0

0
0

文字

分享

0
0
0

裂縫開啟奈米科技新方法

NanoScience
・2012/06/29 ・800字 ・閱讀時間約 1 分鐘 ・SR值 523 ・七年級

-----廣告,請繼續往下閱讀-----

顯微鏡影像顯示了在薄膜/基材複合元件中間垂直跑出一條波浪狀的裂縫。當波浪狀的裂縫轉向影像頂端的右方時,變成直線。圖片來源:physicsworld.com

大多數製造業者對裂縫(crack)避之唯恐不及,然而最近南韓科學家卻示範了如何製造奈米級裂縫並控制其散佈,以便用來在矽晶圓上製作預設的圖案。他們表示這種方法提供了傳統微影術之外更快、更便宜的積體電路製造方式。

當兩種晶格結構不匹配的材料層疊生長時,便可能出現裂縫。例如在矽基板上沉積一薄層的氮化矽,兩材料介面間累積的應力會使晶格變形,一旦變形產生的位能足以掙脫材料原子或分子間的鍵結時,便會生成擴散至在兩種材料內的裂縫。

首爾梨花女子大學(Ewha Womans University)的 Koo Hyun Nam 等人最近卻利用裂縫,在矽基板上製作精心設計的圖案。他們先在 0.5 mm 厚的矽晶圓上的特定位置,蝕刻出有特定方向的微小結構,然後沉積上薄薄一層氮化矽,氮化矽帶來的應力會集中在這些刻痕上。他們也在基板上刻出階梯結構,用來阻止裂縫散播,或將裂縫隔絕於某一區域外。

Nam 等人藉由改變晶圓中的晶面方向,或調整沉積時的參數(如溫度或壓力),製作出直線或波浪狀的裂縫。裂縫的寬度介於 10-120 nm 之間,波狀裂縫的寬度要比直線裂縫寬。他們甚至在矽基板與氮化矽之間沉積一層二氧化矽,製作出縫線狀(stitch-like)縫製。

-----廣告,請繼續往下閱讀-----

該團隊還發現,在未嵌入二氧化矽層的區域,裂縫對矽基板的切入較深,因此走向會比較平行基板的晶面,而在含二氧化矽層的區域,這種對齊的機制較弱,因此裂縫會改變走向,換言之,可以藉由只在部份區域加入二氧化矽,使裂縫像光折射般改變方向。

該團隊指出,上述方法提供了半導體製造業一個比傳統微影術更快、更便宜的選擇。詳見 Nature 485, pp.221 (2012) | DOI:doi:10.1038/nature11002。

譯者:蔡雅芝(逢甲大學光電學系)
責任編輯:蔡雅芝
原文網址:A cracking approach to nanotechnology—physicsworld.com [2012-05-15]

本文來自 NanoScience 奈米科學網 [2012-06-08]

-----廣告,請繼續往下閱讀-----
文章難易度
NanoScience
68 篇文章 ・ 3 位粉絲
主要任務是將歐美日等國的尖端奈米科學研究成果以中文轉譯即時傳遞給國人,以協助國內研發界掌握最新的奈米科技脈動,同時也有系統地收錄奈米科技相關活動、參考文獻及研究單位、相關網站的連結,提供產學界一個方便的知識交流窗口。網站主持人為蔡雅芝教授。

1

1
1

文字

分享

1
1
1
超壓縮的水會變成冰?!二維奈米薄冰能在室溫下穩定存在嗎?有什麼用途?——專訪中研院原分所謝雅萍副研究員
研之有物│中央研究院_96
・2024/03/10 ・4907字 ・閱讀時間約 10 分鐘

本文轉載自中央研究院「研之有物」,為「中研院廣告」

  • 採訪撰文|張琬婷
  • 責任編輯|簡克志
  • 美術編輯|蔡宛潔

水能被擠壓成冰?

水在攝氏零度以下會結冰。然而,當水被擠壓到極限時,會形成二維的奈米薄冰,不僅室溫下穩定存在,還有從未見過的鐵電特性(Ferroelectricity),而石墨烯則是實現這種擠壓條件的關鍵。中央研究院「研之有物」專訪院內原子與分子科學研究所的謝雅萍副研究員,她與我們分享了實驗室如何意外發現這層特殊的二維薄冰,以及團隊如何利用二維薄冰的鐵電特性製作有記憶電阻功能的奈米元件,研究成果發表在科學期刊《自然通訊》(Nature Communications)。

奈米尺度下,物質特性會跟著改變?

