0

0
0

文字

分享

0
0
0

近期臺灣西南部會發生大地震嗎?從斷層錯動與潛移談起

科學月刊_96
・2019/09/24 ・3912字 ・閱讀時間約 8 分鐘 ・SR值 530 ・七年級

  • 文/景國恩,成功大學測量及空間資訊學系副教授。

從小,生活在西南部的人們時常會聽長輩說道:「斷斷續續的小地震是好事,這樣才能讓『能量釋放』,避免大地震的發生。」不僅如此,在新聞也經常能聽到「某某地震屬正常能量釋放」的說法。究竟,地震能量真能一點一滴地慢慢釋放、以防止大地震的發生嗎?而人們又該如何面對和因應?

臺灣西南部即將迎來重大災害性地震嗎?有個說法,認為地震有所謂的「能量釋放」,那麼 2010 年甲仙地震與 2016 年美濃地震是否已經釋放一部分能量,讓大地震發生時間可以延後,甚至是已經全釋放了?

之所以會有上述問題的出現,是因為臺灣西南部發生過數起災害性歷史地震。讀者耳熟能詳的可能包含 1906 年的梅山地震、1946 年的新化地震、1964 年的白河地震或 1998 年的瑞里地震(下圖)。

在最近一世紀,於臺灣西南部發生的地震所造成的死傷人數。圖/作者提供

從統計學的角度來看,似乎臺灣西南部每隔約 20~30 年就會發生一次重大地震事件(下圖);換言之,這幾年間似乎是臺灣西南部發生重大災害性地震的高危險期!

近百年以來臺灣西南部的地震分布圖。資料來源/作者提供

斷層錯動是地震背後的兇手

如果從地震發生機制來看,地震的發生幾乎都和斷層錯動有關。由於斷層的錯動,導致累積在斷層上的能量以地震波的形式傳遞出去,才產生了威脅人身安全的地震。雖然目前人們還無法精確掌握斷層錯動的時間,以此進行地震預測,但可以尋找有可能產生地震的活動斷層(又稱發震斷層)為目標。因此,確認活動斷層錯動的可能性,成為人們評估某一地區地震發生機率的重要工作。

地震的發生幾乎都和斷層錯動有關,圖為車籠埔斷層槽溝剝片。source:wikimedia

那麼,要如何得知這條斷層會發生地震?首先,必須先從已知的地震歷史中觀察,知曉臺灣西南部發生過數次災害性地震,代表此區域有很多條發震斷層,並且也能暗示和幫助人們該往哪個方向去尋找發震斷層。此外,少數如 1792 年的嘉義地震和 1906 年的梅山地震由於發生位置非常接近,甚至連地震規模也近乎一致,若斷層釋放能量前的累積狀況類似,那麼這兩個地震則可能是在同一條斷層上重複發生。所以,將這些活動斷層的位置找出來,將確實能協助探討地震潛勢。

那麼,近 10 年來的大地震和過去的災害地震是否有相關?回顧過去重大歷史地震的位置,可以注意到一種地震空間分布特性:以新化-左鎮一線為界,在 2010 年的甲仙地震之前,主要的災害性地震幾乎都發生在此線以北的地方;直到 2010 年,才有 2010 年的甲仙地震與 2016 年的美濃地震在新化-左鎮一線以南造成嚴重的地震災害(下圖)。換言之,2010 年的甲仙地震與2016年的美濃地震,和過去的災害性地震應該是屬於不同的「發震斷層系統」。不僅如此,根據野外地質調查、鑽井、槽溝開挖、地形特徵判釋、地震觀測、地球物理探測和大地測量監測等活動斷層調查成果,也分析出類似於上述的判斷。

近百年以來臺灣西南部的地震分布圖。source:作者提供

為了解地震發生機率,除了運用前述地質與地球物理方法找尋斷層位置,還需要知道現今「斷層的能量累積速率」,才能計算斷層活動潛勢。利用大地測量手段獲得地表變形速率,則是其中一個評估斷層上能量累積速率的方式。一般而言,地表變形速率快,斷層累積能量的速率和斷層長期滑移的速率也會較快。根據目前的數據指出,除了東部縱谷地區之外,西南部是臺灣西側地表變形速率最快的區域,活動斷層能量累積速率也最高。

在臺灣地震模型組織(Taiwan Earthquake Model, TEM)即將發表的 TEM 2019 地震潛勢評估中,顯示西南部幾乎是全臺地震危害潛勢最高且範圍最大的區域。這也說明 2010 年的甲仙地震與 2016 年的美濃地震對於西南部地震能量的釋放,其實並沒有特別的幫助。然而,這就是最終的地震潛勢分析結果嗎?

