子、羊和人類都有類似的行為來表達開心。老鼠被發現後,也常常不接受獎勵,而是會跑去其他地點躲藏,似乎不想讓遊戲結束。(跟熬夜刷首勝的我有點像?)

-----廣告,請繼續往下閱讀-----

我們與鼠的距離

這項研究最重要的貢獻是證明了老鼠具有足夠的心智能力,包括了決策、位置導航、理解規則和角色設定來進行捉迷藏遊戲。除了被搔癢會發笑2,為了夥伴可以放棄巧克力之外3,科學家又找到了我們之間新的共同點。

另外實驗其實還有第二階段,研究者要讓四隻以上的老鼠一起玩捉迷藏,進而觀察老鼠們的互動,看看是否會有更意外的行為出現,就讓我們一起拭目以待之後的結果吧。(好了快去報名搞笑諾貝爾獎。)

看完文章,你是否準備好想要和你的寵物進行一局 science 等級的實驗了呢?如果沒有寵物的話,也不要太難過,或許遊戲早就開始了,只是你不知道而已,吱吱! ψ(`∇´)ψ

比起食物,老鼠會更傾向於救助同伴。圖/SATO, N. ET AL.ANIMAL COGNITION (2015)

參考資料

  1. Reinhold, A. S., Sanguinetti-Scheck, J. I., Hartmann, K., & Brecht, M. (2019). Behavioral and neural correlates of hide-and-seek in rats. Science365(6458), 1180-1183.
  2. Ishiyama, S., & Brecht, M. (2016). Neural correlates of ticklishness in the rat somatosensory cortex. Science354(6313), 757-760.
  3. Sato, N., Tan, L., Tate, K., & Okada, M. (2015). Rats demonstrate helping behavior toward a soaked conspecific. Animal cognition18(5), 1039-1047.
-----廣告,請繼續往下閱讀-----
文章難易度
Yubari
7 篇文章 ・ 6 位粉絲
一位小小小小地科研究生

0

1
0

文字

分享

0
1
0
為期刊拍張封面 顯微鏡下的科學魔法
顯微觀點_96
・2024/05/27 ・3010字 ・閱讀時間約 6 分鐘

-----廣告,請繼續往下閱讀-----

本文轉載自顯微觀點

希爾思使用VS120拍攝,小鼠大腦矢狀切口上的染色圖像。圖片來源:EVIDENT|Olympus官網

「我開始拍攝美麗的影像是出於興趣,因為我喜歡神經科學圖像藝術性的一面。」

史蒂芬妮.希爾思(Stephanie Shiers)是美國德州達拉斯大學的認知神經科學家,她拍攝的顯微鏡影像曾被選作多本期刊的封面,包括《神經科學雜誌》 (The Journal of Neuroscience)、《科學轉化醫學》 (Science Translational Medicine)等。要怎麼做才能讓自己拍攝的作品登上期刊封面呢?

希爾思在 2019 年取得認知和神經科學博士學位,目前從事疼痛研究,以移植捐贈者的神經組織探索慢性疼痛的臨床前機制和治療方法。

最驕傲的時刻——影像獲選期刊封面

希爾思攻讀博士期間,當第一篇論文獲得刊登且拍攝的照片一同被選為封面發表時,是她最引以為傲的時刻。她表示,第一篇論文被發表本身已經很令人興奮,當時並未預期會獲選封面,「因為我只是基於我對神經科學藝術的熱愛,而拍攝漂亮的圖片」。