謝雅萍的主要研究題目之一就是合成新穎的二維材料,這是奈米科技的領域。奈米是什麼?奈米(nanometer)是長度單位,即 10-9 公尺,一根頭髮的直徑長度約為 1 奈米的十萬倍。奈米尺度之下,很多物質的特性會隨之改變,最常見的例子是「蓮花效應」,因為蓮花葉上具有奈米等級的表面結構,為蓮葉賦予了疏水與自我清潔的特性,髒污與水珠都不易附著在蓮葉上。

電腦模擬圖(左)和實際照片(右),蓮葉上密集的微小突起,讓大顆的水珠和灰塵不易附著,這讓蓮葉具有疏水與自我清潔的特性。
圖|William ThielickeGJ Bulte

奈米材料(nanomaterial)是指三維尺寸的材料,至少有一個維度的尺寸小於 100 奈米。只縮小一維,就是平面的二維材料(2D),例如石墨烯;縮小兩個維度,就是奈米線(1D);三維都縮小,就是零維的奈米顆粒(0D)。

奈米科技(nanotechnology)的概念最早可追溯到 1959 年美國物理學家理查費曼(Richard Feynman)在演講中提出的願景「為什麼我們不能把大英百科全書全部寫在一根針頭上呢?」。1974 年日本科學家谷口紀男則是首度創造「奈米科技」這個詞的人,他認為奈米科技包括原子與分子層次的分離、固定與變形。

-----廣告,請繼續往下閱讀-----

過去有不少科學家嘗試奈米材料的研發,但受限於製造技術不成熟,而無法順利製作出精細製程的奈米材料。1981 年,在掃描隧道顯微鏡(Scanning Tunneling Microscope, STM)發明之後,不僅有助於材料的微觀分析,操縱單個原子和分子也成為可能,奈米科技也逐漸實現。

2013 年 IBM 研究人員使用 STM 顯微鏡將上千個一氧化碳分子製作成原子等級的動畫「男孩與他的原子」,目前是金氏世界紀錄最小的定格影片。

無處不在的奈米科技?

我們生活周遭的奈米科技俯拾即是,從大賣場商品到半導體產業的電子元件都有。謝雅萍舉例:防曬霜之所以是白色,是因為裡面有二氧化鈦的奈米顆粒;許多塗料與噴漆亦會以奈米添加物,來增進耐蝕、耐磨、抗菌與除汙的特性,例如汽車鍍膜或奈米光觸媒;羽球拍或牙醫補牙會使用奈米樹脂,讓球拍和補牙結構更堅固。

至於半導體產業,奈米科技更是關鍵。透過縮小元件尺寸以及調整奈米元件的幾何形狀,以便於在單一晶片上乘載更多電晶體。「當今的電晶體大小皆是奈米等級,製作電子元件就等同在處理奈米科技的問題」,謝雅萍說道。

IBM 展示 5 奈米技術的矽奈米片電晶體(nanosheet transistors),圖中堆疊起來的一顆顆橢圓形結構是電子通道的截面,IBM 設計立體結構以因應愈來愈小的元件尺寸。
圖|IBM

實驗中的難題,反而促成驚奇發現?

鐵電性是什麼?二維奈米薄冰有哪些可能的應用方式?

對謝雅萍來說,發現二維的奈米薄冰是個意外的驚喜。最初謝雅萍團隊其實是要製作以石墨烯為電極的開關,畢竟石墨烯是實驗室的主要研究項目,理論上當兩層石墨烯很靠近時,分別給予兩端電壓會是導通的「ON」狀態,沒電時就是斷開的「OFF」狀態。

-----廣告,請繼續往下閱讀-----

然而,實驗過程中團隊卻發現當電壓為零時,石墨烯開關仍會導通,甚至要給予負電壓時才會成為 OFF 狀態。這個奇特的現象讓研究團隊苦惱許久,嘗試思考了各種可能性,但都無法完善的說明此現象。

「原本以為實現石墨烯開關應該是一件能夠很快完成的題目,沒想到過程中卻出現了這個意料之外的難題,因此這個研究比預期多花了一兩年」,謝雅萍無奈地笑道。

靈感總是突如其來,某次謝雅萍在與朋友討論研究時,突然想到一個可能的方向:「一直以來都有人猜測水是否為鐵電材料,但都沒有真正證實。臺灣氣候潮濕,開關關不緊會不會就是水的影響?」

設計實驗跑下去之後,謝雅萍團隊終於擺脫了一直以來的疑雲。原來,兩層石墨烯結構中,真的有水分子的存在!「一般水分子用手去捏,還是會維持液體的狀態。但是我們發現,當水被兩層石墨烯擠壓到剩下原子厚度時,水分子就會變成具有鐵電特性的二維薄冰!」,謝雅萍開心地說道。

-----廣告,請繼續往下閱讀-----

換句話說,當極限擠壓之下,水會結成冰,而這層超薄的平面奈米薄冰會轉變成鐵電材料,而且可以在室溫下穩定存在!

示意圖,當水受到兩層石墨烯的極限擠壓之下,會形成單原子厚度的二維奈米薄冰,這層薄冰是鐵電材料,而且可以在室溫下穩定存在。
圖|之有物(資料來源|謝雅萍)

鐵電材料乍聽之下很抽象,謝雅萍表示:「相較於會吸磁鐵的鐵磁材料,大多數人對鐵電材料比較不熟悉,其實概念十分相似」。她說,鐵磁材料經過外加磁場的「磁化」之後,即使不加磁場仍可維持原本的磁性。相對地,鐵電材料經過外加電場的「極化」之後,即使不加電場仍可維持原本的電荷極化方向。

