Loading [MathJax]/extensions/tex2jax.js

0

0
1

文字

分享

0
0
1

近期臺灣西南部會發生大地震嗎?從斷層錯動與潛移談起

科學月刊_96
・2019/09/24 ・3912字 ・閱讀時間約 8 分鐘 ・SR值 530 ・七年級

-----廣告,請繼續往下閱讀-----

  • 文/景國恩,成功大學測量及空間資訊學系副教授。

從小,生活在西南部的人們時常會聽長輩說道:「斷斷續續的小地震是好事,這樣才能讓『能量釋放』,避免大地震的發生。」不僅如此,在新聞也經常能聽到「某某地震屬正常能量釋放」的說法。究竟,地震能量真能一點一滴地慢慢釋放、以防止大地震的發生嗎?而人們又該如何面對和因應?

臺灣西南部即將迎來重大災害性地震嗎?有個說法,認為地震有所謂的「能量釋放」,那麼 2010 年甲仙地震與 2016 年美濃地震是否已經釋放一部分能量,讓大地震發生時間可以延後,甚至是已經全釋放了?

之所以會有上述問題的出現,是因為臺灣西南部發生過數起災害性歷史地震。讀者耳熟能詳的可能包含 1906 年的梅山地震、1946 年的新化地震、1964 年的白河地震或 1998 年的瑞里地震(下圖)。

在最近一世紀,於臺灣西南部發生的地震所造成的死傷人數。圖/作者提供

從統計學的角度來看,似乎臺灣西南部每隔約 20~30 年就會發生一次重大地震事件(下圖);換言之,這幾年間似乎是臺灣西南部發生重大災害性地震的高危險期!

-----廣告,請繼續往下閱讀-----
近百年以來臺灣西南部的地震分布圖。資料來源/作者提供

斷層錯動是地震背後的兇手

如果從地震發生機制來看,地震的發生幾乎都和斷層錯動有關。由於斷層的錯動,導致累積在斷層上的能量以地震波的形式傳遞出去,才產生了威脅人身安全的地震。雖然目前人們還無法精確掌握斷層錯動的時間,以此進行地震預測,但可以尋找有可能產生地震的活動斷層(又稱發震斷層)為目標。因此,確認活動斷層錯動的可能性,成為人們評估某一地區地震發生機率的重要工作。

地震的發生幾乎都和斷層錯動有關,圖為車籠埔斷層槽溝剝片。source:wikimedia

那麼,要如何得知這條斷層會發生地震?首先,必須先從已知的地震歷史中觀察,知曉臺灣西南部發生過數次災害性地震,代表此區域有很多條發震斷層,並且也能暗示和幫助人們該往哪個方向去尋找發震斷層。此外,少數如 1792 年的嘉義地震和 1906 年的梅山地震由於發生位置非常接近,甚至連地震規模也近乎一致,若斷層釋放能量前的累積狀況類似,那麼這兩個地震則可能是在同一條斷層上重複發生。所以,將這些活動斷層的位置找出來,將確實能協助探討地震潛勢。

那麼,近 10 年來的大地震和過去的災害地震是否有相關?回顧過去重大歷史地震的位置,可以注意到一種地震空間分布特性:以新化-左鎮一線為界,在 2010 年的甲仙地震之前,主要的災害性地震幾乎都發生在此線以北的地方;直到 2010 年,才有 2010 年的甲仙地震與 2016 年的美濃地震在新化-左鎮一線以南造成嚴重的地震災害(下圖)。換言之,2010 年的甲仙地震與2016年的美濃地震,和過去的災害性地震應該是屬於不同的「發震斷層系統」。不僅如此,根據野外地質調查、鑽井、槽溝開挖、地形特徵判釋、地震觀測、地球物理探測和大地測量監測等活動斷層調查成果,也分析出類似於上述的判斷。