-----廣告,請繼續往下閱讀-----

事實上,論文中所有影像都使用 40 倍物鏡拍攝,但她後來決定使用 100 倍物鏡拍攝,以捕捉一些漂亮的影像,加以觀察。

「我能看到所有的樹突和軸突初始段,這看起來令人震撼!」當希爾思與她的指導教授分享時,教授鼓勵她投稿期刊封面,同時提交論文。

希爾思表示,在攻讀博士學位時,面對周遭的同行都非常專業,自己曾感到無所適從。然而,當成功的數據和封面影像出現時,過去辛勤的工作和壓力都值得了。

歷經徬徨 受科學魔法吸引踏上研究路

對於自己選擇踏入神經科學研究,並繼續攻讀博士、成為科學家,希爾思坦承自己也曾經歷徬徨。「因為不知道自己想做什麼」,希爾思大學時曾選了三個主修、一個副修。

-----廣告,請繼續往下閱讀-----

原想攻讀醫學院的希爾思,在接受緊急救護技術(EMT)訓練時,意識到自己不想當醫師。因此她又選了神經科學和歷史專業,因為她自認可能喜歡人文學科、可能想成為律師。

直到完成學士學位後希爾思仍不清楚自己的職涯方向。但當她加入校內實驗室時,發現自己「真的很喜歡」,進而申請進入加州大學戴維斯分校的 NeuroMab 研究機構(UC Davis/NIH NeuroMab facility),從事免疫組織化學的工作。

在這份工作中,希爾思研究進行免疫組織化學染色、抗體驗證,在顯微鏡下觀察「肉眼」看不見的東西。這時她意識到「科學是最我們所擁有,最接近魔法的東西」,也因此確認了職業道路——走上學術研究之路。

而現在對希爾思來說,最難忘的時刻莫過於帶領在實驗室掙扎的學生領略科學的奇妙。

-----廣告,請繼續往下閱讀-----

曾經有一名學生未受太多訓練,因此希爾思帶著她完成染色工作、教她操作共軛焦顯微鏡;而當學生第一次看到顯微鏡下的影像時,露出驚訝的表情。 「看到別人也能體驗到科學的神奇,真是太好了!」希爾思這麼說道。

Science Trans 1
圖片來源:擷自《Science Translational Medicine vol. 13, issue 595》封面

超敏通道

圖像顯示小鼠背根神經節表現瞬態受體蛋白 5 (TRPC5,紅色)編碼瞬時受體電位規範 5(TRPC5,紅色)、抑鈣基因相關胜肽(CGRP,綠色)、P2X3 受體(藍色)和神經絲蛋白 200(青色)的基因。

希爾思為〈Transient Receptor Potential Canonical 5 Mediates Inflammatory Mechanical and Spontaneous Pain in Mice.〉的共同作者。

本篇論文主要探討,多種原因引起疼痛超敏反應,其中 TRPC5 的活化增加了囓齒動物對疼痛的敏感性,而 TRPC5 通道也在人類感覺神經元中表現,因此研究認為 TRPC5 抑制劑可能可有效減輕患者的疼痛超敏反應。

拍科學藝術照 封面也可以很抽象

對於如何拍出「封面等級」的科學藝術照,希爾思也給出幾點建議。首先,她強調擁有適合的儀器至關重要,以降低信噪比和提升影像品質。

此外,研究者必須接受更多基礎訓練。她表示,過去自己雖操作過很多次顯微鏡,但主要使用明視野照明觀察。直到開始博士課程後學習神經解剖學、蛋白質定位等知識,使用免疫螢光染色最適當的卻是使用暗視野照明。因此持續接受培訓,了解如何正確使用顯微鏡也是非常重要的。

希爾思也建議,在實驗數據收集階段,就可預先規劃影像拍攝;一邊構思論文中需要使用的圖像和材料,如果材料和研究內容一致,就當場拍攝解析度更高的影像。

-----廣告,請繼續往下閱讀-----

她也鼓勵研究者不斷嘗試新事物,例如使用不同染劑(明視野病理染色劑、鈣染色劑等)與顯微鏡搭配,將更容易拍攝出引人注目的影像。

希爾思鼓勵研究者盡可能地投稿封面影像,並強調封面不必與數據收集所用的影像完全相同;甚至許多期刊封面的圖片可以是抽象的、不一定要和照片一樣真實。

物種特異性表達

以原位雜合技術(in situ hybridization,左)和空間轉錄(Spatial Transcriptomics,右)並置的人類背根神經節,用於描述感覺神經元轉錄譜的特徵。

痛覺受器是專門的感覺神經元,存在於背根神經節(DRG)和三叉神經節中,對生成最終疼痛感知的神經元信號至關重要。

希爾思為〈Spatial transcriptomics of dorsal root ganglia identifies molecular signatures of human nociceptors.〉的第二作者。