謝雅萍團隊發現的二維冰具有鐵電性,這意味著水分子的正負極在外加電場之下會整齊排列,形成一個永久的電偶極,並且在電場消失後保持不變。

鐵電材料經過外加電場的「極化」之後,即使不加電場仍可維持原本的電荷排列方向。圖片顯示為順電狀態,極化方向和外加電場相同,箭頭表示每一小塊區域(Domain)的平均極化方向。
圖|之有物(資料來源|Inorganics

接著,謝雅萍發現,二維冰的鐵電性只存在於單層原子,增加多層原子之後,鐵電性會消失,變成普通的冰,這是因為多層原子的交互作用會打亂原本的極化排列。因此研究團隊發現的二維冰,是非常特殊的固態水,不是手搖飲加的冰塊那麼簡單。

因為石墨烯的擠壓和固定,二維冰可以在室溫下穩定存在,不會蒸發。謝雅萍團隊實驗發現,要升溫到攝氏 80 度,被夾住的二維冰才會變成水。如此大範圍的操作溫度,這讓謝雅萍開始思考將二維冰作為鐵電材料使用的可能性。

-----廣告,請繼續往下閱讀-----

於是,謝雅萍團隊嘗試開發新型的電子元件,他們將二維冰與石墨烯整合成機械式的奈米開關。由於二維冰具有鐵電特性,在施加不同外加電壓之後,元件可以維持上次操作的電阻值,並保留至下次操作,有這種特性的元件稱為「憶阻器」(memristor)。

憶阻器這個詞是由記憶體(memory)與電阻(resistor)組合而成,字面上的解釋便是:具備記憶先前電阻值的能力。

謝雅萍表示:「我們可以藉由不同的外加大電壓寫入電阻值,再以微小電壓讀取之前的電阻值,允許快速存取」。而單獨一個二維冰奈米開關可以記住 4 個位元的資料,具備未來記憶體的發展潛能。

此外,二維冰奈米開關也是很好的開關裝置,團隊驗證導通電流和截止電流的比值可以達到 100 萬,開路和斷路的功能極佳,並且允許雙向操作。而開關的功能經過 1 萬次循環還不會衰減,相當穩定。

謝雅萍團隊是全世界第一個證實二維薄冰鐵電性的團隊,並實現第一個以石墨烯為架構的二維冰機械式憶阻器。她的團隊將往新穎二維材料的方向繼續邁進,目前實驗室有和台積電(TSMC)合作,希望透過產學合作,將更多奈米技術的應用落地實現。

-----廣告,請繼續往下閱讀-----
謝雅萍與研究團隊用意外發現的二維奈米薄冰,以石墨烯為架構,做出了全世界第一個機械式的憶阻器。
圖|之有物

與二維材料實驗的相遇?

謝雅萍目前除了是中研院原分所的副研究員,同時也是國立臺灣大學 MY Lab 實驗室的共同主持人,她和人生伴侶 Mario Hofmann 教授共同指導的 MY Lab 發揮了 1+1>2 的效果,創意與想法的激盪和交流,是產生傑出研究的關鍵。

回到碩博士時期,謝雅萍都在臺大物理所,鑽研材料的光電性質與新穎光電元件的機制。她回憶:「當時我們都要向化學系要材料,他們給什麼我們就得用什麼,但難以了解整個材料製造的細節。」後來她體認到,擁有製造材料的調控能力才能真正突破元件設計上的侷限。

謝雅萍在博士班時申請到了千里馬計畫,讓臺灣博士生獲得國科會補助前往國外頂尖研究機構,進行為期約半年至一年的研究。「我認為這個計畫非常好,也可以幫助學生建立重要人脈!」在指導教授引薦下,謝雅萍因緣際會進入美國麻省理工學院(MIT)的二維材料實驗室,自此與二維材料結下不解之緣,她認為:「好材料與好元件是相輔相成的,前瞻材料更是如此。」

「我到了 MIT 之後,深刻體悟到他們做研究的態度與臺灣學生的不同。臺灣學生像是把研究當作一份工作,然而我在 MIT 時就感受到他們學生對於自身研究的熱忱。討論風氣也非常盛行,學生之間會互相分享自己的研究內容,互相幫忙思考、激盪出新想法」,謝雅萍分享自己在 MIT 時期的觀察。

-----廣告,請繼續往下閱讀-----

當年二維材料還在萌芽階段,她所在的 MIT 實驗室已是此領域的佼佼者,她也因此立下了目標:「希望未來我有能力時,能夠自己掌控自己的材料做出好元件!」如今,謝雅萍正走在自己目標的道路上,過去認識的朋友也都是各頂尖大學的二維材料實驗室主持人,直到現在都還會互相幫忙。

從物理到二維材料,身處這些男性為主的學術環境,謝雅萍顯得自在,而且積極參與討論和交流。「我發現女科學人會把自己變得較中性,讓自己融入整個以男性居多的環境中,才不會在團體中有突兀的感覺」,她分享道。

謝雅萍的實驗室 MY Lab,是與臺大物理系 Mario Hofmann 教授共同主持的奈米科技實驗室,他們除了是工作上的夥伴,更是人生中的最佳拍檔!當初兩人就是在美國麻省理工大學 MIT 相識,再一起回到臺灣。

讓「研之有物」團隊好奇的是:這種共同主持的模式與一般實驗室相比,是否有特別之處?