近百年以來臺灣西南部的地震分布圖。source:作者提供

為了解地震發生機率,除了運用前述地質與地球物理方法找尋斷層位置,還需要知道現今「斷層的能量累積速率」,才能計算斷層活動潛勢。利用大地測量手段獲得地表變形速率,則是其中一個評估斷層上能量累積速率的方式。一般而言,地表變形速率快,斷層累積能量的速率和斷層長期滑移的速率也會較快。根據目前的數據指出,除了東部縱谷地區之外,西南部是臺灣西側地表變形速率最快的區域,活動斷層能量累積速率也最高。

-----廣告,請繼續往下閱讀-----

在臺灣地震模型組織(Taiwan Earthquake Model, TEM)即將發表的 TEM 2019 地震潛勢評估中,顯示西南部幾乎是全臺地震危害潛勢最高且範圍最大的區域。這也說明 2010 年的甲仙地震與 2016 年的美濃地震對於西南部地震能量的釋放,其實並沒有特別的幫助。然而,這就是最終的地震潛勢分析結果嗎?

泥岩層是西南部地震的新變因?

斷層活動研究與地震潛勢分析的工作中,有一個很重要的假設,那就是斷層的錯動會對應地震的發生。這一個假設,對於世界上絕大多數的地區而言都是適用的,但是,此假設是否也適用於臺灣西南部?

「惡地地形」與厚層泥岩的發育有關,但西南部、東部縱谷的情形略有不同。source:pixabay

會提出這樣的疑問,首先,是因臺灣西南部有非常厚的泥岩層,例如有名的月世界地形(惡地地形)就和厚層泥岩的發育有關。值得一提的是,在臺灣東部縱谷也有一個月世界地形,雖然其地形發育和臺灣西南部有些差異,但大體上都與泥岩或泥質基質有關,而其中的池上斷層就具有「斷層潛移」特性。

所謂的斷層潛移,是指斷層在平時會透過不斷地緩慢錯動,在不產生地震的情況下釋放能量。潛移量升高時,此斷層的地震發生機率也會不斷地降低。巧合的是,如此的斷層活動行為也會產生很高的地表變形速率。也就是說,泥岩區中的高地表變形速率可能和高斷層能量累積速率無關;相反地,此結果可能和活動斷層的潛移行為有關,簡而言之,即臺灣西南部的地震潛勢可能沒有人們所想像的高!

-----廣告,請繼續往下閱讀-----

此外,過去臺灣西南部的構造發育被認為是脫逸構造(tectonic escape)在主導,簡單來說,就是高地表變形速率都和活動斷層的運動有關。但是,厚層泥岩的存在,至少還可能會發育出 2 種重要的構造型態:「活動背斜」與「泥貫入體(下圖)」。活動背斜指的是仍在發育中的背斜地層結構,同樣會造成高地表變形速率,然而也同時釋放承受的擠壓能量。

泥貫入體示意圖。source:作者提供

或許讀者不知道什麼是泥貫入體,但一定聽過泥火山。如果將泥貫入體與泥火山對應常見的火山活動,其就像是一個地底的大型岩漿庫,而泥火山就是地表的火山。再用擠牙膏來比喻,泥貫入體就是那一條正在被擠壓的牙膏,泥火山就像是牙膏口被擠出來的牙膏。在過去的想像中,泥貫入體的活動只存在於海域,陸地上的泥貫入體被認為不再活動。

但是,在成功大學測量及空間資訊學系與中正大學地球與環境科學系近期的合作研究成果中指出,國道三號的南二高中寮隧道與 2016 年的美濃地震地殼變形特性,都極有可能和陸域泥貫入體的現今活動有關,並透過和既有活動斷層發生交互作用來主導臺灣西南部的地表變形型態。不僅如此,泥貫入體的活動同樣也會造成高地表變形速率,並釋放掉部分擠壓能量。

儘管科學家進行眾多預測與分析,不過地震發生的背後,仍有許多大大小小的變因,牽動著每次地震的規模和型態。而泥岩層究竟在臺灣西南部的地震中扮演什麼樣的角色,仍需要地震學者更深入研究和評估,才能讓人們對西南部地底下的斷層有更詳細的了解。

-----廣告,請繼續往下閱讀-----

西南部該怎麼防震?