泥岩層是西南部地震的新變因?

斷層活動研究與地震潛勢分析的工作中,有一個很重要的假設,那就是斷層的錯動會對應地震的發生。這一個假設,對於世界上絕大多數的地區而言都是適用的,但是,此假設是否也適用於臺灣西南部?

「惡地地形」與厚層泥岩的發育有關,但西南部、東部縱谷的情形略有不同。source:pixabay

會提出這樣的疑問,首先,是因臺灣西南部有非常厚的泥岩層,例如有名的月世界地形(惡地地形)就和厚層泥岩的發育有關。值得一提的是,在臺灣東部縱谷也有一個月世界地形,雖然其地形發育和臺灣西南部有些差異,但大體上都與泥岩或泥質基質有關,而其中的池上斷層就具有「斷層潛移」特性。

所謂的斷層潛移,是指斷層在平時會透過不斷地緩慢錯動,在不產生地震的情況下釋放能量。潛移量升高時,此斷層的地震發生機率也會不斷地降低。巧合的是,如此的斷層活動行為也會產生很高的地表變形速率。也就是說,泥岩區中的高地表變形速率可能和高斷層能量累積速率無關;相反地,此結果可能和活動斷層的潛移行為有關,簡而言之,即臺灣西南部的地震潛勢可能沒有人們所想像的高!

此外,過去臺灣西南部的構造發育被認為是脫逸構造(tectonic escape)在主導,簡單來說,就是高地表變形速率都和活動斷層的運動有關。但是,厚層泥岩的存在,至少還可能會發育出 2 種重要的構造型態:「活動背斜」與「泥貫入體(下圖)」。活動背斜指的是仍在發育中的背斜地層結構,同樣會造成高地表變形速率,然而也同時釋放承受的擠壓能量。

泥貫入體示意圖。source:作者提供

或許讀者不知道什麼是泥貫入體,但一定聽過泥火山。如果將泥貫入體與泥火山對應常見的火山活動,其就像是一個地底的大型岩漿庫,而泥火山就是地表的火山。再用擠牙膏來比喻,泥貫入體就是那一條正在被擠壓的牙膏,泥火山就像是牙膏口被擠出來的牙膏。在過去的想像中,泥貫入體的活動只存在於海域,陸地上的泥貫入體被認為不再活動。

但是,在成功大學測量及空間資訊學系與中正大學地球與環境科學系近期的合作研究成果中指出,國道三號的南二高中寮隧道與 2016 年的美濃地震地殼變形特性,都極有可能和陸域泥貫入體的現今活動有關,並透過和既有活動斷層發生交互作用來主導臺灣西南部的地表變形型態。不僅如此,泥貫入體的活動同樣也會造成高地表變形速率,並釋放掉部分擠壓能量。

儘管科學家進行眾多預測與分析,不過地震發生的背後,仍有許多大大小小的變因,牽動著每次地震的規模和型態。而泥岩層究竟在臺灣西南部的地震中扮演什麼樣的角色,仍需要地震學者更深入研究和評估,才能讓人們對西南部地底下的斷層有更詳細的了解。

西南部該怎麼防震?

雖然在厚層泥岩的影響下,臺灣西南部實際上的地震潛勢可能需要重新檢視,但是目前學界仍在研究該如何估算被釋放的能量,因此,地震風險的評估,仍應該以現有地震潛勢的角度來進行防震規劃。

除了現今常見的防震準備與對防震教育的落實,如何改善地震保險機制,應該是另一件需要大家重視的焦點。就如同常見的意外險、醫療險或火災險,透過地震險的規劃,可以分散坐落在地震發生高風險區中建物的損害風險。然而,現有地震保險的計算方式,並沒有考慮到各地不同的地震風險,同時也普遍不被民眾所重視,是現階段需立即改善的地方。

西南部在遭遇重大地震時會伴隨土壤液化,使建物受到更大的威脅。source:wikipedia

傷人的往往不是地震,而是倒塌的建築物,而建築物是否會倒塌,主要和地震造成的地動強度有關。然而,根據 2016 年的美濃地震及歷史地震所造成的災害型態指出,過去臺灣西南部地震的地動強度可能都被低估。此外,不論是 2010 年的甲仙地震、2016 年的美濃地震、1946 年的新化地震,還是更早 1906 年的梅山地震,都指出臺灣西南部在遭遇重大地震時會伴隨土壤液化,像是 2016 年的美濃地震所造成的傾倒或受破壞的數棟大樓皆是直接和土壤液化有關。