-----廣告,請繼續往下閱讀-----

「從多個面向而論,我認為都是 1+1>2 的」,謝雅萍說道,「實驗室會有兩倍的資源、儀器、計畫與兩倍的人脈。遇到一個題目,兩個人思考時會從不同的觀點切入。即便是夫妻,我們在研究上看的面向也都不一樣,因此可以激盪出許多有趣的想法」。

她補充,不僅對實驗室本身而言,對學生也有很大的好處,「因為學生的研究必須同時說服我們兩個人,代表學生的研究成果會非常扎實,也可以為學生帶來信心。」重要的是,「學生也會得到兩倍的照顧與關愛,我覺得我們的學生是蠻幸福的」,謝雅萍笑笑地說。

所有討論 1
研之有物│中央研究院_96
296 篇文章 ・ 3420 位粉絲
研之有物,取諧音自「言之有物」,出處為《周易·家人》:「君子以言有物而行有恆」。探索具體研究案例、直擊研究員生活,成為串聯您與中研院的橋梁,通往博大精深的知識世界。 網頁:研之有物 臉書:研之有物@Facebook

0

3
0

文字

分享

0
3
0
數位攝影搖身一變黑科技,CIS 成長無止盡,遇上異常該如何 DEBUG?
宜特科技_96
・2023/06/05 ・4124字 ・閱讀時間約 8 分鐘

-----廣告,請繼續往下閱讀-----

一個女子用手機在進行自拍
圖/宜特科技

從小時候的底片相機,發展到數位相機,如今手機就能拍出許多高清又漂亮的照片,你知道都是多虧了 CIS 晶片嗎?

本文轉載自宜特小學堂〈CIS晶片遇到異常 求助無門怎麼辦〉,如果您對半導體產業新知有興趣,歡迎按下右邊的追蹤,就不會錯過宜特科技的最新文章!

CIS 晶片又稱 CMOS 影像感測器(CMOS Image Sensor),最早是在 1963 年由美國一家半導體公司發明出來的積體電路設計,隨著時代進步,廣泛應用在數位攝影的感光元件中。而人們對攝影鏡頭解析度需求不斷增加,渴望拍出更精美的畫質。

CIS 已從早期數十萬像素,一路朝億級像素邁進,有賴於摩爾定律(Moore’s Law)在半導體微縮製程地演進,使得訊號處理能力顯著提升。如今的 CIS 已經不僅適用於消費型電子產品,在醫療檢測、安防監控領域等應用廣泛,近幾年智慧電車興起,先進駕駛輔助系統(ADAS, Advanced Driver. Assistance Systems)已成為新車的安全標配,未來車用 CIS 的市場更是潛力無窮。

然而,越精密、越高階的 CIS 晶片由於結構比較薄,加上特殊的 3D 堆疊結構,使得研發難度大大提升,當遇到異常(Defect)現象時,想透過分析找出故障的真因也更為困難了。

-----廣告,請繼續往下閱讀-----

本文將帶大家認識三大晶片架構,並以案例說明當 CIS 晶片遇到異常,到底我們可以利用那些工具或手法,成功 DEBUG?

一、認識 CIS 三大晶片架構

現今 CIS 晶片架構,可概分為三大類,(一)前照式(Front Side illumination,簡稱FSI);(二)背照式 (Back Side illumination,簡稱 BSI);(三)堆疊式 CIS(Stacked CIS)

(一)前照式(FSI)CIS

為使 CIS 晶片能符合半導體製程導入量產,最初期的 CIS 晶片為前照式 (Front Side illumination,簡稱 FSI) CIS;其感光路徑係透過晶片表面進行收光,不過,前照式 CIS 在效能上的最大致命傷為感光路徑會因晶片的感光元件上方金屬層干擾,而造成光感應敏度衰減。

(二)背照式(BSI)CIS

為使 CIS 晶片能有較佳的光感應敏度,背照式(Back Side illumination ,簡稱 BSI)CIS 技術應運而生。此類型產品的感光路徑,係由薄化至數微米後晶片背面進行收光,藉此大幅提升光感應能力。

而 BSI CIS 的前段製程與 FSI CIS 類似,主要差別在於後段晶片對接與薄化製程。BSI CIS 的製程是在如同 FSI CIS 一般製程後,會將該 CIS 晶片正面與 Carrier wafer 對接。對接後的晶片再針對 CIS 晶片背面進行 Backside grinding 製程至數微米厚度以再增進收光效率,即完成 BSI CIS。

(三)堆疊式(Stacked)CIS

隨著智慧型手機等消費電子應用的蓬勃發展,人們對於拍攝影像的影像處理功能需求也大幅增加,使製作成本更親民與晶片效能更能有效提升,利用晶圓級堆疊技術,將較成熟製程製作的光感測元件(Sensor Chip)晶片,與由先進製程製作、能提供更強大計算能力的特殊應用 IC(Application Specific Integrated Circuit,簡稱 ASIC)晶片、或是再進一步與記憶體(DRAM)晶片進行晶圓級堆疊後,便可製作出兼具高效能與成本效益的堆疊式 CIS(Stacked CIS)晶片(圖一),也是目前最主流的晶片結構。

-----廣告,請繼續往下閱讀-----
堆疊式(Stacked) CIS晶片示意圖
《圖一》堆疊式(Stacked)CIS 晶片示意圖。圖/宜特科技

二、如何找堆疊式(Stacked)CIS 晶片的異常點(Defect)呢?