雖然在厚層泥岩的影響下,臺灣西南部實際上的地震潛勢可能需要重新檢視,但是目前學界仍在研究該如何估算被釋放的能量,因此,地震風險的評估,仍應該以現有地震潛勢的角度來進行防震規劃。

除了現今常見的防震準備與對防震教育的落實,如何改善地震保險機制,應該是另一件需要大家重視的焦點。就如同常見的意外險、醫療險或火災險,透過地震險的規劃,可以分散坐落在地震發生高風險區中建物的損害風險。然而,現有地震保險的計算方式,並沒有考慮到各地不同的地震風險,同時也普遍不被民眾所重視,是現階段需立即改善的地方。

西南部在遭遇重大地震時會伴隨土壤液化,使建物受到更大的威脅。source:wikipedia

傷人的往往不是地震,而是倒塌的建築物,而建築物是否會倒塌,主要和地震造成的地動強度有關。然而,根據 2016 年的美濃地震及歷史地震所造成的災害型態指出,過去臺灣西南部地震的地動強度可能都被低估。此外,不論是 2010 年的甲仙地震、2016 年的美濃地震、1946 年的新化地震,還是更早 1906 年的梅山地震,都指出臺灣西南部在遭遇重大地震時會伴隨土壤液化,像是 2016 年的美濃地震所造成的傾倒或受破壞的數棟大樓皆是直接和土壤液化有關。

儘管在中央地質調查所的努力下,全臺土壤液化潛勢圖已經公告,但圖的精確度仍需靠各界後續的研究工作來驗證與精進;而土讓液化所造成的危害,更需要被各界關注,不僅如此,在建物的設計上也需要審慎考量。

-----廣告,請繼續往下閱讀-----

結語:確認重要建築是否位於潛移斷層

最後,如本文前面所提及的,斷層潛移是臺灣西南部一個重要的地殼變形特性,雖然斷層潛移並不會對於遠離斷層的人員與建物造成任何損壞,但是,對於坐落在潛移斷層上的建物,卻會在平時持續性地受到斷層錯動而造成破壞,例如位於池上的大坡國小、玉里的玉里大橋與國道三號南二高的中寮隧道。因此,確認重要公共設施、重要工廠廠房或住家並沒有坐落在潛移斷層上,也是臺灣西南部面對地震與斷層相關災害時需考慮的重點。

延伸閱讀

  1. Ching, K.-E. et al. , Rapid deformation rates due to development of diapiric anticline in southwestern Taiwan from geodetic observations, Tectonophysics, Vol. 692: 241-251, 2016.
  2. 洪怡貞,〈利用2002~2015年大地測量資料探討臺灣西南部現今構造之運動特性〉,成功大學,2017年。
  3. 楊名等人,〈廣域大地變位之利用GPS監測分析與解算─以國道3號田寮3號高架橋及中寮隧道大地變位監測為例〉,《中華技術》,第119期,122~135頁,2018年。

 

本文摘自《科學月刊 09 月號/2019 第 597 期:正視震知識》科學月刊社出版

-----廣告,請繼續往下閱讀-----
文章難易度
科學月刊_96
249 篇文章 ・ 3735 位粉絲
非營利性質的《科學月刊》創刊於1970年,自創刊以來始終致力於科學普及工作;我們相信,提供一份正確而完整的科學知識,就是回饋給讀者最好的品質保證。

0

2
0

文字

分享

0
2
0
從門得列夫到 118 種元素:元素週期表是怎麼出現的?
F 編_96
・2025/01/04 ・2302字 ・閱讀時間約 4 分鐘

-----廣告,請繼續往下閱讀-----

F 編按:本文編譯自 Live Science

「氫鋰鈉鉀銣銫砝、铍鎂鈣鍶鋇镭…」相信很多人離開高中很多年,都還朗朗上口。

列著 118 種已知化學元素的「元素週期表」(Periodic Table),雖然唸起來像咒文,但有了它之後便能夠快速查詢原子序(proton number)、價電子(valence electrons)數量,以及元素可能的化學性質,成為各領域科學家與工程師設計實驗、預測物質反應必不可少的工具。