儘管在中央地質調查所的努力下,全臺土壤液化潛勢圖已經公告,但圖的精確度仍需靠各界後續的研究工作來驗證與精進;而土讓液化所造成的危害,更需要被各界關注,不僅如此,在建物的設計上也需要審慎考量。

結語:確認重要建築是否位於潛移斷層

最後,如本文前面所提及的,斷層潛移是臺灣西南部一個重要的地殼變形特性,雖然斷層潛移並不會對於遠離斷層的人員與建物造成任何損壞,但是,對於坐落在潛移斷層上的建物,卻會在平時持續性地受到斷層錯動而造成破壞,例如位於池上的大坡國小、玉里的玉里大橋與國道三號南二高的中寮隧道。因此,確認重要公共設施、重要工廠廠房或住家並沒有坐落在潛移斷層上,也是臺灣西南部面對地震與斷層相關災害時需考慮的重點。

延伸閱讀

  1. Ching, K.-E. et al. , Rapid deformation rates due to development of diapiric anticline in southwestern Taiwan from geodetic observations, Tectonophysics, Vol. 692: 241-251, 2016.
  2. 洪怡貞,〈利用2002~2015年大地測量資料探討臺灣西南部現今構造之運動特性〉,成功大學,2017年。
  3. 楊名等人,〈廣域大地變位之利用GPS監測分析與解算─以國道3號田寮3號高架橋及中寮隧道大地變位監測為例〉,《中華技術》,第119期,122~135頁,2018年。

 

本文摘自《科學月刊 09 月號/2019 第 597 期:正視震知識》科學月刊社出版

文章難易度
科學月刊_96
235 篇文章 ・ 2571 位粉絲
非營利性質的《科學月刊》創刊於1970年,自創刊以來始終致力於科學普及工作;我們相信,提供一份正確而完整的科學知識,就是回饋給讀者最好的品質保證。

0

4
1

文字

分享

0
4
1
越南車廠將撼動特斯拉電動車地位!?誰能在電池戰中獲勝?
PanSci_96
・2023/02/26 ・2723字 ・閱讀時間約 5 分鐘

2022 年 12 月,來自越南的 999 台 VinFast VF 8 City 型智慧電動車乘坐貨輪抵達抵舊金山貝尼西亞港,敲開特斯拉的電動車帝國大門。

除了吹響這次的電動車戰爭號角的 VinFast,眾多車廠像是通用汽車(General Motors)或是來自中國的比亞迪等,都拿起籌碼坐上桌,準備要搶攻這塊市場。而大家手上握的籌碼,就是自家生產的電池。

氫與鋰,都幾?

在電動車產業中,要掌握電動車,就得先掌握好電池。光是電池就佔了整台車 35~40% 的成本,選擇不同種類的電池,更會影響到續行里程、充電效率和安全性。而目前電動車所使用的均為「鋰離子電池」。

大家是否還記得,在十幾年前,與電動車角逐未來「環保車」位置的,還有氫能車。

氫與鋰的競爭勢必發生,它們排在元素週期表最前面,原子序最小的一、三名。鋰的密度甚至僅有每立方公分 0.534 克,比水還要輕,代表在相同的重量下,可以放入更多的原子,攜帶更多的電量,這正是我們最需要的。由於氫氣的分子量小,在燃料電池中的能量轉換效率也不錯,因此「理論上」氫燃料電池的能量密度是鋰離子電池的 150 倍。

只是,就現在技術成熟度來說,明顯是鋰離子電池獲勝,不論是手機、電動車還是大型儲電設備,到處都見得到鋰離子電池的身影。

手機也是使用鋰離子電池。圖/Envato Elements

鋰離子電池

1970 年代,英國化學家惠廷翰(M. Stanley Whittingham)發明了第一個可以充放電的鋰離子電池,其單位重量的儲電效率遠超過當時的鉛蓄電池與鎳鎘電池。在電池中,金屬鋰會在負極丟下電子,以鋰離子的狀態移動到正極,並被特殊設計的二硫化鈦夾層捕捉,電路中的電子則會從負極流往正極,完成電路循環。

不過當時負極所使用的是純金屬鋰,因此,在電池充電、鋰離子會回到負極再結晶成金屬鋰的過程中,會容易形成如同鐘乳石般的晶鬚(Lithium Dendrite),當晶鬚因為反覆充放電變的更長,甚至會戳破電池的保護層,導致短路爆炸。

好在後來美國的古迪納夫(John B. Goodenough)與日本的吉野彰(Akira Yoshino),分別將正極材料換成了鋰鈷氧化物,負極換成可以捕捉鋰離子的碳材料;整顆電池不再有純金屬鋰,只有鋰離子在電解液中移動,確保了安全性,讓鋰離子電池得以商業化。