介紹完三大類 CIS 架構,我們就來進入本文重點:「如何找到堆疊式(Stacked)CIS 晶片的異常點(Defect)?」

由於這類型的 CIS 晶片結構相對複雜,在進行破壞性分析前,需透過電路專家電路分析或熱點(Hot Spot)故障分析,鎖定目標、縮小範圍在 Stacked CIS 晶片中的其一晶片後,針對可疑的失效點/失效層,進行該 CIS 樣品破壞性分析,方可有效地呈現失效點的失效狀態以進行進一步的預防修正措施。

接著,我們將分享宜特故障分析實驗室,是如何(一)利用電性熱點定位;(二)移除非鎖定目標之晶粒(Die),並針對鎖定目標晶粒(Die)逐層分析;(三)電性量測分析;(四)超音波顯微鏡(SAT)分析等四大分析手法交互應用,進行 Stacked CIS 晶片進行故障分析,順利找到異常點(Defect)。

(一)透過電性熱點定位找故障點(Hot Spot)

當CIS晶片具有高阻值(High Resistance)、短路(Short)、漏電(Leakage)或是功能失效(Function Failure)等電性失效時,可依據不同的電性失效模式,經由直流通電或上測試板通電,並透過選擇適合的電性故障分析(EFA, Electrical Failure Analysis)工具來進行電性定位分析。

設備OBIRCHThermal EMMIInGaAs
偵測目標電晶體/金屬層金屬層/封裝/印刷電路板電晶體/金屬層
失效模式漏電/短路/高阻值漏電/短路/高阻值漏電/短路/開路
各設備適合使用的選擇時機

包括雷射光束電阻異常偵測(Optical Beam Induced Resistance Change,簡稱 OBIRCH)熱輻射異常偵測顯微鏡(Thermal EMMI)(圖二)、砷化鎵銦微光顯微鏡(InGaAs),藉由故障點定位設備找出可能的異常熱點(Hot Spot)位置,以利後續的物性故障(PFA, Physical Failure Analysis)分析。

-----廣告,請繼續往下閱讀-----
透過Thermal EMMI找到電性失效的故障點位置
《圖二》透過 Thermal EMMI 找到電性失效的故障點位置。圖/宜特科技

(二)移除非鎖定目標之晶粒,並針對鎖定目標晶粒逐層分析

接著,依照上述電性分析縮小可能的異常範圍至光感測元件晶片、ASIC 或記憶體晶片區後,根據 Stacked CIS 晶片堆疊的結構特性,需先將其一側的矽基材移除,方可進行逐層去除(Layer by layer),或層層檢查。

再者,透過特殊分析手法,移除不需保留的晶粒結構,進而露出目標晶粒之最上層金屬層(圖三)。接著,透過逐層去除(Layer by layer),最終在金屬層第一層(Metal 1)找到燒毀現象的異常點(defect) (圖四)。

搭配特殊手法,將CIS待測樣品不需保留之晶粒部分,完整移除
《圖三》搭配特殊手法,將 CIS 待測樣品不需保留之晶粒部分,完整移除。圖/宜特科技
對照Hot Spot分析範圍,進行鎖定目標晶粒進行逐層去除,發現燒毀現象
《圖四》對照Hot Spot分析範圍,進行鎖定目標晶粒進行逐層去除,發現燒毀現象。圖/宜特科技

(三)電性量測分析:導電性原子力顯微鏡(C-AFM, Conductive Atomic Force Microscopy)與奈米探針系統(Nano-prober)的應用

當逐層去除(Layer by Layer)過程當中,除利用電子顯微鏡(SEM) 於故障點區域進行 VC(Voltage Contrast)的電性確認與金屬導線型態觀察外,亦可搭配導電原子力顯微鏡(Conductive Atomic Force Microscopy,簡稱C-AFM)快速掃描該異常區域,以獲得該區域電流分布圖(Current map)(圖五),並量測該接點對矽基板(Si Substrate)的電性表現,進而確認該區域是否有漏電 / 開路等電性異常問題。

C-AFM異常分析結果圖
《圖五 (左)》C-AFM 異常分析結果圖。圖五 (左): 外加正電壓 (+1V) 時的 Current map 異常電性發生;
《圖五 (右)》外加負電壓 (-1V) 時的 Current map 異常電性發生 (黃圈處)。圖/宜特科技

在完成C-AFM分析後,若有相關疑似異常路徑需要進一步進行電性量測與定位,可使用奈米探針電性量測(Nano-Prober)進行更精準的異常點定位分析,包括電子束感應電流(EBIC , Electron Beam Induced Current)、電子束吸收電流(EBAC, Electron Beam Absorbed Current)、與電子束感應阻抗偵測(EBIRCH , Electron Beam Induced Resistance Change)等定位法。而Nano-Prober亦可針對電晶體進行電性量測,如Vt、 IdVg、IdVd等基本參數獲取(圖六)。