有趣的是,元素週期表並非一蹴可及。縱觀歷史,化學家們歷經數世紀的摸索、爭論與資料整理,才在 19 世紀後半葉逐漸確立。

我們現在看到的元素週期表,是在 19 世紀後半才逐漸確定。 圖/unsplash

週期表之父:門得列夫的突破

19 世紀中葉,已知的化學元素約有 63 種,許多化學家嘗試找出元素間的共同點,卻苦無系統性整理。當時能區分「金屬」與「非金屬」,或利用價電子概念將一些元素歸類,但要涵蓋大多數元素仍顯不足。俄國化學家門得列夫在撰寫《化學原理》教科書時,因接觸各元素的資料而產生新思路。他索性把已知元素各種性質寫在紙卡上,再一一比對它們的原子量(類似當今的原子量或原子序概念)與化學性質。

-----廣告,請繼續往下閱讀-----

確切的靈光乍現時刻,如今已無從完全重現,但我們知道門得列夫最後觀察到:「如果按照原子量(或後來的原子序)由小到大排列,某些化學性質就會呈週期性重複。」進一步來看,元素的價電子數量通常也會對應到表格的「欄位」或「族群」。於是,在 1869 年,他將研究結果發表,提出了第一版週期表的雛形,更大膽預言了尚未被發現的元素「eka-aluminium」(後來證實即鎵 gallium)及其他四種元素的性質。

讀懂週期表:原子序、符號與原子量

今日的週期表之所以能快速讓人獲得豐富資訊,關鍵在於三個核心欄位:

  1. 原子序(Atomic Number)
    代表該元素核內所含質子數。如果一原子核有 6 顆質子,就必定是碳(C),無論其他中子或電子數如何。此序號由上而下、由左而右遞增,貫穿整張表格。
  2. 元素符號(Atomic Symbol)
    多為一至兩字母縮寫,如碳(C)、氫(H)、氧(O)。但也有如鎢(W,因「Wolfram」得名)或金(Au,取自拉丁文「Aurum」)等較不直覺的符號。
  3. 原子量(Atomic Mass)
    表示該元素在自然界中各同位素的加權平均值,故通常是帶小數的數字。對合成元素則標示最常見或最穩定同位素的質量,但由於這些元素壽命極短,數值往往會被不斷修正。

舉例來說,硒(Se)在週期表中顯示原子序 34,屬於第 4 週期、第 6A 族,表示它有四層電子軌域,其中最外層(價電子層)有 6 顆電子。有了這些資訊,科學家可快速判斷硒的化學傾向、可形成何種化合物,乃至於在生物或工業應用中可能扮演的角色。

週期表的內部結構:週期、族與軌域

門得列夫最初按照原子量遞增排列元素,現代則依靠原子序(即質子數)來分類。橫向稱為「週期」(Period),從第 1 週期到第 7 週期;縱向稱為「族」(Group),目前總共有 18 組。週期數量在於顯示該元素電子軌域有幾層;而同一族則代表外層價電子數相同,故有相似化學性質。

-----廣告,請繼續往下閱讀-----

例如,第 18 族常被稱作「貴氣體」或「惰性氣體」,如氦(He)、氖(Ne)、氬(Ar)等皆不易與其他元素起反應。另一個顯著群體是位於第一族的鹼金屬(Alkali Metals),如鋰(Li)、鈉(Na)等,因外層只有 1 顆電子,極容易失去該電子而形成帶 +1 價的陽離子,故與水猛烈反應。

此外,在表格中央有一塊「過渡元素」(Transition Metals)區域,包括鐵(Fe)、銅(Cu)、鎳(Ni)、金(Au)、銀(Ag)等。它們具有部分填充的 d 軌域,使得該區域的元素呈現多樣性質,例如具有金屬光澤、可塑性或導電性等,被廣泛應用於工業及工程領域。

