Loading [MathJax]/extensions/tex2jax.js

0

1
0

文字

分享

0
1
0

破解廣告話術—「鈦」扯手鍊

科學月刊_96
・2011/03/14 ・3999字 ・閱讀時間約 8 分鐘 ・SR值 540 ・八年級

電視購物中主持人及來賓舌燦蓮花地介紹各式產品,甚至進行許多實驗證明他們的說法,我們要傻傻地接受嗎?還是應該仔細思考其中的陷阱呢?

文 / 曾耀寰(任職中研院天文所)

日前在第四台購物頻道看到一則電視廣告,仔細一看,發現內容實在太扯,必須得好好說明一下。我們知道商品廣告推銷的手法有很多,從早期的單刀直入,到後來的情境轉移,真可寫成一部廣告演進史,尤其是情境轉移,造就了一堆經典廣告,例如「鑽石恆久遠,一顆永流傳」,就是將浪漫的結婚轉化成推銷鑽石。而我在電視第四台看到的廣告是要推銷鈦鍺手鍊,這支廣告手法突破傳統,以看似科學的手法進行推銷之實,堪稱是偽科學的經典。

這個鈦鍺手鍊的推銷重點在於防範電磁波,一開始利用恐嚇的手法告訴大家電磁波無所不在,並且是危害健康的殺手,接著利用現場的科學實驗,顯示鈦鍺手鍊可以阻斷電磁波。乍看之下,好像真有這麼一回事,鈦鍺手鍊不僅強身,還可以護身,就像神功護體般,讓配戴的人免於電磁恐慌。

唬人的廣告手法

總地來看,這支廣告的手法不外兩套策略,一、電磁波是個壞東西;二、鈦鍺手鍊可以阻斷電磁波,大家買鈦鍺手鍊就對了。這兩套策略都用了看似權威的方式為他們的產品背書。首先他們拿了一本小冊子《漫談電磁波》,並強調是行政院衛生署國民健康局所出版的(圖一),這本小冊子的電子檔就放在國民健康局的網站上,大家都可以下載參考內容。

-----廣告,請繼續往下閱讀-----

在廣告中,主持人特別強調這是政府出版,具有公正性和權威性,然後指著小冊子的第十一頁中的幾段注意事項,其中一項是要大家對家電用品保持距離,例如使用吹風機要保持30 公分的距離。接著以恐嚇的口吻強調電磁波的可怕,殊不知,小冊子一開始就告訴大家:「WHO下之研究機構國際癌症研究署2002 年專家會議的報告指出,電力設備產生的極低頻電磁場,僅可能對兒童白血病有影響。除此之外,其他的癌症是否與電磁場暴露有關,均未獲得證實」。書裡頭也清楚表示「每種癌症都有不同的特性和致病原因,貿然將所有癌症的病因都歸咎於電磁場,反而忽略了不良生活形態、飲食習慣、基因等因影響,也非正確觀念」。這是斷章取義的典型手法,只選擇某一段對自己有利的,故意忽小冊子最重要的部分,加以用恐嚇的口吻,以便達到他推銷產品的最終目的。

更扯的是主持人接著解釋保持安全的距離要達30 公分,為了讓觀眾更有感覺,主持人立刻拿出一支長尺,告訴大家用吹風機應該要在這支長尺之外,以保安全(圖二)。仔細端詳,主持人拿出來的尺也太長了些,通常成人手掌張開,大拇指尖到小拇指尖的距離大約是20 公分, 30公分大約是一個半的寬度,但廣告用的尺最少有60 公分長,見該廣告在科學成分上太不嚴謹。另外一種可能性,是為了告訴大家,要隨時對家電用品保這樣長的距離是不可行的,唯有使用鈦鍺手鍊才比較實際。

廣告中的科學實驗

我們接著談談廣告所謂的科學實驗。利用科學實驗來推銷商業產品,一直以來都看似極具說服力,不管是減肥產品,或者健康食品, 都是標榜科學認證。曾經有健康食品號稱可以改善一般人的酸性體質,因為酸性體質容易致癌(不知從何處得來的訊息)。因此廣告的宣傳手法就是做一些化學實驗,將稀釋的鹽酸盛放在燒杯內,加入他們的產品,結果鹽酸溶液被中和了,代表吃他們的產品可以中和酸性體質。這麼說來,傳統的水晶800肥皂也是鹼性,不知吃哪一種產品比較合適改善酸性體質,若以價格面來看,水晶800的贏面還比較大呢。