-----廣告,請繼續往下閱讀-----

當透過上述分析手法精準找到異常點後,亦可再透過雙束聚焦離子束(Dual-beam FIB,簡稱DB-FIB)或是穿透式電子顯微鏡(Transmission Electron Microscopy,簡稱TEM)來對異常點進行結構確認,以釐清失效原因(圖七)。

EBIC分析結果圖
《圖六》EBIC分析結果圖。圖/宜特科技
TEM分析結果圖
《圖七》TEM分析結果圖。圖/宜特科技

(四)超音波顯微鏡(Scanning Acoustic Tomography,簡稱SAT)分析:於背照式(BSI)/堆疊式(Stacked)CIS晶圓對接製程的應用

超音波顯微鏡(SAT)

超音波顯微鏡(SAT)為藉由超音波於不同密度材料反射速率及回傳能量不同的特性來進行分析,當超音波遇到不同材料的接合介面時,訊號會部分反射及部分穿透,但當超音波遇到空氣(空隙)介面時,訊號則會 100% 反射,機台就會接收這些訊號組成影像。
超音波顯微鏡(SAT)原理圖
超音波顯微鏡(SAT)原理圖。圖/宜特科技

在背照式(BSI)與堆疊式(Stacked)CIS 製程中晶圓與晶圓對接(bonding)製程中,SAT 可作為偵測晶圓與晶圓之間接合不良造成存在空隙的重要利器(圖八)。

圖八: 透過超音波顯微鏡(SAT),找到晶圓與晶圓對接(bonding)之鍵合空隙位置
《圖八》透過超音波顯微鏡(SAT),找到晶圓與晶圓對接(bonding)之鍵合空隙位置。圖/宜特科技

半導體堆疊技術的蓬勃發展,加上人們對影像感測器在消費性電子、車用電子、安控系統等應用,功能需求大幅度增加,CIS 未來將繼續進化,無論是晶圓級對接的製程穩定度分析,或是堆疊式(Stacked)CIS 故障分析,都可以透過宜特實驗室豐富的分析手法,與一站式整合服務精準地分析、加速產品開發、改善產品品質。

宜特科技_96
5 篇文章 ・ 3 位粉絲
我們了解你想要的不只是服務,而是一個更好的自己:) iST宜特自1994年起,以專業獨家技術,為電子產業的上中下游客戶, 提供故障分析、可靠度實驗、材料分析和訊號測試之第三方公正實驗室

0

5
1

文字

分享

0
5
1
從「自動化」進化成「智動化」——智慧製造是半導體產業的未來趨勢
鳥苷三磷酸 (PanSci Promo)_96
・2022/08/15 ・3611字 ・閱讀時間約 7 分鐘

-----廣告,請繼續往下閱讀-----

  • 文/曾繁安

台灣擁有傲視全球、成熟完整的半導體產業聚落,在世界科技領域中扮演舉足輕重的角色。這個國家的經濟命脈,經過全自動化的時代後,即將迎來另一次生產技術的大變革——智慧製造。

當訂單越來越多,人力卻不夠,半導體業者該怎麽辦?

半導體產業包含了矽晶圓[註]、相關化學品與氣體及導線架等封裝材料,其中又以晶圓厰為大宗,例如台積電便是全球規模最大的晶圓代工厰。素有「現代科技應用的大腦與心臟」之稱的半導體,是現代多數電子產品的核心單元,因為各項產品正是利用半導體電導率變化的特性來處理資訊。然而,目前半導體製造業卻面臨人力資源跟不上產量需求提高的挑戰。

晶圓是積體電路製程中的載體基片。圖/wikimedia

一般半導體廠場域面積大,人力短缺使企業面臨管理人手吃緊,再加上人員進出無塵室的過程繁瑣耗時,也是另一大負擔。與此同時,在廠內儀器參數比對和規劃生產計劃上,傳統人力也可能有出現誤差的風險。疫情時代也促成在宅經濟和 5G 應用的高速發展,各領域對晶片的需求大增,造成半導體產業出現產量需求高,但人力短缺的現象。

因此對不少業者而言,可有效緩解人力不足、大幅提升作業效率的數位轉型(Digital Transformation),可謂勢在必行。

-----廣告,請繼續往下閱讀-----

從「自動化」升級到「智動化」的智慧製造

那半導體產業的數位轉型,該怎麽做?所謂數位轉型,不僅僅只是將資料或作業數位化,還包括導入人工智慧(Artificial Intelligence,簡稱 AI)與數位科技,來改變企業的整個營運生產模式。AI 指的是電腦程式可模擬人類思維過程的能力,而在 AI 概念下的機器學習(Machine Learning,簡稱 ML),即為機器可以根據已收集的大量數據,經由建立模型對新數據進行推測,學習找出最佳解、改善效能

結合 ML 的製造執行系統,需搭配裝置在工廠各處的多個傳感器(Sensor),來收集與回傳各樣的生產數據。它們與工廠設備的相互連接,即是運用了物聯網(Internet of Things)的技術。有賴於 5G 科技的發展,數據可以達成高速率傳輸與低延遲,使得機器與機器之間可以達成溝通,在整合分析各方數據資訊後,有效率地完成各種指令操作,可以比自動化製造系統,更進一步為人類代勞工廠運作的大小事務。