而這孕育出鋰離子電池的這三位科學家惠廷翰、古迪納夫以及吉野彰,在 2019 年抱回諾貝爾化學獎,實至名歸。

2019 年諾貝爾化學獎,頒給了孕育出鋰離子電池的三位科學家。圖/The Nobel Prize

電池的負極在吉野彰將負極換成石墨烯等碳材料後,至今沒有太大的變化,鋰離子電池最主要的改良還是圍繞在正極材料的改變上,我們習慣將不同的鋰離子電池依照它的正極材料來命名,例如:將鋰離子電池的正極改為鋰鈷氧化物,則稱為鈷酸鋰電池。電池發展到現在,陸續登上舞台的還有磷酸鐵鋰電池、磷酸鋰錳鐵電池、鋰鎳鈷鋁電池、鋰鎳錳鈷電池等。

哪個才是最強的電池

「三元電池」是目前市面上可量產的產品中、能量密度最高的電池,也是現在電動車的電池首選。「三元」指的是正極材料中除了鋰以外,加進了鎳、鈷、錳三種元素,具有高容量、低成本的巨大優勢。

除此之外,材料學家發現,如果提高鎳含量,可再進一步提升單位體積的電容量。許多車廠推出的高鎳電池,其鎳含量甚至高達 80 至 90%。這種高鎳三元電池的電容量可以高達每公斤 280~300瓦時(280~300 Wh/kg),相較之下,馬斯克最愛的「磷酸鐵鋰電池」每公斤只有 140~150 瓦時(140~150 Wh/kg),僅三元電池電容量的一半。

那為什麼電動車龍頭特斯拉反而選擇了磷酸鐵鋰電池呢?就是成本考量。

磷酸鐵鋰的成分除了鋰以外,只需要常見的鐵跟磷,完全移除了昂貴的稀有金屬鎳跟鈷,在俄烏戰爭爆發之初,由於俄羅斯是鎳的生產大國,導致鎳的價格在一個月內暴漲了 250%,大大增加了高鎳三元電池的成本負擔。

另外,相對三元電池,磷酸鐵鋰電池不僅成本低,安全性也較高。

除了特斯拉,在 2022 年電動車銷售數量超越特斯拉的中國車廠比亞迪也很愛!比亞迪自行研發的「刀片電池」用的就是磷酸鐵鋰電池,並且透過物理結構的改良,在不過多改變材料的情況下,增加相同體積中的電容量。

特斯拉電動車用的是磷酸鐵鋰電池。圖/Wikipedia

次世代電池,Taiwan can help?

科學家預估,鋰離子電池的物理極限大約就在每公斤 300 瓦時,三元電池也差不多摸到這條線了。而這個結果離「完美」絕對還有很大一段距離,因為汽油的能量密度可是每公斤一萬兩千瓦時,鋰離子電池的 40 倍!

先別失望!隨著科技進步,鋰離子電池也將進入次世代。2022 年 3 月,Gogoro 與台灣電池廠商輝能科技共同發表,將在 2024 年導入固態鋰電池,用固態電解質來取代傳統鋰電池中的液態電解液。藉此不僅重量僅有鋰電池的一半,去掉液態成分後更大幅減少漏液、燃燒的風險;更重要的是,固態電池的能量密度上看每公斤 500 瓦時,是三元鋰電池的兩倍,車主們就可以少換幾次電池。

想開電動車的車迷也可以期待,除了 Gogoro 以外,輝能科技也宣布結盟 VinFast,可望在電動車市場上掀起一波固態電池車風潮。

這邊有個更好的消息,超越固態電池,能量密度可以逼近汽油的「空氣鋰電池」已經在研發路上。空氣電池的負極使用鋰金屬,正極則替換為氧氣或二氧化碳,成為鋰氧氣電池(Li–O2 Battery),或是鋰二氧化碳電池(Li–CO2 Battery);用氣體取代了原先沉重的金屬正極,大大提高了相同重量的電容量。

雖然空氣電池仍在研發,一樣需面對負極沉積時產生的晶鬚、安全等問題;但至少在過去 20 年,鋰電池遇到的困難已經多次被解決,電化學儲能的方式大有可為。

電動車的發展持續受到關注。圖/Envato Elements

不論是市場上電動車的銷量年年攀升,還是各國政府、車廠的全力投入,電動車主導汽車市場的未來已經清楚可見。未來會不會出現顛覆市場的電池、電動車,甚至是全新型態的交通工具,都令人期待。而在工業製程與材料改革中,「電動車是否真的有比較環保」這個問題,也希望能有個解答。

歡迎訂閱 Pansci Youtube 頻道 獲取更多深入淺出的科學知識!