暫且放下健康食品議題,我們還是回到鈦鍺手鍊的廣告。根據他們之前提出的國民健康局宣導手冊,斷章取義地恐嚇大家電磁波的可怕,為他們的產品鋪陳出一條蹊徑。主持人接著宣稱他們的產品鈦鍺手鍊可以阻擋電磁波,光是口頭宣稱是不夠的,科學實驗又被拿出來當作效果認證的法寶。廣告中的科學實驗就是用儀器測量電磁波的強度,他們測量了檯燈、電扇、吹風機、電鍋、手機等日常電器,儀器顯示的數據大的嚇人,例如電鍋顯示出969,檯燈顯示出816 ,吹風機則是678(圖三)。然後將鈦鍺手鍊放在儀器和電器之間,結果發現儀器顯示出的數值全部歸零,表示鈦鍺手鍊有阻隔電磁波的效用。鈦鍺手鍊真的可以阻斷電磁波嗎?

-----廣告,請繼續往下閱讀-----
圖二:主持人拿出一根宣稱30 公分的棍子,告訴觀眾使用吹風機的安全距離,實際目測發現最少也有60 公分。

對於廣告裡的實驗,我們得做些功課,特別是重複相同的實驗,重新檢驗,讓科學的東西更科學。首先我們得先知道電磁波測量到底是量什麼東西,我們用過體重器,體重器是測量我們的重量,所以測量電磁波的儀器就是測量磁場的強度,市面上可以買到測量極低頻電磁波強度的儀器。電磁波是電場和磁場的波動,極低頻是指電磁波頻率在30~300赫之間,我們家電所使用的交流電頻率是60 赫,一般的電磁波測量器都有寫明測量所適用的頻率範圍。

在做測量的時候,不僅得到的數值很重要,更重要的是單位。小時候常和同學耍嘴皮子,例如和同學打賭, 賭金是1000 ,結果賭輸了,同學要起賭金, 於是便賴皮說是沙子1000 顆,或日幣1000 毛,這時就可知道單位的重要。單位有很多種,重量有重量的單位(公克重、英鎊),長度有長度的單位(公分、英寸),而測量磁場的單位是高斯(G)。

即便是同一種單位,也有程度大小的不同,例如長度單位公里,公里的千分之一是公尺,同樣的,高斯的千分之一是毫高斯(mG),磁場的另一種單位是特斯拉(Tesla),特斯拉是高斯的一萬倍,微特斯拉(μ T)則是特斯拉的百萬分之一。雖然有高斯、毫高斯、特斯拉、微特斯拉這麼多種,主要還是要看用哪種單位比較方便。舉例來說,地球的平均磁場強度是0.5 高斯,或者說500 毫高斯。

圖三:第四台的電磁波測試,(A)測量到的吹風機磁場數值有678 。(B)放入鈦鍺手鍊,數值立刻歸零,影片中的測量儀器不易判斷出是哪種儀器。

-----廣告,請繼續往下閱讀-----

磁場是什麼?

磁場到底如何產生?通常有電流通過的地方,四周就會有磁場,至於一般文具店購買的磁鐵,雖然沒有電流,但磁鐵裡頭的電子會有自轉和公轉,電子一動就會產生對應的小磁場,由於這些小磁場排列一致,不會相互抵銷,形成了一個總磁場,這是磁性物質的特性。因此磁場的產生可以歸類成兩大類,一個是磁性物質本身所帶的磁場,另一個是電流所產生的。磁場是肉眼看不見的,但磁場會對帶電的物質起作用,產生磁力,推動帶電物質。例如兩根通有電流的電線,由於各自會形成磁場,又會受到對方磁場影響,於是兩根電線會有相吸或相斥的磁力作用。而受到磁力的強弱是根據電流的大小以及距離的遠近而定,離得越遠,受到的磁力作用越小。

既然知道電流會產生磁場,因此任何需要電的產品都一定會有磁場產生。我借了一台普通的電磁波測試器(magnetic field meter),售價約新台幣1590元,世駿電子生產,型號為TENMARS TM-191 ,這是一款2 0 0 9 年下半年推出的產品,可以測量磁場強度。TM-191 可以選擇兩種測量的單位——毫高斯和微特斯拉,屬於測量極低頻電磁波的儀器,解析度約0.1/1 毫高斯,也就是說如果變化在1 毫高斯以下,是無法分辨出來的。我就用這台TM-191測量周遭常見的電器用品,結果如圖四。