同一族的外層價電子數相同,因此大多有著相似化學性質。圖/unsplash

再進化:從 63 種到 118 種

當門得列夫在 1869 年發表週期表時,已知元素只有 63 種,表格中甚至留有空白以預留「未來或存在尚未發現的元素」。他果然預測到了鎵(Ga)以及日後證實的日耳曼ium(Ge)等新元素性質,贏得舉世矚目。隨後,有越來越多元素透過科學發展,尤其是光譜分析與放射性研究而被發現,例如鐳(Ra)和氡(Rn)等。

到 20 世紀後期,隨著粒子加速器的誕生,人類可以合成更重的超鈾元素(Atomic Number > 92)。這些人工合成元素往往極度不穩定,壽命僅能以毫秒或微秒計,但仍證實存在、並填補週期表後段空白。如今,週期表已收錄到第 118 號元素「鿆(Og,Oganesson)」,但科學家預測或許還能繼續向上延伸;只要能合成更重、更穩定的原子核,我們就能拓展週期表的新邊境。

-----廣告,請繼續往下閱讀-----

一般認為,隨原子序遞增,原子核內部的質子數目激增,原子愈趨不穩,往往在極短時間內衰變成較輕元素。然而,一些理論物理學家提出「島狀穩定性」(Island of Stability)的概念:也許在某特定質子與中子數量組合下,能出現意外長壽的「穩定」重元素。

是否真能在表格上方再增添「第八週期」甚至更高週期的列,仍有待更多實驗來驗證。但無法否認的是,週期表一直是科學家檢驗自然規律的試驗場,也見證了人類探索未知的無盡熱情。

-----廣告,請繼續往下閱讀-----

討論功能關閉中。

F 編_96
22 篇文章 ・ 1 位粉絲
一個不小心闖入霍格華茲(科普)的麻瓜(文組).原泛科學編輯.現任家庭小精靈,至今仍潛伏在魔法世界中💃

0

1
0

文字

分享

0
1
0
人類的「長跑」很厲害?靠「跑」在荒野中脫穎而出
F 編_96
・2024/12/26 ・3048字 ・閱讀時間約 6 分鐘

-----廣告,請繼續往下閱讀-----

F 編按:本文編譯自 Live Science

在美國加州死亡谷(Death Valley)「魔鬼鍋爐」般的炙熱溫度下,每年夏天都舉行一場被稱為「世上最極端越野賽」的經典賽事:Badwater 135。選手需在攝氏 49 度、下方為北美洲海拔最低的地帶上,跑步或走完 217 公里的山路,一路衝向位於美國本土最高峰(聖女峰)附近的終點。這聽來猶如天方夜譚,但每年仍有近百人勇敢挑戰。許多四足動物在此高溫下可能早已中暑倒地,為何人類卻能憑藉一雙腳在此環境中堅持下去?

事實上,速度上我們遠不及同等體型的動物,例如豹或馬,然而要比拼耐力,人類卻常能大放異彩。我們能在大草原中與野生動物「天荒地老」地消耗,即使我們在短程衝刺中會被輕易超越,仍可以憑藉馬拉松般的堅韌一路追趕,最終讓速度更快的對手因高溫與疲勞而甘拜下風。究竟人類為何會進化出這般特殊的耐久力?。

在跑步上,人類以耐力著稱,可透過拉長距離讓速度更快的動物因高溫與疲勞而屈服。圖/envato

人類長程奔跑的演化起源

人類的體質在遠古時期並非天生就能輕鬆長跑。據一種假說推測,大約 700 萬年前,類人猿的祖先於非洲開始「離開樹梢」,轉而在地面上覓食、移動。早期的兩足行走雖然看似笨拙,卻逐漸在持續的氣候變遷與草原化過程中展現優勢:

  1. 更廣闊視野:直立行走時,頭部位置提高,有利於觀察周遭環境,提早發現危險或獵物。
  2. 省力遷徙:兩足步態下,移動同樣距離所需能量相對降低,足以在開闊平原上長距離跋涉。