本篇研究試圖為人類疼痛受器生成等效訊息,利用空間轉錄數據識別痛覺受器的轉錄組特徵,並藉以識別物種間差異和潛在的藥物靶點。

Sciencetrans2022 1
圖片來源:擷自《Science Translational Medicine (vol. 14, issue 632》封面 
Jneurosci 3
圖片來源:擷自《The Journal of Neuroscience vol. 38, issue 33》封面

圖像為患有神經性疼痛的小鼠內側前額皮質神經元,紅色為 PV 陽性細胞小白蛋白陽性中間神經元(紅色)與軸突初始段標記(Ankyrin-G,綠色)和核標記(DAPI,藍色)的共同標記。

希爾思為〈Neuropathic Pain Creates an Enduring Prefrontal Cortex Dysfunction Corrected by the Type II Diabetic Drug Metformin But Not by Gabapentin〉的第一作者。

認知障礙是神經性疼痛的共病。本篇研究使用原治療糖尿病的藥物二甲雙胍,治療神經疼痛 7 天後出現逆轉,包括功能和解剖學出現變化,顯示該藥物或可老藥新用於治療神經性疼痛及其認知合併症。

  1. https://www.olympus-lifescience.com/en/discovery/behind-the-lens-dr-stephanie-shiers-creates-cover-worthy-neuroscience-art/
  2. Sadler, Katelyn E et al. “Transient receptor potential canonical 5 mediates inflammatory mechanical and spontaneous pain in mice.” Science translational medicine vol. 13,595 (2021).
  3. Tavares-Ferreira, Diana et al. “Spatial transcriptomics of dorsal root ganglia identifies molecular signatures of human nociceptors.” Science translational medicine vol. 14,632 (2022).
  4. Shiers, Stephanie et al. “Neuropathic Pain Creates an Enduring Prefrontal Cortex Dysfunction Corrected by the Type II Diabetic Drug Metformin But Not by Gabapentin.” The Journal of neuroscience : the official journal of the Society for Neuroscience vol. 38,33 (2018).

查看原始文章

-----廣告,請繼續往下閱讀-----

討論功能關閉中。

顯微觀點_96
26 篇文章 ・ 5 位粉絲
從細微的事物出發,關注微觀世界的一切,對肉眼所不能見的事物充滿好奇,發掘蘊藏在微觀影像之下的故事。

1

5
1

文字

分享

1
5
1
【從中國經典認識大腦系列】從「子非魚,安知魚之樂?」淺談主觀意識的本質
YTC_96
・2023/10/18 ・3086字 ・閱讀時間約 6 分鐘

-----廣告,請繼續往下閱讀-----

宋劉寀群魚戲荇。圖/npm.edu.tw

惠施觀點:人不能知道魚的快樂

「子非魚,安知魚之樂?」出自《莊子.秋水》篇中的濠梁之辯。惠施認為莊子不是魚,又怎麼能知道魚是快樂的?這看似簡單的一句話卻點出困擾哲學家以及科學家數百年之久的問題,那就是主觀意識到底是什麼?

圖/Pixabay

濠梁之辯的情境是這樣子的。莊子和惠施同遊至濠水的橋梁。莊子說:「鯈魚出遊時很從容,這就是魚的快樂啊。」惠施說:「你不是魚,怎麼知道魚的快樂?」莊子回答說:「你不是我,怎麼知道我不知道魚的快樂?」惠施說:「我不是你,當然不知道你的想法,而你當然也不是魚,所以你不知道魚的快樂,這完全是可以肯定的。」莊子說:「請回到開頭的話題。你問我『你怎麼知道魚的樂趣?』既然你已經知道我知道,並且問我,那我就是在濠梁上知道的。」

既然莊子認為自己能知道魚的快樂,那我也想問莊子,你知道成為一隻魚又是怎麼樣的感覺嗎?