圖四:TM-191 在近距離(幾乎貼近待測目標)測量使用中的(A)電風扇、(B)液晶電視、(C)電冰箱、(D)微波爐的磁場強度,分別為109.8mG、0.8mG 、3.3mG 、120.6mG 。(E)另外在40 公分的距離下測量使用中的微波爐,得到3.5mG 。

破解廣告騙術

圖五:筆者透過電視購物,直接購買一條鈦鍺手鍊,作為實驗之用。

由此我們可以發現,廣告出現的電磁波測量數值根本沒有一點意義可言,因為單從電視畫面來看,不知道該儀器是否為測量磁場的儀器,更重要的是沒有顯示單位。例如廣告中測量吹風機顯示數值為678,但根據我的測量,在吹風機後方5公分的磁場是65 毫高斯。磁場強度和測量的距離有關,除了吹風機外,一般家電使用的距離都離我們很遠,根據國際非游離輻射防護協會(ICNIRP)所訂的電磁波環境建議值是833毫高斯,一般家電用品所產生的磁場都不會超過這個標準。

-----廣告,請繼續往下閱讀-----

本文的重點是要探討電視購物頻道推銷的鈦鍺手鍊是否可以阻擋電磁波,該廣告用了號稱科學的手法證明他們的產品。為了證實這一點,我直接透過電視購物頻道買了一條相同的鈦鍺手鍊(圖五),照著廣告的方式測量磁場強度。實驗的對象是一般家用的吹風機,在吹風機後方距離5 公分的位置測量磁場強度,得到的數值約65 毫高斯,接著在吹風機和TM-191 之間放入購買的鈦鍺手鍊,得到的數值為65.1毫高斯,相差數值不大,在測量儀器的誤差範圍內(圖六)。

另外,筆者也針對其他電器用品進行相同的實驗,都沒辦法做到讓鈦鍺手鍊明顯阻絕電磁波,讓磁場強度歸零,因此可以推論鈦鍺手鍊根本不能阻擋電磁波。鈦鍺手鍊不會明顯影響家電用品使用時所產生的磁場,甚至沒有磁場強度歸零的現象發生。

雖然這個結果對筆者來說,一點也不意外,但本篇文章希望告訴讀者,只要有心,你也可以重複這項科學實驗,並得到相同的結論,結論是——這條手鍊只能當作裝飾品使用,完全沒有阻絕電磁波的作用,不要過度期待手鍊的額外效用。(本文圖片皆由作者提供)


圖六:(A)測量吹風機的磁場強度,數值為65mG 。(B)將購買的鈦鍺手鍊放入,結果磁場強度為65.1mG 。

-----廣告,請繼續往下閱讀-----

本文刊登於《科學月刊》2011年3月號。自3月起,科學月刊與PanSci合作,將精選當期科月好文透過PanSci帶給大家!敬請期待。

-----廣告,請繼續往下閱讀-----
文章難易度
科學月刊_96
249 篇文章 ・ 3751 位粉絲
非營利性質的《科學月刊》創刊於1970年,自創刊以來始終致力於科學普及工作;我們相信,提供一份正確而完整的科學知識,就是回饋給讀者最好的品質保證。

0

1
0

文字

分享

0
1
0
ECU: 汽車大腦的演化與挑戰
鳥苷三磷酸 (PanSci Promo)_96
・2025/07/02 ・3793字 ・閱讀時間約 7 分鐘

本文與 威力暘電子 合作,泛科學企劃執行。

想像一下,當你每天啟動汽車時,啟動的不再只是一台車,而是一百台電腦同步運作。但如果這些「電腦」突然集體當機,後果會有多嚴重?方向盤可能瞬間失靈,安全氣囊無法啟動,整台車就像失控的高科技廢鐵。這樣的「系統崩潰」風險並非誇張劇情,而是真實存在於你我日常的駕駛過程中。

今天,我們將深入探討汽車電子系統「逆天改運」的科學奧秘。究竟,汽車的「大腦」—電子控制單元(ECU),是如何從單一功能,暴增至上百個獨立系統?而全球頂尖的工程師們,又為何正傾盡全力,試圖將這些複雜的系統「砍掉重練」、整合優化?

