0

0
2

文字

分享

0
0
2

面對地震,人們準備好了嗎?在集集地震後的20年

科學月刊_96
・2019/09/22 ・3563字 ・閱讀時間約 7 分鐘 ・SR值 552 ・八年級

  • 文/潘昌志,臺大海洋研究所碩士、師大地科系博士班二年級,筆名阿樹,現為「震識:那些你想知道的震事」副總編輯。

1999年9月21日的凌晨,震央位於臺灣南投集集鎮的一場芮氏規模7.3的大地震,除了造成人類生命及財產上的損失外,更是一場死傷慘重、影響無數的自然災害。事過境遷後,這場地震為臺灣帶來什麼影響,又教會了人們哪些事?

上世紀後半災情最慘重的集集地震,給了臺灣地震學家一個沉重的功課。這 20 年來,筆者不敢說這功課寫得好不好,但至少地震學家並沒有減少努力過,為的就是希望在下次大地震來臨前,能做好更萬全的準備。

舉世界之力研究車籠埔斷層

除了集集地震後針對車籠埔斷層、全臺活動斷層的研究各有成果外,在 2004 年更促成臺灣與美、日、德和義等多國共同參與的臺灣車籠埔斷層鑽探計畫(Taiwan Chelungpu-fault Drilling project, TCDP)。TCDP計畫成功鑽探到集集地震的滑移帶,發現其厚度約為毫米等級,且含有非常細緻、奈米等級的黏土礦物斷層泥。此項鑽探結果也增進對地震能量分區的理解,更連結了地質及地震科學兩領域。

斷層泥的成因,主要是斷層在地震發生時,高速滑移而瞬間產生高溫、高壓的環境,使得斷層面上的岩石被剪碎,若裡面含有地下水的話,甚至還會產生化學變化。利用斷層泥的顆粒、泥層厚度的分析,可以推估斷層面上所釋放能量。這樣直接「看」到斷層面的研究方式在當時國際上也是少見的,而後 2004 年的汶川地震與2011年的東日本大地震也同樣採用此技術,以了解斷層面的摩擦係數。

-----廣告,請繼續往下閱讀-----
斷層泥能協助推估斷層面上所釋放能量。source:wikipedia

除了鑽井採樣之外,也有更一步的探測,例如雙井實驗,將其中一口鑽井注水、並在40公尺外的另外一井觀測地下水變化,來取得斷層帶的岩石孔隙度、透水程度等參數,進一步了解斷層面性質。而臺灣車籠埔斷層井下地震儀(Taiwan Chelungpu Fault Drilling Project Borehole Seismometers Array, TCDPBHS)計畫,則是直接將7台地震儀安裝在地下 950~1300 公尺深處,跨越斷層帶,以監測大地震後的斷層帶行為。

在鑽井計畫和井下地震儀等計畫加持下,讓地震學家對於臺灣的地震又有更深的認識。首先,中央大學地球科學系教授馬國鳳的研究團隊發現一種只有 P波、卻沒有 S波的地震訊號。此特殊地震集中發生於斷層帶上,經過進一步驗證後,發現地底的水壓變化會誘發微地震。雖然地震規模不大,但這項研究是地下水變化會引發地震的直接證據,對於近來興起的頁岩氣和地熱井開發等使用水力壓裂技術的新能源發展,是一種從地震學角度的提醒。

雖然人們無法預知下次大地震何時到來,但卻可以藉由深入研究已發生的大地震,讓地震科學向前進移,以增進知識、達到減少災害。

地震研究早就開始了

1999 年的集集地震雖然是近 50 年來災情最慘重的地震,不過有許多關鍵的觀測與研究,是從更早之前就開始運作。1986 年的花蓮強震造成北部地區的中和華陽市場倒塌,遂使當代的地震學家與政府開始重視地震觀測與防災。於 1989 年成立中央氣象局地震測報中心,1993 年開始在各地架設強震儀,組成強地動觀測網。強震儀屬於加速度型地震儀,專門針對地表震度大的地震所設計,可以藉由量測加速度轉換成震度,提供防災參考,同時也能讓人們更了解大地震的地表振動行為。

-----廣告,請繼續往下閱讀-----

由於地震學前輩們的真知灼見,儘管集集地震災害嚴重,但也因為有當時世界上最密集的強地動觀測網與地震速報系統,在震後 2 分鐘之內就自動產出地震速報,相對於 1995 年之前,需要 30 分鐘才能得到可信的地震規模與震度,快速許多。而 900 多台強震儀的強地動資料,也提供極大量且完整的地震資料,在當時世界各地強震網中也是相當罕見的紀錄。

地震資料讓地震學家有機會仔細分析斷層錯動的模式,加上地表地質觀測的佐證,發現破裂的車籠埔斷層北段有高達約 12 公尺的斷層滑移量及長週期的大滑移速度值。南段雖無太大的滑移量,卻有高頻振動及較高的地振動加速度,這種大規模、高速的斷層運動行為也特別受到世界矚目。