舉例來説,當工廠的生產過程出現問題,自動化系統只會跳出異常通知,還是需要仰賴人員來進行手動排除;但換作應用 ML 系統的話,便可透過自我學習,來自動調整製作流程以解除異常狀況,無需人力介入便可自主解決,提升良率,達成「智動化」智慧製造(Smart Manufacturing)的最終目的。

機器可以根據已收集的大量數據,經由建立模型對新數據進行推測,學習找出最佳解、改善效能。 圖/elements

懂得精益求精、提高品質產量的智慧工廠

一座運用智慧製造的半導體工厰,不但能自主克服製程中的疑難雜症,更能幫助提高晶圓的產量品質。在研發方面,AI 可以協助理解高複雜、高維度的製程開發挑戰,也可與 ML 軟體分析感測資料和檢測影響,進行品質管理與缺陷檢查。

-----廣告,請繼續往下閱讀-----

此外,數據治理和數位分身,也是智慧製造的關鍵策略。對企業整體的數據進行管理和控制以提高數據的價值將因為數據產生的成本風險降到最低,是數據治理(Data Governance)的核心精神。

在兼顧資訊安全下,數據治理的體系能使跨部門間的數據共享更為方便暢通。輔以 AI 及 ML 的運算,便可以使業務部門的客戶需求、供應鏈管理等資料,與工廠生產部門的設備控制與品管等流程,有更迅速緊密的配合,規劃好合適的未來生產計劃,指導人員進行相關作業。

如同我們可以在電玩游戲或社交媒體上,按照自己的個人形象,來打造自己的虛擬化身,工厰也能藉助現今的科技,來為產品的物理實體,在資訊化平臺或系統的虛擬空間中,打造一個類比實物數位分身(Digital Twin)

數位分身模型之概念圖。圖/wikimedia

數位分身也是物聯網的應用之一,半導體廠中,由傳感器所收集到的晶圓製造數據,在 AI、ML 和軟體分析的協助下被整合,對映成數位空間中「雙胞胎」的存在。這位孿生兄弟不僅能夠隨物理實體的變化而即時做出相應變化,還可以提供無法在實體產品上測試計算的數據。

-----廣告,請繼續往下閱讀-----

理想情況下,數位分身可以經由機器學習,分析過去的歷史資料或多重來源的數據,來推估實體的未來情境。因此在危機或異常事件發生前,業者便可預先進行預測性的設備維護與產品的良率分析,比起傳統人力的判斷更加精確,降低技術風險,大大提高生產效率。

工業 4.0 浪潮來襲,智慧製造是產業未來趨勢

運用通訊科技、資料庫和電腦系統達成全自動化生產,已不是新鮮事,如今人類社會正迎來第四次工業革命的新一波浪潮。主打網絡與機械相互連接的核心精神,導入人工智慧、機器學習、物聯網感測與大數據分析等人機協作的智慧製造,是因應多變市場需求的時下趨勢。

在半導體領域中,企業龍頭台積電可説是數位轉型的成功案例,從二十年前的全自動化製造系統,如今致力於打造組織內部友善 AI 的工作環境,努力向智慧製造全面轉型。數位轉型的技術支援不能沒有半導體產業製造的晶片,而如今數位轉型也有望帶領半導體產業突破產能吃緊、人才短缺的困境,走向智慧製造的新紀元。

以台灣在地企業的智慧製造覆蓋率而言,就已在短短 6 年內成長 50%。舉全台最大的國際半導體展 SEMICON Taiwan 為例,智慧製造相關的展商在近六年內的成長幅度也同樣攀升了 50%。

-----廣告,請繼續往下閱讀-----

今年高科技智慧製造特展將以歷年最大規模之姿登場,與全台最大半導體盛宴 SEMICON Taiwan 2022 國際半導體展同期同地舉辦,匯集橫跨高科技製造業智慧製造解決方案業者、系統整合、軟硬體商及智慧製造需求端業者,如盟立自動化、倍福自動化、家登精密、攝揚企業、日商 JEL 等不容錯過。

今年高科技智慧製造特展將以歷年最大規模之姿登場,與全台最大半導體盛宴 SEMICON Taiwan 2022 國際半導體展同期同地舉辦。圖/SEMI

因應疫情下數位轉型成為全球企業的重要任務,今屆展覽中的「高科技智慧製造論壇」將由美光科技、 Lam Research、 Rockwell Automation、Siemens 等知名企業專家以人工智慧工廠為主軸,探討 GEC 技術藍圖,內容包含五個部分包含數據管理、智能分析、數位分身預測等重點實務經驗分享,從晶圓厰到設備製造商和解決方案提供者的角度,讓參與者得以探究 AI 智能工廠的前景和挑戰,跟上數位轉型的步伐。

除了智慧製造議題,展覽期間共有超過 20 場重磅級的國際趨勢論壇,豐富主題涵蓋先進製程、異質整合、化合物半導體、車用晶片、永續製造、半導體資安及人才。論壇將在今年 9 月 13 日率先開幕,展覽則於 9 月 14 日至 16 日於臺北南港展覽館一館盛大開場,規模創歷年新高,届時將有 700 間國內外指標性大廠共襄盛舉,現場將有 2,450 個攤位展出,完整串聯全球半導體供應鏈,目前展會參觀與論壇皆已開放報名,參與席次有限,有興趣者趕快手刀至官網報名起來!