2

2
1

文字

分享

2
2
1
世上最貴的藥——血友病基因療法
PanSci_96
・2023/02/25 ・3182字 ・閱讀時間約 6 分鐘

對有些人來說,凝固止血是辦不到的事。凝血功能異常的大魔王就是血友病,患者生活不輕鬆,治療用的藥物更是天價。

美國食品藥物管理局在 2022 年 11 月批准的血友病新藥 Hemgenix 。每次治療的藥價高達 350 萬美元,一躍成了世界上最昂貴的藥品。

血友病的藥怎麼會貴成這樣?為何那麼難治癒?在討論這些問題之前,首先我們要面對一個很複雜但意想不到的身體現象——凝血。

血是怎麼凝固的

當血管出血時,會先收縮血管,降低血流量。血小板接著形成臨時的血小板栓堵住血管,然後啟動凝血機轉,形成更加穩固的纖維蛋白,使血管完全堵塞,形成凝塊堵住傷口。整個過程要跟時間賽跑,凝血太慢,臨時的血栓就會被血流沖垮;因此在血友病等疾病影響下,凝血因子數量不足或失去正常功能,就會造成異常的出血症狀。

其中「凝血機轉」(Coagulation cascade)是關鍵的一步,Cascade 指的是眾多凝血因子(coagulation factors)瀑布式的級聯機制,在一連串繁複的生化反應下,在血流中快速建立起穩固的纖維蛋白來堵住傷口。這些凝血因子都是絲氨酸蛋白酶,能加速另一種蛋白質分解,每一個被啟動的凝血因子,會啟動下一個凝血因子,最終形成血塊。

凝血因子的命名是依照歷史上發現的先後順序,訂下編號 1 到 13。當我們需要凝血因子開始工作時,就會將其活化;被活化的凝血因子,會在各自的羅馬數字後面加上 active 的“a”來表示,例如,因子 V 活化之後就變成因子 Va。

凝血因子的命名為編號 1 到 13; “a” 則為被活化的。圖/維基百科

凝血機轉的關鍵在於:不斷讓因子活化成因子 a,因子 a 再去活化下一個因子,直到形成血塊。

在整個過程中,有個因子 IIa 特別重要,又稱為凝血酶 Thrombin,它不僅能活化血小板,讓原本圓圓小小的血小板長出觸手,跟其他血小板勾勾纏在一起。此外,它還能活化內源途徑中的因子 VIII、將共同途徑中的 XIII 活化成 XIIIa、以及將纖維蛋白原因子 I 聚合成不溶於水的纖維蛋白 Ia。

被活化的 Ia、XIIIa 就是凝血機轉關鍵的最後一步,它們會和鈣離子形成互相交聯的纖維蛋白網,讓血塊穩定下來。

血友病成因

既然凝血過程那麼複雜,而我們又要追求凝血速度,那麼要是在哪個環節出了差錯,不就止不了血了嗎?沒錯,這就是血友病的成因。

血友病是一種遺傳性的凝血障礙,通常是由於基因缺陷所導致;然而,儘管是遺傳疾病,但仍有 1/3 左右的病例沒有家族史,代表可能是自己身上產生了突變。血友病分成兩種類型:A 型與 B 型,A 型則是由於凝血因子 VIII 缺乏或缺陷造成的,B 型是凝血因子 IX;兩種血友病的臨床表現很相似,需經過檢驗才能區分。

依用患者血液中特定凝血因子與正常人平均值的比較,來分為重度(1% 以下)、中度(1%~5%)、跟輕度(6%~40%)。成年 B 型血友病患者在 40,000 人當中就有 1 人,其中大多數為男性,台灣約有 200 多位患者。

患者的關節內特別容易出血,造成腫脹、疼痛、無法活動,長期會造成軟骨磨損、關節滑膜充血增生、硬骨骨質流失及骨刺,若是發生不可逆的損傷,就算注射凝血因子也無法恢復;因此,若是罹患重度血友病,最好從小開始預防性定期施打凝血因子,維持濃度,讓關節出血的機會盡量降低。

此外,在正常的初級止血過程中,活化的血小板和內皮細胞會釋放一種叫做 Von Willebrand 因子的蛋白質,如果因子 VIII 沒辦法與其結合,就會在血液中被迅速降解;因此,若 Von Willebrand 因子缺乏或出問題,也會有類似血友病的症狀,在台灣稱為「類血友病」或「溫韋伯氏疾病」(von Willebrand disease, VWD)。