圖/YouTube

成為一隻蝙蝠可能是什麼樣子

在濠梁之辯後的兩千多年,美國著名哲學家湯瑪斯.內格爾(Thomas Nagel)也從想像自己是蝙蝠(注意不是小小鳥)的過程中獲得靈感,並在 1974 年發表了〈成為一隻蝙蝠可能是什麼樣子〉(What is it like to be a bat?)。他認為主觀經驗無法透過客觀描述來獲得,是心靈與物理之間的解釋鴻溝(Explanatory Gap)。簡單來說,就算我們知道蝙蝠是透過聲納來感知並飛行在空中,但因為我們不是真正的身歷其境成為一隻蝙蝠,我們還是無法知道作為蝙蝠是什麼樣的感覺。

-----廣告,請繼續往下閱讀-----
圖/YouTube

這種主觀經驗,哲學上稱作感質(Qualia),是指主觀意識經驗的特殊品質或性質。它們是個人直接體驗的主觀感受,無法通過客觀描述或第三人稱觀察來完全理解或解釋。感質是一種主觀的、非物理的屬性,無法被完全捕捉或解釋。它們涉及到我們感知世界的方式、感受事物的質感、觸覺、視覺、聽覺、嗅覺等等。

舉例來說,如果你試圖向另一個人解釋一朵玫瑰的芬芳,或者試圖描述一個人的愉快感受,這些主觀感受都屬於感質。它們是我們內心獨有的體驗,無法被他人直接體驗或理解。

另一個哲學家們喜歡舉的例子是「你和我看到的紅色是一樣的嗎?」這或許聽起來是一個很蠢的問題,因為當紅色物品擺在眼前,非色盲或沒有眼疾的一般人都能異口同聲說出該顏色。透過醫學研究,我們也都知道波長約 700 nm 的紅色光刺激到視網膜的錐細胞是我們大家都能看到紅色的原因。

不過,雖然紅色光能刺激每個人相同的視網膜錐細胞是不變的客觀物理事實,但沒有人能保證你和我主觀感受到的紅色是相同的,就像是幾年前網路爆紅的藍黑白金裙 (The Dress)(圖一),即使是同一條裙子的照片,有人說是藍黑裙,卻有人說是白金裙。這也說明看似客觀的色彩,也存在有主觀性。

-----廣告,請繼續往下閱讀-----
圖一、藍黑裙?白金裙?都幾咧。圖/The dress – Wikipedia

人類或許能想象自己作為一隻蝙蝠使用聲納來飛行導航,又或是把自己像蝙蝠般倒掛休息,但這和成為一隻真正蝙蝠的感受還是不同的。

感質可能埋藏在複雜的神經網路中

莊子和惠施的辯論背後探討了意識的本質,也引發人們對於知覺和主觀體驗的一種思考。即使經過數千年的探索,「意識究竟是怎麼產生的?」仍是一個深奧而又複雜的問題,也是所謂的「意識的困難問題(Hard Problem of Consciousness)」。從哲學角度,感質無法透過描述去感受,但從科學上來說,我們無法否認大腦是產生主觀感受的關鍵,這也讓神經科學家們好奇是否能找到感質的神經機制。

英國巴斯大學疼痛研究中心的教授羅傑奥普伍德(Roger Orpwood) 多年來進行感質的理論研究,他認為感質是局部大腦皮質網路訊息處理的結果。這個網路能轉換訊息結構(Information Structure; 訊息在大腦中的物理表現,主要是動作電位的模式)和訊息資訊(Information Message; 感質的基礎)(圖二)。當輸入的訊息結構被網路辨識,而產生訊息資訊,這網絡還可以輸出一個訊息資訊的表徵並進行下一個傳遞與轉換(Structure → Message → Structure → Message…)(圖三)。舉例來說,臭雞蛋的硫化氫(H2S)氣味感質是透過一層一層的網路後產生。 當鼻腔吸入硫化氫氣味分子後,嗅覺系統的訊息結構通過嗅覺神經束傳遞到嗅覺皮質網絡。而傳遞的訊息所獲得的資訊都建立在前一個資訊的基礎上。這資訊從硫化氫的第一階段的辨識內在身份(Inner Identiy),演變為硫化氫的內在形式(Inner Form),到發展成硫化氫的意象(Inner Likeness or Image),也就是硫化氫的感質體驗(圖四)。