註:晶圓(Wafer)是半導體晶體圓形的簡稱,是從半導體材料如最常見的矽,經過拉製、提煉等一系列處理過程,製成的圓柱狀半導體晶體經過切片、抛光而來。這些圓形薄切片被用於積體電路製程中的載體基片,也可用來製作太陽能電池。

參考資料

  1. 半導體是什麼?晶片產業一次看懂
  2. About SEMI Smart Manufacturing initiative
  3. 【獨家披露】台積電數位轉型的下一步,靠AI推動全面轉型(上
  4. 【獨家披露】台積電數位轉型的下一步,靠AI推動全面轉型(下)
  5. 泛科學:每分鐘 15 次的駭客攻擊,5G 世代的臺灣資安挑戰——資安所王仁甫策略總監專訪
  6. Data Governance – 臺灣人工智慧行動網
  7. 「數據治理」:人工智慧企業的基本功
  8. 科技大觀園:從全自動化製造邁向智慧製造
  9. 聯剛科技股份有限公司
  10. 【新興領域:9月焦點8】數位分身(Digital Twin)技術發展趨勢與不同層次應用模式
  11. 半導體資安的新挑戰!後疫情時代,如何全面打造半導體供應鏈數位韌性
  12. 工業4.0大全,從淺到深一篇搞懂它!
鳥苷三磷酸 (PanSci Promo)_96
196 篇文章 ・ 302 位粉絲
充滿能量的泛科學品牌合作帳號!相關行銷合作請洽:contact@pansci.asia

0

0
0

文字

分享

0
0
0
裂縫開啟奈米科技新方法
NanoScience
・2012/06/29 ・800字 ・閱讀時間約 1 分鐘 ・SR值 523 ・七年級

顯微鏡影像顯示了在薄膜/基材複合元件中間垂直跑出一條波浪狀的裂縫。當波浪狀的裂縫轉向影像頂端的右方時,變成直線。圖片來源:physicsworld.com

大多數製造業者對裂縫(crack)避之唯恐不及,然而最近南韓科學家卻示範了如何製造奈米級裂縫並控制其散佈,以便用來在矽晶圓上製作預設的圖案。他們表示這種方法提供了傳統微影術之外更快、更便宜的積體電路製造方式。

當兩種晶格結構不匹配的材料層疊生長時,便可能出現裂縫。例如在矽基板上沉積一薄層的氮化矽,兩材料介面間累積的應力會使晶格變形,一旦變形產生的位能足以掙脫材料原子或分子間的鍵結時,便會生成擴散至在兩種材料內的裂縫。

首爾梨花女子大學(Ewha Womans University)的 Koo Hyun Nam 等人最近卻利用裂縫,在矽基板上製作精心設計的圖案。他們先在 0.5 mm 厚的矽晶圓上的特定位置,蝕刻出有特定方向的微小結構,然後沉積上薄薄一層氮化矽,氮化矽帶來的應力會集中在這些刻痕上。他們也在基板上刻出階梯結構,用來阻止裂縫散播,或將裂縫隔絕於某一區域外。

-----廣告,請繼續往下閱讀-----

Nam 等人藉由改變晶圓中的晶面方向,或調整沉積時的參數(如溫度或壓力),製作出直線或波浪狀的裂縫。裂縫的寬度介於 10-120 nm 之間,波狀裂縫的寬度要比直線裂縫寬。他們甚至在矽基板與氮化矽之間沉積一層二氧化矽,製作出縫線狀(stitch-like)縫製。

該團隊還發現,在未嵌入二氧化矽層的區域,裂縫對矽基板的切入較深,因此走向會比較平行基板的晶面,而在含二氧化矽層的區域,這種對齊的機制較弱,因此裂縫會改變走向,換言之,可以藉由只在部份區域加入二氧化矽,使裂縫像光折射般改變方向。

該團隊指出,上述方法提供了半導體製造業一個比傳統微影術更快、更便宜的選擇。詳見 Nature 485, pp.221 (2012) | DOI:doi:10.1038/nature11002。

譯者:蔡雅芝(逢甲大學光電學系)
責任編輯:蔡雅芝
原文網址:A cracking approach to nanotechnology—physicsworld.com [2012-05-15]

-----廣告,請繼續往下閱讀-----

本文來自 NanoScience 奈米科學網 [2012-06-08]

文章難易度
NanoScience
68 篇文章 ・ 3 位粉絲
主要任務是將歐美日等國的尖端奈米科學研究成果以中文轉譯即時傳遞給國人,以協助國內研發界掌握最新的奈米科技脈動,同時也有系統地收錄奈米科技相關活動、參考文獻及研究單位、相關網站的連結,提供產學界一個方便的知識交流窗口。網站主持人為蔡雅芝教授。