血友病的成因為,在凝血過程中出了差錯。圖/Envato Elements

血友病為何無法徹底治癒

在治療血友病的歷史中,從石灰、明膠、骨髓到蛇毒都曾被用上,不過最主要還是透過輸入大量血漿。

自 1965 年史丹佛大學 Judith Pool 博士發現解凍血漿留下的沈澱物富含因子 VIII,到 1990 年代基因工程培養細胞產生凝血因子;補充因子的治療方法雖可大幅改善患者生活品質,但還是有一些關鍵問題。除了終身都要持續、頻繁地從靜脈注射凝血因子外,療法非常昂貴,且只有不到一半的患者可達到零關節出血的目標。

另外,由於病患沒有因子 VIII 或 IX,他們的免疫系統就有可能把補充進來的凝血因子當成外來的病原,因而產生抗體;儘管這種現象通常只出現在重度患者身上且比例不高,但要是遇上這種情況就非常棘手,病患出血頻率會較高、也更容易關節損壞。通常醫生會使用繞徑藥物(bypassing agent),繞過需要 VIII 跟 IX 因子的凝血路徑來止血,但效果並不如直接補充凝血因子。

在治療血友病的歷史中,最主要還是透過輸入大量血漿。圖/Envato Elements

既然抗體是問題,那把抗體消除不就行了?這的確有可能,曾有醫師發現,若刻意頻繁且大量地給予凝血因子,可以讓病患體內因外來凝血因子而產生的抗體消失,但這起碼要執行超過一年,而且注射劑量得是一般劑量的兩倍以上,才能有較高的成功率。

這種療法稱為免疫耐受引導治療(immune tolerance induction, ITI),執行起來非常辛苦、藥物耗費也多,而且要在很小,大概兩三歲的時候就盡快開始執行,要是長大了才做,成功率就會大幅降低,實在很不划算。

350萬美元其實並不貴?

現有的療法昂貴、耗時、效果有限、而且還得忍受一輩子。於是新療法出現了!

美國食品藥物管理局(US Food and Drug Administration)在 2022 年 11 月批准了一種治療血友病的新藥——Hemgenix:為一種基因療法,透過改造過的腺相關病毒 AAV,將基因運送到患者的肝臟細胞後,就能靠自己製造出凝血因子 IX,讓中重度 B 型血友病患者恢復凝血功能,同時兼顧安全性跟有效性。

基於對 54 名患者的臨床實驗資料,在一次性的靜脈注射後,7~8 個月左右,幾乎所有病患體內的因子 IX 水平都穩定了,預估效果起碼能維持八年以上,甚至更長。即使臨床實驗裡,有患者製造的因子 IX 比較低,但都達到足以避免自發性出血的程度。注射後的副作用很輕微,例如常見的頭痛或輕微的感冒症狀,而追蹤 24 個月之後,跟治療有關的不良反應則是零。

生產商 CSL Behring 將藥價定為每次治療 350 萬美元,對患者來說,若有機會接受新療法,當然是好消息,但是這價格實在驚人。不過,以美國的情況來說,CSL Behring 認為每一位接受新療法的患者,可以替美國健保系統省下 500 至 580 萬美元的費用,患者能夠獲得確實有效而且再也不用頻繁地注射因子 IX,省下每年大約 60 萬到 80 萬美元的治療開支。

Hemgenix 每次治療為 350 萬美元,對多數患者來說,這價格實在驚人。圖/Envato Elements

臺大醫院血液科主治醫師周聖傑表示,台灣成年 B 型血友病患者,每年大約要花台幣 400~500 萬注射因子 IX;不過目前還不知道新的基因療法在台灣價格會是多少。

周聖傑醫師對新療法審慎樂觀,但也提醒,肝臟未發育成熟的兒童、或是肝功能不好的的血友病患者,仍無法使用基因療法;此外也得看患者是否對腺相關病毒已經有抗體,因此療法的適用性仍要視個別狀況考慮。

然而,不論是新的基因療法或是新型長效因子注射療法,對在發展中國家、全球 80% 的血友病患者來說,都是無法負擔的天價。未來若要讓更多患者能受惠,需要各方面共同努力。

歡迎訂閱 Pansci Youtube 頻道 獲取更多深入淺出的科學知識!