知名美國神經科學家,研究意識神經機制多年的克里斯托夫.科赫(Christof Koch),也認為意識不是來自個別大腦區域,而是來自區域內和區域間高度網絡化的神經元。意識相關的神經區域(Neural Correlates of Consciousness (NCC))概念的興起,也希望透過實驗研究的方式來找到產生意識的最小神經集合,並了解哪些大腦的區域是產生意識所不可或缺的。

-----廣告,請繼續往下閱讀-----
圖二、當我們看到藍色後,大腦透過訊息結構的模式傳送到視覺皮層 V4 區域。對大腦來說,這就是一種訊息資訊,是我們主觀上看到的「藍色」。圖/frontiersin.org
圖三、網絡或神經元集合中的​​基本訊息處理。輸出訊息結構從被辨識的訊息資訊從輸入訊息結構中形成。訊息(Information)從結構(Structure)到資訊(Message),再到結構。圖/frontiersin.org
圖四、嗅覺感質的產生示意圖。圖/frontiersin.org

結論

莊子和惠施辯論河中的鯈魚是否快樂,以及雙方怎麼知道魚是否快樂,很有趣的帶到了哲學以及神經科學重要的議題。意識到底是什麼?我們能否知道其他人又是其他物種的真正主觀感受?

圖/Pixabay

感質是意識研究中的一個重要議題,它引發了關於意識本質和主觀體驗的哲學和科學辯論。有些人認為感質是生物或腦部運作的結果,而另一些人認為它們是超出物理過程的主觀現象。不論如何,未來仍需要更多的研究來了解意識產生的機制。

-----廣告,請繼續往下閱讀-----
所有討論 1
YTC_96
11 篇文章 ・ 19 位粉絲
從大學部到博士班,在神經科學界打滾超過十年,研究過果蠅、小鼠以及大鼠。在美國取得神經科學博士學位之後,決定先沉澱思考未來的下一步。現在於加勒比海擔任志工進行精神健康知識以及大腦科學教育推廣。有任何問題,歡迎來信討論 ytc329@gmail.com。

0

4
5

文字

分享

0
4
5
瀕死大腦的最後波紋——人生跑馬燈的科學證據?
YTC_96
・2023/08/09 ・2578字 ・閱讀時間約 5 分鐘

-----廣告,請繼續往下閱讀-----

最後波紋。圖/imdb.com

JOJO 的奇妙冒險中,西撒.安德里歐.齊貝林臨死前的「最後波紋」代表著生者最後的思念與力量,是讓 JOJO 粉痛哭流涕的名場景。最後的波紋看似只是作者荒木飛呂彦大師的創作,沒想到神經科學家記錄了瀕死的人類大腦的活動,發現死亡的當下出現有節律的高頻波紋。這些波形和做夢、記憶回憶以及冥想期間發生的腦電圖相似,也彷彿說明最後的波紋是真的存在!

此外,據說人在彌留時能瞬間看到過往的種種回憶,就像人生跑馬燈般快速回顧一生。這些在生死間徘迴所產生的不可思議現象一直是科學家們感興趣的議題。究竟心臟停止後的瀕死狀態(near-death experience (NDE))和大腦活動與意識狀態的關係是什麼?大腦在瀕死狀態時發生了什麼?這是否又能解釋人生跑馬燈的現象呢?

神秘的瀕死經驗

根據瀕死經驗科學研究的奠基者,且有瀕死經驗科學研究之父之稱的布魯斯.葛瑞森醫師(Bruce Greyson),瀕死經驗是一個深刻的主觀心理經驗,通常發生在接近死亡的人身上,處於嚴重的身體,或情緒危險的情況下。這種體驗超越個人自我的感覺,是一種神聖或更高原則的結合。包括脫離身體、漂浮的感覺、完全的寧靜、安全、溫暖、絕對溶解的體驗和光的存在。又甚至可能經歷包括痛苦、空虛、毀滅和巨大空虛的感覺[1-3]

瀕死體驗中反復出現的常見元素是看到一條黑暗的隧道,經歷明亮的燈光,寧靜祥和的感覺。該圖為荷蘭畫家耶羅尼米斯·波希 (Hieronymus Bosch) 的Ascent of the Blessed。圖/wikimedia