隨著數百萬年的進化,人科動物(hominids)在骨骼、肌肉與生理機制上更趨於適應長時間行走和奔跑。他們在廣袤的非洲大地上,並非以速度壓倒對手,而是依靠「耐力與持久追蹤」取得優勢。考古學家曾提出「持久狩獵」(Persistence Hunting) 的假設:古人類可能利用高溫時段在大草原上追趕羚羊或其他動物,待獵物體溫過熱而力竭之際,人類再上前制伏。一方面依靠長距離奔跑耐力,另一方面倚仗強大的散熱能力。

-----廣告,請繼續往下閱讀-----

足部與下肢結構:為奔跑而生的細節

哈佛大學的人類演化生物學家丹尼爾‧李伯曼(Daniel Lieberman)指出,人類的奔跑能力「從腳趾到頭頂」都有演化專門化的痕跡,稍加留意便能發現許多奧祕。

  1. 短腳趾與足弓結構
    • 人類的腳趾較短,是為了減少長距離奔跑時的折損機率。若腳趾過長,每次著地都更容易造成骨折或扭傷。
    • 足弓(包括足底肌腱與韌帶)則具備彈簧般的功能,可在踩踏地面時儲存彈性能量,接著釋放推力,減少肌肉能量消耗。
  2. 強力肌腱與韌帶
    • 跟腱(Achilles tendon)和髂脛束(IT band)都能吸收並釋放大量彈力,在跑步時有效節省體力。
    • 透過肌腱的彈性能量回饋,跑者在每一步落地與蹬地之間,都能減少額外的肌肉耗損。
  3. 臀部肌群的角色
    • 人類相較於猿類擁有更發達的臀大肌(gluteus maximus),能夠穩定軀幹,使身體不致向前傾斜或晃動得過於劇烈。
    • 這種「穩定性」非常關鍵,它能支撐直立姿勢,維持跑步時的協調和平衡。
人類發達的臀大肌穩定軀幹,得以支撐直立姿勢,提升跑步時協調與平衡的能力。圖/envato

軀幹與上肢:不容忽視的穩定器

奔跑並不只是腿部的事。上半身及頭部在跑動中也扮演著不可或缺的穩定與協調角色。

  1. 擺臂對頭部穩定的影響
    • 當我們在跑步時,雙臂自然擺動,有助於平衡腿部擺動帶來的轉動力矩;換言之,手臂的擺動能對沖下肢動量,讓我們在快速移動時仍保持穩定,頭部不至於過度搖晃。
    • 猿類上肢肌肉發達,卻沒有像人類一樣的大範圍肩關節「解耦」特性(能讓肩膀與骨盆分開晃動、頭部保持前方視線),這使得牠們在直立奔跑時更顯笨拙。
  2. 脊椎靈活度與呼吸節奏
    • 人類的脊椎與骨盆並非僵直連接,跑步時,骨盆能與肩部做出相對扭轉運動,使軀幹整體更靈活。
    • 這種結構也幫助人類在奔跑過程中匹配呼吸節奏:腳步落地的頻率能自然與肺部換氣形成同步節拍。

冷卻系統:靠「排汗」征服烈日

人類藉遍布全身的汗腺大量排汗散熱,透過蒸發有效降低體溫。人類藉遍布全身的汗腺大量排汗散熱,透過蒸發有效降低體溫。圖/envato

在非洲大草原上奔跑,面臨的最大挑戰之一便是高溫。人類為何可承受長時間高溫壓力,甚至能在午後與動物「耐力大戰」?