所有討論 2

0

2
0

文字

分享

0
2
0
走高山只為預測颱風,臺灣氣象學開拓者——近藤久次郎
PanSci_96
・2023/02/10 ・3388字 ・閱讀時間約 7 分鐘

  • 作者/廖子萱

蕞爾臺灣島,地跨熱帶與副熱帶季風氣候區、四面環海,縱貫的百岳更加深了氣候的複雜程度。

在這樣的地理條件下,即便當今借助氣象衛星進行天氣分析,預報仍偶見差之毫釐、失之千里。一百年前,人們對於山岳、海洋與其相生的自然現象往往常處於未知,而至今日手機隨手可得及時的氣象預報,在短短一百年間,臺灣氣象科學從無到有,蓬勃發展。這背後的功臣包括了中央氣象局、高山氣象站、地震觀測站,這些單位的前身與發展,皆與近藤久次郎有關。

圖1. 1897 年臺北測候所。圖/交通部中央氣象局〈台灣氣象憶往之ㄧ〉

近藤久次郎(Kondo Kyujiro ,1858 – 1926)是臺灣首任總督府測候所技手兼所長,也是臺北測候所所長(現中央氣象局)。 1896 至 1924 年在臺期間,近藤引領總督府測候所設立了七座地方測候所,並協調地方基層治理單位,建構氣象觀測方法和資料搜集的網絡。他更推動高山觀測方法,以進行颱風預測、推動高山與地震觀測系統的建置,為臺灣氣象科學翻開了嶄新的一頁。

臺灣近代氣象觀測的發展

臺灣近代氣象觀測發展可追溯於清朝,光緒年間的1883年,清廷聘請杜伯克博士(Dr. William Doberck)赴香港擔任首任天文司(天文台台長),並在沿海稅關和燈塔裝置觀測設備,進行氣象觀察。臺灣基隆、淡水、安平、打狗四港的稅關,以及漁翁島(澎湖)、南岬(鵝鑾鼻)也陸續在 1885 年前後,展開十餘年的氣象記錄。然而,1895 年清廷與日本簽訂馬關條約割讓臺灣,氣象觀測工作就此停擺,多數的觀測儀器與記錄更在政權交替期間散失。

日本統治臺灣之後,由於當時國際航海安全多仰賴氣象資料,在英法強權的施壓下,臺灣總督府於1896年發布第 97 號敕令,以「台灣總督府測候所官制」編制氣象觀測單位,而日本中央氣象台則選派本文主角,技手(技士)近藤久次郎來臺勘查、策劃氣象觀測站。同年,總督府也在民政局通信部海事課增設「氣象掛」一單位,統理全島氣象事務,如氣象觀測、天氣調查、颱風警報、地震檢測等工作。

1896 年四月至六月間,近藤久次郎與民政局通信部海事課課長遠藤可一翻山越嶺、走訪各地,行跡遠至鵝鑾鼻。根據兩人的調查基礎,臺灣總督府先後於臺北、臺中、臺南、恆春和澎湖設置測候所(後三為 1987 年設立),近藤也在日本中央氣象台台長中村精男(Nakamura Kiyoo)的任命下擔任臺北測候所所長,開始逐步搭建全島的氣象觀測網絡。

在各地氣候觀測所選址的條件上,近藤久次郎配合日本政府在農業、工業、航海與公共衛生等發展項目的資料需求,為詳實觀測各區域氣候根據相對距離由北至南畫設臺北、臺中、臺南、恆春測候所 。此外,還參考了夏季與秋季的颱風路徑設立澎湖測候所,用以觀察自香港與馬尼拉而來的颱風。

除了本島的氣象觀測,近藤還曾於1897年,帶著晴雨計、寒暖針遠赴火燒嶼(綠島)、紅頭嶼(蘭嶼)進行氣象觀測、測量山頂高度,策劃設立觀測站。而後隨著總督府逐步克服東部地區交通和電信的限制, 1900 年、1910 年臺東和花蓮測候所分別建設完成,時至 1924 年近藤久次郎卸任前,全臺共設有七座「一般測候所」。

十九世紀末的觀測所主要沿用清朝遺留的官廳或民房,屋頂簡單設有的風力與風向儀,室內則作為辦公之用。一般測候所以風力塔為主要的觀測設施、可測量風向、風速、風壓、日照和日射;辦公室外設置氣象觀測坪以測量氣溫、雨量、地面溫度等;測候所外另設有提供執勤人員進駐的官舍。

而在時間方面,位於政治中心的臺北觀測所實施 24 小時氣象觀測;其他測候則每四個小時實施觀測、每日六次,用於地區性天氣預報,並將資料匯報予臺北測候所以利發布臨時颱風警報、氣候月報和年報,進一步進行總體性的氣象分析。

擴大氣象觀測網路,發佈氣象預報歷史頁面

為了擴大氣象觀測網絡,總督府會同官廳、派出所、郵局等單位協助蒐集雨量和氣溫資料,並於 1896 年 7 月以「民通 151 號」公報始建立暴風警報通報流程,命令各官廳、海關、郵局、燈塔,將通信部海事課所轉發的暴風警報公布予地方民眾,九座燈塔更奉「總督府訓」兼任氣象觀測的任務,協助測量氣溫、氣壓、風、雲與雨量。