第一顆「汽車大腦」的誕生

時間回到 1980 年代,當時的汽車工程師們面臨一項重要任務:如何把汽油引擎的每一滴燃油都壓榨出最大動力?「省油即省錢」是放諸四海皆準的道理。他們發現,關鍵其實潛藏在一個微小到幾乎難以察覺的瞬間:火星塞的點火時機,也就是「點火正時」。

如果能把點火的精準度控制在「兩毫秒」以內,這大約是你眨眼時間的百分之一到千分之一!引擎效率就能提升整整一成!這不僅意味著車子開起來更順暢,還能直接省下一成的油耗。那麼,要如何跨過這道門檻?答案就是:「電腦」的加入!

-----廣告,請繼續往下閱讀-----

工程師們引入了「微控制器」(Microcontroller),你可以把它想像成一顆專注於特定任務的迷你電腦晶片。它能即時讀取引擎轉速、進氣壓力、油門深度、甚至異常爆震等各種感測器的訊號。透過內建的演算法,在千分之一秒、甚至微秒等級的時間內,精準計算出最佳的點火角度,並立刻執行。

從此,引擎的性能表現大躍進,油耗也更漂亮。這正是汽車電子控制單元(ECU)的始祖—專門負責點火的「引擎控制單元」(Engine Control Unit)。

汽車電子控制單元的始祖—專門負責點火的「引擎控制單元」(Engine Control Unit)/ 圖片來源:shutterstock

ECU 的失控暴增與甜蜜的負荷

第一顆 ECU 的成功,在 1980 年代後期點燃了工程師們的想像:「這 ECU 這麼好用,其他地方是不是也能用?」於是,ECU 的應用範圍不再僅限於點火,燃油噴射量、怠速穩定性、變速箱換檔平順度、ABS 防鎖死煞車,甚至安全氣囊的引爆時機……各種功能都交給專屬的 ECU 負責 。

然而,問題來了:這麼多「小電腦」,它們之間該如何有效溝通?

-----廣告,請繼續往下閱讀-----

為了解決這個問題,1986 年,德國的博世(Bosch)公司推出了一項劃時代的發明:控制器區域網路(CAN Bus)。你可以將它想像成一條專為 ECU 打造的「神經網路」。各個 ECU 只需連接到這條共用的線路上,就能將訊息「廣播」給其他單元。

更重要的是,CAN Bus 還具備「優先通行」機制。例如,煞車指令或安全氣囊引爆訊號這類攸關人命的重要訊息,絕對能搶先通過,避免因資訊堵塞而延誤。儘管 CAN Bus 解決了 ECU 之間的溝通問題,但每顆 ECU 依然需要獨立的電源線、接地線,並連接各種感測器和致動器。結果就是,一輛汽車的電線總長度可能達到 2 到 4 公里,總重量更高達 50 到 60 公斤,等同於憑空多載了一位乘客的重量。

另一方面,大量的 ECU 與錯綜複雜的線路,也讓「電子故障」開始頻繁登上汽車召回原因的榜首。更別提這些密密麻麻的線束,簡直是設計師和維修技師的惡夢。要檢修這些電子故障,無疑讓人一個頭兩個大。

大量的 ECU 與錯綜複雜的線路,也讓「電子故障」開始頻繁登上汽車召回原因的榜首。/圖片來源:shutterstock

汽車電子革命:從「百腦亂舞」到集中治理

到了2010年代,汽車電子架構迎來一場大改革,「分區架構(Zonal Architecture)」搭配「中央高效能運算(HPC)」逐漸成為主流。簡單來說,這就像在車內建立「地方政府+中央政府」的管理系統。

-----廣告,請繼續往下閱讀-----

可以想像,整輛車被劃分為幾個大型區域,像是車頭、車尾、車身兩側與駕駛艙,就像數個「大都會」。每個區域控制單元(ZCU)就像「市政府」,負責收集該區所有的感測器訊號、初步處理與整合,並直接驅動該區的馬達、燈光等致動器。區域先自理,就不必大小事都等中央拍板。