  1. 排汗與體溫調節
    • 大多數動物主要依賴氣喘(如狗的哈氣)或有限的汗腺冷卻。人類則擁有遍布全身、數量龐大的汗腺;這使我們可藉由大量流汗帶走熱量,再透過汗液蒸發達到降溫效果。
    • 雖然我們也會因此流失水分與電解質,但只要能適度補充,便能持續散熱。而某些大型哺乳動物,在持續奔跑一段時間後,往往因過熱而只能停下休息。
  2. 無毛皮膚與蒸發效率
    • 相較於其他哺乳類,人體毛髮主要集中在頭部與部分身體區域,大片皮膚裸露,有助於排汗時的蒸發散熱。
    • 這種「裸皮」極可能是長距離奔跑與日間活動的選擇性演化結果,確保人類能在炎熱的白天進行移動或狩獵,而不因過熱而必須在陰涼處長時間停留。

呼吸方式:維持長距離的關鍵

另外值得注意的是人類高效率的呼吸節奏。四足動物在奔跑時,呼吸通常與四肢步態高度耦合,比如馬或犬類在衝刺中必須配合四肢的震動節奏吸氣和吐氣,較難隨意變換節拍。而人類因直立姿態,使得呼吸與跑步步伐能保持更大程度的自主調控。

-----廣告,請繼續往下閱讀-----
  • 獨立呼吸調節
    • 能依跑者自主需求來決定吸氣與吐氣的頻率,不一定要剛好配合腿部的落地次數。
    • 這讓人類在長時間奔跑或耐力賽中,能以相對節能的方式調節氧氣和二氧化碳的交換量。
  • 嘴巴與鼻子的雙重進氣
    • 為支撐長時間有氧運動,跑者多半會同時用鼻子與嘴巴呼吸,以便快速補充氧氣並排出二氧化碳。
    • 相較之下,某些動物在喘氣散熱時犧牲了進氣效率,一旦體溫飆升,便難以同時維持高強度奔跑。

即使進入現代社會,大多數人不必再於烈日下持久追蹤獵物,我們仍可在馬拉松、越野超馬等各式比賽中看見古老遺傳「跑步基因」所迸發出的潛力。從波士頓馬拉松、超級鐵人三項,到極端氣候下的 Badwater 135,人類透過持續的鍛鍊與後勤補給,一次又一次突破極限。

-----廣告,請繼續往下閱讀-----

討論功能關閉中。

F 編_96
22 篇文章 ・ 1 位粉絲
一個不小心闖入霍格華茲(科普)的麻瓜(文組).原泛科學編輯.現任家庭小精靈,至今仍潛伏在魔法世界中💃

0

1
1

文字

分享

0
1
1
運動員的大腦跟一般人不一樣?從腦科學看體力之外的奪冠秘笈
F 編_96
・2024/12/17 ・2098字 ・閱讀時間約 4 分鐘

-----廣告,請繼續往下閱讀-----

F 編按:本文編譯自 Live Science

是不是常聽人家講「運動天賦」?這種天賦到底是什麼?運動員哪裡跟我們不一樣?這個問題現在科學家或許可以給你一個答案。近年透過腦科學研究發現,運動員的大腦與普通人的大腦存在顯著差異,這些差異塑造了他們在比賽中的敏捷反應、精確動作及卓越判斷能力。

所以現在運動選手不只比體力,還要比腦力了嗎?這些差異具體差在哪裡?

快速反應:視覺處理能力

在團隊運動如足球或籃球中,快速處理視覺資訊並作出決策對勝負至關重要。一項 2013 年發表於《Scientific Reports》的研究發現,職業運動員比起業餘運動員或一般人更擅長處理動態視覺場景,例如追蹤快速移動的物體。這種能力能夠幫助運動員在瞬間解讀賽場上的複雜資訊,並迅速做出反應。

擁有快速的視覺處理能力,對團體運動來說至關重要。圖/envato

視覺處理能力的測試還可用於判斷運動員是否適合回歸賽場,例如在傷後復健階段,確保運動員在完全恢復判斷能力之前不會貿然上場。

-----廣告,請繼續往下閱讀-----

肌肉記憶:動作的自動化編程

對於體操選手或跳水運動員而言,肌肉記憶是完成複雜動作的關鍵。2023 年《Journal of Neuroscience》的一項研究表示,大腦如何通過訓練快速「壓縮」和「解壓縮」動作資訊,最終將動作序列整合成一個流暢的過程。這種訓練過程使運動員能夠無需刻意思考,便能完美執行複雜動作。