即時記錄瀕死的人類大腦活動

過去認為心臟停止後大腦是低活動的狀態,直到約 15 年前左右(西元 2009 年),才記錄到死亡前電流激增(end-of-life electrical surges (ELES))的現象。 但這些紀錄僅來自回溯瀕死期間的測量值,並不是即時記錄臨終患者腦電圖[4]

-----廣告,請繼續往下閱讀-----

大約 10 年前,密西根大學研究員吉莫波吉金(Jimo Borjigin)和其團隊進行老鼠實驗,發現在心臟停止後的前 30 秒,gamma 振盪與 alpha 和 theta 之間的相位耦合在大腦皮質與心臟,以及大腦前端和後端的連接性有增加的現象。這些神經振盪原本都只存在於清醒的生物上,但在瀕死狀態下,這些高頻神經生理活動卻超過了清醒狀態下的水平[5]。 這也說明了在動物在臨死前可能經歷了特殊的體驗。

第一次在人類大腦進行從瀕死到死亡過渡階段的連續腦電圖記錄,則在去年 2 月發表在「老化神經科學前沿」( Frontiers in Aging Neuroscience)。愛沙尼亞塔爾圖大學的勞爾維森特(Raul Vicente)博士及其同事使用連續腦電圖檢測一名 87 歲的患者癲癇並同時進行治療。雖然很遺憾,最後患者心臟病發作並去世了,但他們測量了死亡前後 900 秒的大腦活動,並調查心臟停止跳動前後 30 秒內發生的情況。結果發現,就在心臟停止的前後,出現了 gamma 振盪、theta 震盪、alpha 震盪以及 beta 神經震盪的變化。這結果就和之前的老鼠實驗相當類似[6]

在瀕死狀態下,這些高頻神經生理活動卻超過了清醒狀態下的水平。 這也說明了在動物在臨死前可能經歷了特殊的體驗。圖/ Pixabay

瀕死之際大腦活動激增能否解釋人生跑馬燈?

雖然以上的研究說明,人在死亡前大腦會產生類似清醒狀態時才有的腦波反應,但這些證據並不足以證明人生跑馬燈的存在。為了證實這個現象的可能性,之前提到進行老鼠實驗的吉莫波吉金(Jimo Borjigin)在人類使用相同的計算工具來分析腦電圖信號,並關注腦電圖功率的時間動態、低頻和高頻振盪之間的局部和遠程相位-振幅耦合,以及所有頻段的功能性和定向大腦皮質連接。簡單來說,就是想要知道瀕死時人類大腦和意識以及認知功能相關的腦區是否產生變化。

他們對四位已陷入昏迷的病人進行紀錄,在死亡前,兩名在前額和中央皮質區出現廣泛的 beta 和 gamma 波增加。這兩名病人隨後出現了顳葉中反復出現的大型 beta 和 gamma 波活動,並涉及到體感皮質(somatosensory cortex, SSC)。高頻 gamma 波的振幅與慢速 beta 波的相位之間的關聯是發生在背外側前額皮質(dorsolateral prefrontal cortex)和體感皮質之間。更值得注意的是,gamma 波激增的位置是在和意識緊密相關,由顳葉-頂葉-枕葉皮層組成的後皮質熱區(posterior cortical hot zone)[7]

-----廣告,請繼續往下閱讀-----
一名 24 歲昏迷婦女在移除呼吸器後的的腦電圖變化。
S1:該婦女有呼吸器維持生命,因心臟驟停引起缺氧損傷。
S2: 開始時移除呼吸機,此時出現高頻和高振幅活動。
患者的最後一次心跳發生在右側的 S11 末尾。圖/National Library of Medicine

受限於道德倫理以及醫學技術,科學家們無法直接驗證瀕死大腦產生的腦波狀態是否就是產生瀕死經驗。但至少能確定的是,哺乳動物的大腦可以在瀕死時產生與增強的意識處理相關的神經關聯。

結論

《論語‧先進篇》子曰:「未知生,焉知死?」雖然孔子曾說,活人的事情道理都還不明白,又怎能清楚死亡是怎麼一回事呢?但探討人在生死間徘徊的現象不僅僅是一個科學問題,更代表著意識研究、臨床應用和倫理議題的突破。