更多的地震知識與解析

地振動加速度地振動速度,分別為地震波在經過時地表質點可以量測到的粗體加速度值速度值兩者的意義與成因皆不同。在一地震中,通常同時具有長週期、短週期兩種地震波,會造成高地振動加速度的震波多為短週期震波,而長週期震波通常不易產生高加速度值,卻容易產生高的地振動速度。

位處台北市的東星大樓是北部當時最嚴重的受影響區域之一。source:wikipedia

過去,在地震工程中多半認為地振動加速度為致災主因,因此在震度的觀測上多考量最大的地動加速度,加速度值越高,震度就越大。但從集集地震資料發現,除了地動加速度之外,地震斷層的滑移速度大時,會產生較長週期的震波。長週期震波即使加速度不大,但因為週期長、朝著同一方向的加速經歷時間跟著變長,進而導致擺動的速度更高。長週期震波對高樓大廈等大型建物的影響也更為顯著,通常在一瞬間就能達到很高的速度值,因此地震工程界又稱其為「長週期速度脈衝」。

-----廣告,請繼續往下閱讀-----

同時,對受災建築的分析,也發現地震破裂的複雜動力行為,故集集地震使地震學及地震工程領域深切了解斷層發生大規模滑移的物理機制及其災害特性。因而在耐震設計上,陸續也將「地動速度」與「振動週期」作為設計規範的考量。在近2年氣象局更進一步推動調整震度分級,儘管仍在討論階段未正式公布,但也希望未來能跟上新的科學發現,更貼近防災需求。

震波週期對於高樓建築的影響。source:美編重繪

防災意識抬頭,學者與大眾對話

集集地震的隔年,政府頒布了《災害防救法》,重大天然災害的防治開始有法源依據,接著2003年成立防災國家型科技計畫辦公室,而後轉型成現在的國家災害防救科技中心,著力於科技研發、災害風險管理及防災意識的推廣。此外,據筆者觀察,近年來發生重大災害事件時,在新聞、談話節目及各種傳播媒體中開始有許多專家嘗試與民眾對話。相較於20年前集集地震發生時,政府與民眾的防災識意都提升許多。

而在地震防災上,近年來最重要的兩面向分別是以災防告警系統發布強震即時警報及公告斷層、地振動與土壤液化等災害潛勢圖。

source:wikimedia

災防告警是人們今日能快速收到「地震預警」簡訊通知的最大關鍵。早在2002年,已經能達成在地震發生後22秒產製初步地震資訊的功能,但直到通訊技術成熟、手機上能收到地震預警簡訊時,臺灣的地震預警成果才廣為人知。不過,在這20年間許多產學合作已開始將地震預警技術推向應用層面,例如在科技園區或鐵路運輸上可以利用早期預警減少損失或災害;亦有業者將地震預警結合智慧家庭與自動系統,也期許未來有更多發展。

-----廣告,請繼續往下閱讀-----

集集地震發生以來,地震科學的學術領域持續有突破性進展,在國際上亦有舉足輕重的地位。但地震科學的研究目的,除了對科學知識的渴望,也肩負防災減災的重責大任,因此像是上述的風險管理、知識傳遞也應是地震防災的重要課題。筆者與馬國鳳教授成立「震識:那些你想知道的震事」網路地震科普平台,就是希望建立專家與民眾間的溝通橋樑、提升地震知識與防災素養,讓專業的研究能更「接地氣」,讓人們能與頻繁的地震和平共存。


BOX:何為地震潛勢圖?

雖然地震仍無法預測,但也並非隨機發生。因此,地震學家利用不同的科學資料,並假設累積應變與釋放能量有一定的規律性,嘗試得到地震的再現週期與發生頻率,例如某個地方平均多少年會發生一次規模 6.0 以上的地震。這些資料包括地震觀測的統計、斷層長期監測、利用野外地質調查或是開挖槽溝分析的古地震資料等。

而地震潛勢圖可以依不同的需求繪製 30 或 50 年發生的機率,30 年內發生的機率常用作防災規畫,50 年內發生的機率則因接近房屋使用年限可作為建築耐震或選址等考量。而地震潛勢圖所收進的資料,亦可再進一步針對特定斷層、特定事件進行情境模擬,作為重大災害長期規畫的依據。

延伸閱讀

  1. 馬國鳳、潘昌志,〈地震如何致災?科學家如何知災?我們又該如何防災?〉,2017年9月20日。
  2. 馬國鳳,〈集集地震帶來的功課及學習〉,2018年9月20日。
  3. 臺灣地震損失評估系統

本文摘自《科學月刊 09 月號/2019 第 597 期:正視震知識》科學月刊社出版

-----廣告,請繼續往下閱讀-----

___________
你是國中生或家有國中生或正在教國中生?
科學生跟著課程進度每週更新科學文章並搭配測驗。來科學生陪你一起唸科學!

文章難易度
科學月刊_96
249 篇文章 ・ 3653 位粉絲
非營利性質的《科學月刊》創刊於1970年,自創刊以來始終致力於科學普及工作;我們相信,提供一份正確而完整的科學知識,就是回饋給讀者最好的品質保證。