而「中央政府」則由車用高效能運算平台(HPC)擔任,統籌負責更複雜的運算任務,例如先進駕駛輔助系統(ADAS)所需的環境感知、物體辨識,或是車載娛樂系統、導航功能,甚至是未來自動駕駛的決策,通通交由車輛正中央的這顆「超級大腦」執行。

乘著這波汽車電子架構的轉型浪潮中, 2008 年成立的台灣本土企業威力暘電子,便精準地切入了這個趨勢,致力於開發整合 ECU 與區域控制器(Domain Controller)功能的模組化平台。他們專精於開發電子排檔、多功能方向盤等各式汽車電子控制模組。為了確保各部件之間的溝通順暢,威力暘提供的解決方案,就像是將好幾個「分區管理員」的職責,甚至一部分「超級大腦」的功能,都整合到一個更強大的硬體平台上。

這些模組不僅擁有強大的晶片運算能力,可同時支援 ADAS 與車載娛樂,還能兼容多種通訊協定,大幅簡化車內網路架構。如此一來,車廠在追求輕量化和高效率的同時,也能顧及穩定性與安全性。

-----廣告,請繼續往下閱讀-----
2008 年威力暘電子致力於開發整合 ECU 與區域控制器(Domain Controller)功能的模組化平台 /圖片來源:shutterstock

萬無一失的「汽車大腦」:威力暘的四大策略

然而,「做出來」與「做好」之間,還是有差別。要如何確保這顆集結所有功能的「汽車大腦」不出錯?具體來說,威力暘電子憑藉以下四大策略,築起其產品的可靠性與安全性:

  1. AUTOSAR : 導入開放且標準化的汽車軟體架構 AUTOSAR。分為應用層、運行環境層(RTE)和基礎軟體層(BSW)。就像在玩「樂高積木」,ECU 開發者能靈活組合模組,專注在核心功能開發,從根本上提升軟體的穩定性和可靠性。
  2. V-Model 開發流程:這是一種強調嚴謹、能在早期發現錯誤的軟體開發流程。就像打勾 V 字形般,左側從上而下逐步執行,右側則由下而上層層檢驗,確保每個階段的安全要求都確實落實。
  3. 基於模型的設計 MBD(Model-Based Design) 威力暘的工程師們會利用 MatLab®/Simulink® 等工具,把整個 ECU 要控制的系統(如煞車),用數學模型搭建起來,然後在虛擬環境中進行大量的模擬和測試。這等於在實體 ECU 誕生前,就能在「數位雙生」世界中反覆演練、預先排除設計缺陷,,並驗證安全機制是否有效。
  4. Automotive SPICE (ASPICE) : ASPICE 是國際公認的汽車軟體「品質管理系統」,它不直接評估最終 ECU 產品本身的安全性,而是深入檢視團隊在軟體開發的「整個過程」,也就是「方法論」和「管理紀律」是否夠成熟、夠系統化,並只根據數據來評估品質。

既然 ECU 掌管了整輛車的運作,其能否正常運作,自然被視為最優先項目。為此,威力暘嚴格遵循汽車業中一本堪稱「安全聖經」的國際標準:ISO 26262。這套國際標準可視為一本針對汽車電子電氣系統(特別是 ECU)的「超嚴格品管手冊」和「開發流程指南」,從概念、設計、測試到生產和報廢,都詳細規範了每個安全要求和驗證方法,唯一目標就是把任何潛在風險降到最低

有了上述這四項策略,威力暘確保其產品從設計、生產到交付都符合嚴苛的安全標準,才能通過 ISO 26262 的嚴格檢驗。

然而,ECU 的演進並未就此停下腳步。當ECU 的數量開始精簡,「大腦」變得更集中、更強大後,汽車產業又迎來了新一波革命:「軟體定義汽車」(Software-Defined Vehicle, SDV)。

-----廣告,請繼續往下閱讀-----

軟體定義汽車 SDV:你的愛車也能「升級」!