透過更精細且長時間的腦電波紀錄追蹤,有許多證據觀察到在人們跨越生死那一瞬間,大腦會試圖做最後的掙扎。人生在世短短數十載,轉眼間便煙消雲散,瀕死的大腦在跨越生與死那鴻溝之前的體驗也是人生謝幕前的最後一次演出。

從瀕死經驗探討人性的電影-別闖陰陽界(Flatliners)。圖/IMDB
  1. Greyson, B. (2000). Near-death experiences. In E. Cardeña, S. J. Lynn, & S. Krippner (Eds.), Varieties of anomalous experience: Examining the scientific evidence (pp. 315–352). American Psychological Association.
  2. https://en.wikipedia.org/wiki/Bruce_Greyson
  3. https://en.wikipedia.org/wiki/Near-death_experience
  4. Chawla, L. S., Akst, S., Junker, C., Jacobs, B., and Seneff, M. G. (2009). Surges of electroencephalogram activity at the time of death: a case series. J. Palliat. Med. 12, 1095–1100. doi: 10.1089/jpm.2009.0159
  5. Borjigin, J., Lee, U. C., Liu, T., Pal, D., Huff, S., Klarr, D., et al. (2013). Surge of neurophysiological coherence and connectivity in the dying brain. Proc. Natl. Acad. Sci. U.S.A. 110, 14432–14437. doi: 10.1073/pnas.1308285110
  6. Vicente R, Rizzuto M, Sarica C, Yamamoto K, Sadr M, Khajuria T, Fatehi M, Moien-Afshari F, Haw CS, Llinas RR, Lozano AM, Neimat JS and Zemmar A (2022) Enhanced Interplay of Neuronal Coherence and Coupling in the Dying Human Brain. Front. Aging Neurosci. 14:813531. doi: 10.3389/fnagi.2022.813531
  7. Xu G, Mihaylova T, Li D, Tian F, Farrehi PM, Parent JM, Mashour GA, Wang MM, Borjigin J. Surge of neurophysiological coupling and connectivity of gamma oscillations in the dying human brain. Proc Natl Acad Sci U S A. 2023 May 9;120(19):e2216268120. doi: 10.1073/pnas.2216268120.
-----廣告,請繼續往下閱讀-----
YTC_96
11 篇文章 ・ 19 位粉絲
從大學部到博士班,在神經科學界打滾超過十年,研究過果蠅、小鼠以及大鼠。在美國取得神經科學博士學位之後,決定先沉澱思考未來的下一步。現在於加勒比海擔任志工進行精神健康知識以及大腦科學教育推廣。有任何問題,歡迎來信討論 ytc329@gmail.com。

0

0
1

文字

分享

0
0
1
【鼠科學】老鼠不只會躲貓,更懂躲貓貓
Yubari
・2020/01/24 ・1566字 ・閱讀時間約 3 分鐘 ・SR值 496 ・六年級

-----廣告,請繼續往下閱讀-----

躲貓貓,又叫做捉迷藏,是大多數人的童年回憶,這個看似簡單的遊戲,事實上參與者需要一定程度的心智能力才能進行。在 2019 年 9 月的一篇科學文章中,一群科學家們發表了他們如何透過實驗,發現老鼠竟然也懂得玩捉迷藏,甚至看起來樂在其中。

看影片找靈感,玩捉迷藏發論文

德國洪堡大學(Humboldt university) 的神經科學家 Michael Brecht,某一天看了一則飼主跟寵物鼠玩捉迷藏的影片,這讓他開始好奇這個影片是否只是個誤會,又或者是老鼠真的會玩捉迷藏?