肌肉記憶的形成依賴於大腦皮層神經元的網絡活動,這種神經編程能力也同樣適用於訓練有素的音樂家或舞蹈家。

預測能力:球場上的決策利器

運動員擁有卓越的預測能力,例如棒球擊球手能根據投手的動作,快速判斷球的速度與方向。2022 年發表於《Cerebral Cortex》的研究發現,當擊球手預測投手的投球軌跡時,大腦左腹側顳葉皮質的神經元活動會根據預測結果而改變。

這種高效的預測能力源來於運動員在比賽中,學會透過關聯視覺線索與物體運動軌跡的技能。研究還發現,潛水選手等專業運動員的大腦中與動態運動解讀相關的區域,如上顳溝(STS),比普通人更厚,這也反映了運動訓練對大腦結構的塑造。

-----廣告,請繼續往下閱讀-----

平衡與空間感:身體控制的高峰

對體操選手來說,擁有非凡的平衡感與空間感知能力,兩者缺一不可,而這在科學上被稱為「本體感覺」(proprioception)。位於小腦的神經網絡讓運動員能迅速調整身體姿態,即使在空中失誤也能及時修正動作。

對體操選手來說,平衡感與空間感知能力非常重要。圖/envato

然而,當這套「安全網」失靈時,可能導致嚴重後果。如 2020 年東京奧運中,體操選手西蒙·拜爾斯(Simone Biles)因「扭轉失靈」而一度無法控制動作,凸顯了平衡能力在高風險運動中的重要性。

注意力與認知靈活性:多任務處理的關鍵

團隊運動要求運動員能快速在不同思維模式間切換,例如足球選手需在控球時預測對手動作並調整策略。2022 年《國際運動與運動心理學期刊》的一項研究顯示,運動員,特別是參與高強度間歇訓練的選手,擁有更強的認知靈活性和注意力分配能力。

研究也指出,這些能力的提升可能與長期訓練相關,但確切機制仍需進一步研究。

-----廣告,請繼續往下閱讀-----

抗衰老的秘密:運動對老年大腦的保護

這些運動訓練對大腦的影響,可不是只有相關區域的提升。運動對大腦健康的影響,可能會持續一生。一個典型例子是加拿大田徑選手奧爾加·科特爾科(Olga Kotelko),她在 95 歲時仍保持驚人的腦部健康,其白質結構完好程度甚至接近比她年輕三十多歲的普通人。科學家認為,持續的運動訓練可能是她保持記憶力與認知敏銳的原因之一。

運動不只是對身體的鍛鍊,對維持大腦健康也有影響。圖/envato

下一代的訓練策略:腦力與體力並重

隨著運動科學的不斷進步,科學家也開始呼籲教練更注重對年輕運動員的腦部訓練,例如提升記憶力與決策能力。西悉尼大學的運動科學家凱莉·斯蒂爾(Kylie Steel)指出,運動員的身體或許會訓練至極限,但在認知能力上仍擁有巨大的潛力提升。例如,足球訓練中可以鼓勵球員使用非慣用腳進行射門,以提升大腦靈活性,幫助他們在成年後更加出色地應對比賽挑戰。

近年研究讓我們重新認識了體育訓練對人體的深遠影響,運動改變的不僅是肌肉,還包括大腦。從視覺處理到肌肉記憶,再到抗衰老的腦部結構,透過運動與科學的結合,將為未來的運動員開啟全新可能性,也提醒我們,持續鍛煉不僅益於身體,也有助於大腦的健康。

-----廣告,請繼續往下閱讀-----

討論功能關閉中。

F 編_96
22 篇文章 ・ 1 位粉絲
一個不小心闖入霍格華茲(科普)的麻瓜(文組).原泛科學編輯.現任家庭小精靈,至今仍潛伏在魔法世界中💃