1897 年 9 月,近藤領導的臺北測候所開始發佈每日三次的氣象預報,並與琉球、九州南部測候所,以及徐家匯、香港、馬尼拉等地的氣象台交換氣象報告。 依循著新展開的天氣觀測模式,總督府府報開設「觀象」專欄,刊登臺北測候所撰寫的天氣預報(「本島氣象天氣豫報び天氣概況及暴風警報等」),開啟了臺灣天氣預報歷史性的一頁。直到1905年,全臺各地的雨量觀測網絡已達78處,涵蓋燈塔、支廳、派岀所、學校、郵局、農業試驗所、自來水廠等單位,各處配備簡易的氣溫觀測工具以協助記錄天候狀況。

很快地,日本在臺短短10年內,近藤久次郎已為氣象觀測網打下綿密的基礎。

不只是天氣預報,開啟高山觀測與地震研究先河

1900 年,近藤久次郎附議天文學者一戶直藏提出的新高山(今玉山北峰)報告(新高山ニ關スル研究報告),近藤提到:「新高山山頂是天然絕佳的天文觀測與氣象學研究位置」,他認為高山觀測有助於天文和氣象研究,可藉由研究大氣動力上升的過程進行天氣預測,尤其臺灣每逢夏季,颱風挾帶滂沱大雨常引發災情,若能在台灣百岳中設置幾處高山觀測所,定有助於颱風警戒和天候預設。

於是, 1911 年近藤久次郎與一戶直藏率先提出「新高山觀測所設置計畫」,向總督府倡議在玉山、阿里山興建高山觀測所和天文台,間接促成玉山觀測站(1943 年始建造)與阿里山觀測站(1932年建造)的設置。

近藤久次郎除了推動高山氣象、天文與航空研究,也曾與臺北測候所同仁積極推動與地震和火山相關的研究: 1896 年,臺北臨時測候所首次藉由人體感受進行地震觀測; 1897 年正式落成的臺北測候所,引進格雷-米爾恩型地震儀(Gray-Milne Seismograph); 1900 年,由被譽為日本地震之父的大森房吉所改良的大森式水平地震儀(Omori horizontal pendulum seismograph)以及強震儀(Strong motion seismograph)裝設於臺北測候所。

這些地震觀測儀也在 1906 年 3 月 17 日的「嘉義梅山地震」發揮了記錄地震波形與餘震數據的作用,獲得的數據使大森房吉找出梅山地震與斷層的關係,並將之命名為「梅仔坑斷層」(後更名梅山斷層)。而後,大森房吉還將研究與近藤所著的說明書刊登於報紙,傳遞地震成因與餘震的科學知識,緩解民間傳說帶來的社會不安。時至1907年,在近藤的協助推動下,全臺共有七所測候所兼做地震觀測,當時的紀錄,也成為現代地震研究珍貴的早期觀測資料。

1924 年,近藤久次郎因病去職返回日本,1926年因胃癌而逝世。 1896 至 1924 年,近藤來臺近將三十年,他在擔任總督府測候所與臺北測候所所長期間,建制氣候所與觀測網絡、編輯並彙整氣象資料;開啟暴風雨警報、颱風預測等重要的氣象預報機制;也協助推動高山氣候觀測、天文觀測與地震研究,著實是臺灣近代氣象科學研究的先河。

註解

  • 註 1:然而,由於當時日本與臺灣之間並無定期班船和通訊設備可供交通和信息的傳遞,使得測候所無法如期配備氣象觀測儀器並興建正式氣候站,故先以既有房舍作為臨時氣候所。而後各地氣候所材陸續興建並增添觀測設備:臺北測候所於 1897 年 12 月 19 日遷入臺北城內南門街三丁目;臺中測候所於 1901 年 5 月 20 日遷入臺中城內藍興堡台中街;台南測候所於 1898 年 3 月 1 日遷入台南城內太平境街第 216 號官有家敷地;恆春測候所於 1901 年 11 月 24 日遷入恆春縣前街四番地;澎湖測候所於 1898 年 3 月 1 日遷入澎湖島媽公城內西町。(資料來源:中央氣象局委由財團法人成大研究發展基金會、國立成功大學單位研究之《台灣氣象建築史料調查研究》, 2001 年 2 月出版。)
  • 註 2:資料參考徐明同〈台灣氣象業務簡史〉
PanSci_96
1038 篇文章 ・ 1363 位粉絲
PanSci的編輯部帳號,會發自產內容跟各種消息喔。