Brecht看的不是youtube,是科學。

於是他和團隊設計了一個 30 平方公尺大的房間,並且利用厚紙板和來製造遮蔽,放置了數個透明或不透明的盒子。他們一共製作了七個藏匿地點給老鼠,以及三個藏匿地點給學生 Reinhold。

-----廣告,請繼續往下閱讀-----

當老鼠當鬼時,Reinhold 會把老鼠放進盒子後蓋起來,接著跑去躲起來,再利用遙控器將蓋子打開。經過訓練後,老鼠開始知道蓋子打開是代表可以去尋找 Reinhold 的信號,當老鼠找到她之後便會收到獎勵。

老鼠當鬼尋找 Reinhold,找到後獲得獎勵

換 Reinhold 當鬼時,她會打開盒子並蹲在旁邊,等待老鼠跳出盒子並躲到藏匿處,老鼠被找到後一樣會獲得獎勵。和一般動物訓練不一樣的是,實驗中用搔癢和撫摸作為獎勵而非給予食物。

經過兩周的訓練,六隻老鼠中共有五隻學會玩捉迷藏,不會在遊戲途中混淆或變更角色。

-----廣告,請繼續往下閱讀-----

為了瞭解老鼠在玩捉迷藏的狀態,他們在老鼠的腦中植入了可攜帶的裝置,在主導記憶學習的前額葉皮質區域,紀錄了 180 個神經元的電子訊號。當 Reinhold 關起盒蓋,提示老鼠誰要當鬼時,有大約三分之一的細胞開始產生訊號。Brecht 表示這些現象代表這些區域可能對於學習規則相當敏感。

不只會玩,老鼠還會為了娛樂而玩

除了對遊戲的基本認知的,實驗中有幾隻老鼠甚至表現出意料外的能力,當 Reinhold 搜尋房間時,老鼠會偷偷移動到它已經看過的地點,彷彿它們推測這些地方不會再次被搜尋。另外在躲藏時,老鼠也更喜歡躲在不透明的盒子中並且保持安靜,好讓自己較不容易被發現。Brecht 認為這些行為都顯示老鼠有能力從其他生物的角度去思考,表示老鼠比想像中來得聰明。

躲在不同地點的老鼠,下方統計表格中可以看出躲在透明盒子(灰色圖例)的次數明顯較少。

而另一件令人好奇的是,老鼠玩遊戲是為了娛樂或是獎勵。

-----廣告,請繼續往下閱讀-----

Brecht指出實驗中老鼠有好幾個行為都顯示它們是為了娛樂而玩,例如當老鼠發現研究者時,會展現出快樂的跳躍 (freudensprung)。這個動作在哺乳類動物中很常見,兔子、羊和人類都有類似的行為來表達開心。老鼠被發現後,也常常不接受獎勵,而是會跑去其他地點躲藏,似乎不想讓遊戲結束。(跟熬夜刷首勝的我有點像?)

我們與鼠的距離

這項研究最重要的貢獻是證明了老鼠具有足夠的心智能力,包括了決策、位置導航、理解規則和角色設定來進行捉迷藏遊戲。除了被搔癢會發笑2,為了夥伴可以放棄巧克力之外3,科學家又找到了我們之間新的共同點。

另外實驗其實還有第二階段,研究者要讓四隻以上的老鼠一起玩捉迷藏,進而觀察老鼠們的互動,看看是否會有更意外的行為出現,就讓我們一起拭目以待之後的結果吧。(好了快去報名搞笑諾貝爾獎。)

看完文章,你是否準備好想要和你的寵物進行一局 science 等級的實驗了呢?如果沒有寵物的話,也不要太難過,或許遊戲早就開始了,只是你不知道而已,吱吱! ψ(`∇´)ψ

-----廣告,請繼續往下閱讀-----

比起食物,老鼠會更傾向於救助同伴。圖/SATO, N. ET AL.ANIMAL COGNITION (2015)

參考資料

  1. Reinhold, A. S., Sanguinetti-Scheck, J. I., Hartmann, K., & Brecht, M. (2019). Behavioral and neural correlates of hide-and-seek in rats. Science365(6458), 1180-1183.
  2. Ishiyama, S., & Brecht, M. (2016). Neural correlates of ticklishness in the rat somatosensory cortex. Science354(6313), 757-760.
  3. Sato, N., Tan, L., Tate, K., & Okada, M. (2015). Rats demonstrate helping behavior toward a soaked conspecific. Animal cognition18(5), 1039-1047.
-----廣告,請繼續往下閱讀-----
文章難易度
Yubari
7 篇文章 ・ 6 位粉絲
一位小小小小地科研究生