未來的汽車,會越來越像你手中的智慧型手機。過去,車輛功能在出廠時幾乎就「定終身」,想升級?多半只能換車。但在軟體定義汽車(SDV)時代,汽車將搖身一變成為具備強大運算能力與高速網路連線的「行動伺服器」,能夠「二次覺醒」、不斷升級。透過 OTA(Over-the-Air)技術,車廠能像推送 App 更新一樣,遠端傳送新功能、性能優化或安全修補包到你的車上。

不過,這種美好願景也將帶來全新的挑戰:資安風險。當汽車連上網路,就等於向駭客敞開潛在的攻擊入口。如果車上的 ECU 或雲端伺服器被駭,輕則個資外洩,重則車輛被遠端鎖定或惡意操控。為了打造安全的 SDV,業界必須遵循像 ISO 21434 這樣的車用資安標準。

威力暘電子運用前面提到的四大核心策略,確保自家產品能符合從 ISO 26262 到 ISO 21434 的國際認證。從品質管理、軟體開發流程,到安全認證,這些努力,讓威力暘的模組擁有最高的網路與功能安全。他們的產品不僅展現「台灣智造」的彈性與創新,也擁有與國際大廠比肩的「車規級可靠度」。憑藉這些實力,威力暘已成功打進日本 YAMAHA、Toyota,以及歐美 ZF、Autoliv 等全球一線供應鏈,更成為 DENSO 在台灣少數核准的控制模組夥伴,以商用車熱系統專案成功打入日系核心供應鏈,並自 2025 年起與 DENSO 共同展開平台化量產,驗證其流程與品質。

毫無疑問,未來車輛將有更多運作交由電腦與 AI 判斷,交由電腦判斷,比交由人類駕駛還要安全的那一天,離我們不遠了。而人類的角色,將從操作者轉為監督者,負責在故障或斷網時擔任最後的保險。透過科技讓車子更聰明、更安全,人類甘願當一個「最弱兵器」,其實也不錯!

-----廣告,請繼續往下閱讀-----
-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

0

1
1

文字

分享

0
1
1
電磁波全揭秘:了解頻帶、頻寬、頻率和通信技術的基礎知識
數感實驗室_96
・2024/06/13 ・672字 ・閱讀時間約 1 分鐘

本文由 國立臺灣師範大學 委託,泛科學企劃執行。 

先前我們介紹了多位為通信科技發展做出貢獻的科學家。現在,我們要深入探討無線通信的技術層面。

無線通信,顧名思義不像傳統的電話或電報那樣需要一條實體的線路來傳遞信號。但這些信號並非憑空傳遞,它們依賴的正是電磁波。

電磁波在現代社會無處不在,從微波爐、手機到基地台,這些設備都會發射電磁波。但其實即使沒有這些科技裝置,電磁波依然存在於我們周圍。什麼意思呢?答案就是:當我們白天走到戶外,看到的光,它其實也是電磁波的一種。

-----廣告,請繼續往下閱讀-----

希望大家掌握了這些電磁波、頻帶、頻寬等基礎知識後,未來在閱讀相關的電信新聞時更加了解他們提到的術語,以及各種縮寫。以後無論是科技發展的動態還是市場新技術,都能更有概念地理解。

更多、更完整的內容,歡迎上數感實驗室 Numeracy Lab 的 YouTube 頻道觀看完整影片,並開啟訂閱獲得更多有趣的資訊!

-----廣告,請繼續往下閱讀-----

討論功能關閉中。

數感實驗室_96
76 篇文章 ・ 50 位粉絲
數感實驗室的宗旨是讓社會大眾「看見數學」。 數感實驗室於 2016 年 4 月成立 Facebook 粉絲頁,迄今超過 44,000 位粉絲追蹤。每天發布一則數學文章,內容包括介紹數學新知、生活中的數學應用、或是數學和文學、藝術等跨領域結合的議題。 詳見網站:http://numeracy.club/ 粉絲專頁:https://www.facebook.com/pg/numeracylab/

0

3
3

文字

分享

0
3
3
量子力學可以幫你判斷物體溫度?從古典物理過渡到近代的一大推手——黑體輻射
PanSci_96
・2024/03/24 ・3639字 ・閱讀時間約 7 分鐘

1894 年,美國物理學家邁克生(Albert Abraham Michelson)作為芝加哥大學物理系的創立者,在為學校的瑞爾森物理實驗室(Ryerson Physical Laboratory)落成典禮致詞時,表示:「雖然無法斷言說,未來的物理學不會比過去那些驚奇更令人驚嘆,但似乎大部分的重要基本原則都已經被穩固地建立了。」

以我們現在的後見之明,這段話聽起來固然錯得離譜,但在當時,從 17、18 到 19 世紀,在伽利略、牛頓、馬克士威等前輩的的貢獻之下,物理學已經達成了非凡的成就。

我們現在稱為古典的物理學,對於整個世界的描述幾乎是面面俱到了,事實上沒有人預料到 20 世紀將出現徹底顛覆世界物理學認知的重要理論,量子力學。

而這最一開始竟只是出自於一件不起眼的研究,關於物體發出的光。

-----廣告,請繼續往下閱讀-----

萬物皆輻射

在此我們要先理解一個觀念:所有物體無時無刻不在發出電磁波輻射,包括了你、我、你正使用的螢幕,以及我們生活中的所有物品。

至於為什麼會這樣子呢?其中一個主要原因是,物體都是由原子、分子組成,所以內部充滿了帶電粒子,例如電子。這些帶電粒子隨著溫度,時時刻刻不停地擾動著,在過程中,就會以電磁波的形式放出能量。

除了上述原因之外,物體發出的電磁波輻射,還可能有其他來源,我們就暫時省略不提。無論如何,從小到大我們都學過的,熱的傳遞方式分成傳導、對流、輻射三種,其中的輻射,就是我們現在在談的,物體以電磁波形式發出的能量。

那麼,這些輻射能量有什麼樣的特徵呢?為了搞清楚這件事,我們必須先找個適當的範本來研究。

-----廣告,請繼續往下閱讀-----

理想上最好的選擇是,這個範本必須能夠吸收所有外在環境照射在上面的光線,只會發出因自身溫度而產生的電磁輻射。這樣子的話,我們去測量它發出的電磁波,就不會受到反射的電磁波干擾,而能確保電磁波是來自它自己本身。

這樣子的理想物體,稱為黑體;畢竟,黑色物體之所以是黑的,就是因為它能夠吸收外在環境光線,且不太會反射。而在我們日常生活中,最接近理想的黑體,就是一點也不黑、還超亮的太陽!這是因為我們很大程度可以肯定,太陽發出來的光,幾乎都是源於它自身,而非反射自外在環境的光線。

或者我們把一個空腔打洞後,從洞口發出的電磁波,也會近似於黑體輻射,因為所有入射洞口的光都會進入空腔,而不被反射。煉鐵用的鼓風爐,就類似這樣子的結構。

到目前為止,一切聽起來都只是物理學上一個平凡的研究題目。奇怪的是,在對電磁學已經擁有完整瞭解的 19 世紀後半到 20 世紀初,科學家儘管已經藉由實驗得到了觀測數據,但要用以往的物理理論正確推導出黑體的電磁波輻射,卻遇到困難。正是由此開始,古典物理學出現了破口。

-----廣告,請繼續往下閱讀-----

黑體輻射

由黑體發出的輻射,以現在理論所知,長得像這個樣子。縱軸代表黑體輻射出來的能量功率,橫軸代表黑體輻射出來的電磁波波長。

在理想狀況下,黑體輻射只跟黑體的溫度有關,而跟黑體的形狀和材質無關。

以溫度分別處在絕對溫標 3000K、4000K 和 5000K 的黑體輻射為例,我們可以看到,隨著黑體的溫度越高,輻射出來的能量功率也越大;同時,輻射功率最高的波段,也朝短波長、高頻率的方向靠近。

為了解釋這個曲線,物理學家們開始運用「當時」畢生所學來找出函數方程式,分成了兩派:

-----廣告,請繼續往下閱讀-----

一派是 1896 年,由德國物理學家維因(Wilhelm Carl Werner Otto Fritz Franz Wien),由熱力學出發推導出的黑體輻射公式,另一派,在 1900 與 1905 年,英國物理學家瑞立(John William Strutt, 3rd Baron Rayleigh)和金斯(James Jeans),則是藉由電磁學概念,也推導出了他們的黑體輻射公式,稱為瑞立-金斯定律。

你看,若是同時擺上這兩個推導公式,會發現他們都各自對了一半?

維因近似 Wien approximation 只在高頻率的波段才精確。而瑞立-金斯定律只對低頻率波段比較精確,更預測輻射的強度會隨著電磁波頻率的提升而趨近無限大,等等,無限大?――這顯然不合理,因為現實中的黑體並不會放出無限大的能量。

顯然這兩個解釋都不夠精確。

-----廣告,請繼續往下閱讀-----

就這樣,在 1894 年邁克生才說,物理學可能沒有更令人驚嘆的東西了,結果沒幾年,古典物理學築起的輝煌成就,被黑體輻射遮掩了部分光芒,而且沒人知道,這是怎麼一回事。

普朗克的黑體輻射公式

就在古典物理學面臨進退維谷局面的時候,那個男人出現了——德國物理學家普朗克(Max Planck)。

1878年學生時代的普朗克。圖/wikimedia

普朗克於 1900 年就推導出了他的黑體輻射公式,比上述瑞立和金斯最終在 1905 年提出的結果要更早,史稱普朗克定律(Planck’s law)。普朗克假想,在黑體中,存在許多帶電且不斷振盪、稱為「振子」的虛擬單元,並假設它們的能量只能是某個基本單位能量的整數倍。

這個基本單位能量寫成 E=hν,和電磁輻射的頻率 ν 成正比,比例常數 h 則稱為普朗克常數。換言之,黑體輻射出來的能量,以hν為基本單位、是一個個可數的「量」加起來的,也就是能量被「量子化」了。

-----廣告,請繼續往下閱讀-----

根據以上假設,再加上不同能量的「振子」像是遵循熱力學中的粒子分佈,普朗克成功推導出吻合黑體輻射實驗觀測的公式。

普朗克的方程式,同時包含了維因近似和瑞立-金斯定律的優點,不管在低頻率還是高頻率的波段,都非常精確。如果我們比較在地球大氣層頂端觀測到的太陽輻射光譜,可以發現觀測數據和普朗克的公式吻合得非常好。

其實有趣的是普朗克根本不認為這是物理現象,他認為,他假設的能量量子化,只是數學上用來推導的手段,而沒有察覺他在物理上的深遠涵意。但無論如何,普朗克成功解決了黑體輻射的難題,並得到符合觀測的方程式。直到現在,我們依然使用著普朗克的方程式來描述黑體輻射。不只如此,在現實生活中,有許多的應用,都由此而來。

正因為不同溫度的物體,會發出不同特徵的電磁波,反過來想,藉由測量物體發出的電磁波,我們就能得知該物體的溫度。在疫情期間,我們可以看到某些場合會放置螢幕,上面呈現類似這樣子的畫面。

-----廣告,請繼續往下閱讀-----

事實上,這些儀器測量的,是特定波長的紅外線。紅外線屬於不可見光,也是室溫物體所發出的電磁輻射中,功率最大的波段。只要分析我們身體發出的紅外線,就能在一定程度上判斷我們的體溫。當然,一來我們都不是完美的黑體,二來環境因素也可能產生干擾,所以還是會有些許誤差。

藉由黑體輻射的研究,我們還可以將黑體的溫度與發出的可見光顏色標準化。

在畫面中,有彩虹背景的部分,代表可見光的範圍,當黑體的溫度越高,發出的電磁輻射,在可見光部分越偏冷色系。當我們在購買燈泡的時候,會在包裝上看到色溫標示,就是由此而來。所以,如果你想要溫暖一點的光線,就要購買色溫較低,約兩、三千 K 左右的燈泡。

結語

事實上,在黑體輻射研究最蓬勃發展的 19 世紀後半,正值第二次工業革命,當時鋼鐵的鍛冶技術出現許多重大進步。

德國鐵血宰相俾斯麥曾經說,當代的重大問題要用鐵和血來解決。

就傳統而言,煉鋼要靠工匠用肉眼,從鋼鐵的顏色來判斷溫度,但若能更精確地判斷溫度,無疑會有很大幫助。

德國作為鋼鐵業發達國家,在黑體輻射的研究上,曾做出許多貢獻,這一方面固然可能是學術的求知慾使然,但另一方面,也可以說跟社會的需求與脈動是完全吻合的。
總而言之,普朗克藉由引進能量量子化的概念,成功用數學式描述了黑體輻射;這件事成為後來量子力學發展的起點。儘管普朗克本人沒有察覺能量量子化背後的深意,但有另一位勇者在數年後繼承了普朗克的想法,並做出意味深長的詮釋,那就是下一個故事的主角――愛因斯坦的事了。

歡迎訂閱 Pansci Youtube 頻道 獲取更多深入淺出的科學知識!

-----廣告,請繼續往下閱讀-----
PanSci_96
1262 篇文章 ・ 2418 位粉絲
PanSci的編輯部帳號,會發自產內容跟各種消息喔。