0

3
3

文字

分享

0
3
3
圖形處理單元與人工智慧
賴昭正_96
・2024/06/24 ・6944字 ・閱讀時間約 14 分鐘

  • 作者/賴昭正|前清大化學系教授、系主任、所長;合創科學月刊

我擔心人工智慧可能會完全取代人類。如果人們能設計電腦病毒,那麼就會有人設計出能夠自我改進和複製的人工智慧。 這將是一種超越人類的新生命形式。

——史蒂芬.霍金(Stephen Hawking) 英國理論物理學家

大約在八十年前,當第一台數位計算機出現時,一些電腦科學家便一直致力於讓機器具有像人類一樣的智慧;但七十年後,還是沒有機器能夠可靠地提供人類程度的語言或影像辨識功能。誰又想到「人工智慧」(Artificial Intelligent,簡稱 AI)的能力最近十年突然起飛,在許多(所有?)領域的測試中擊敗了人類,正在改變各個領域——包括假新聞的製造與散佈——的生態。

圖形處理單元(graphic process unit,簡稱 GPU)是這場「人工智慧」革命中的最大助手。它的興起使得九年前還是個小公司的 Nvidia(英偉達)股票從每股不到 $5,上升到今天(5 月 24 日)每股超過 $1000(註一)的全世界第三大公司,其創辦人(之一)兼首席執行官、出生於台南的黃仁勳(Jenson Huang)也一躍成為全世界排名 20 內的大富豪、台灣家喻戶曉的名人!可是多少人了解圖形處理單元是什麼嗎?到底是時勢造英雄,還是英雄造時勢?

黃仁勳出席2016年台北國際電腦展
Nvidia 的崛起究竟是時勢造英雄,還是英雄造時勢?圖/wikimedia

在回答這問題之前,筆者得先聲明筆者不是學電腦的,因此在這裡所能談的只是與電腦設計細節無關的基本原理。筆者認為將原理轉成實用工具是專家的事,不是我們外行人需要了解的;但作為一位現在的知識分子或公民,了解基本原理則是必備的條件:例如了解「能量不滅定律」就可以不用仔細分析,即可判斷永動機是騙人的;又如現在可攜帶型冷氣機充斥市面上,它們不用往室外排廢熱氣,就可以提供屋內冷氣,讀者買嗎?

CPU 與 GPU

不管是大型電腦或個人電腦都需具有「中央處理單元」(central process unit,簡稱 CPU)。CPU 是電腦的「腦」,其電子電路負責處理所有軟體正確運作所需的所有任務,如算術、邏輯、控制、輸入和輸出操作等等。雖然早期的設計即可以讓一個指令同時做兩、三件不同的工作;但為了簡單化,我們在這裡所談的工作將只是執行算術和邏輯運算的工作(arithmetic and logic unit,簡稱 ALU),如將兩個數加在一起。在這一簡化的定義下,CPU 在任何一個時刻均只能執行一件工作而已。

-----廣告,請繼續往下閱讀-----

在個人電腦剛出現只能用於一般事物的處理時,CPU 均能非常勝任地完成任務。但電腦圖形和動畫的出現帶來了第一批運算密集型工作負載後,CPU 開始顯示心有餘而力不足:例如電玩動畫需要應用程式處理數以萬計的像素(pixel),每個像素都有自己的顏色、光強度、和運動等, 使得 CPU 根本沒辦法在短時間內完成這些工作。於是出現了主機板上之「顯示插卡」來支援補助 CPU。

1999 年,英偉達將其一「具有集成變換、照明、三角形設定/裁剪、和透過應用程式從模型產生二維或三維影像的單晶片處理器」(註二)定位為「世界上第一款 GPU」,「GPU」這一名詞於焉誕生。不像 CPU,GPU 可以在同一個時刻執行許多算術和邏輯運算的工作,快速地完成圖形和動畫的變化。

依序計算和平行計算

一部電腦 CPU 如何計算 7×5+6/3 呢?因每一時刻只能做一件事,所以其步驟為:

  • 計算 7×5;
  • 計算 6/3;
  • 將結果相加。

總共需要 3 個運算時間。但如果我們有兩個 CPU 呢?很多工作便可以同時(平行)進行:

-----廣告,請繼續往下閱讀-----
  • 同時計算 7×5 及 6/3;
  • 將結果相加。

只需要 2 個運算時間,比單獨的 CPU 減少了一個。這看起來好像沒節省多少時間,但如果我們有 16 對 a×b 要相加呢?單獨的 CPU 需要 31 個運算的時間(16 個 × 的運算時間及 15 個 + 的運算時間),而有 16 個小 CPU 的 GPU 則只需要 5 個運算的時間(1 個 × 的運算時間及 4 個 + 的運算時間)!

現在就讓我們來看看為什麼稱 GPU 為「圖形」處理單元。圖一左圖《我愛科學》一書擺斜了,如何將它擺正成右圖呢? 一句話:「將整個圖逆時針方向旋轉 θ 即可」。但因為左圖是由上百萬個像素點(座標 x, y)組成的,所以這句簡單的話可讓 CPU 忙得不亦樂乎了:每一點的座標都必須做如下的轉換

x’ = x cosθ + y sinθ

y’ = -x sinθ+ y cosθ

-----廣告,請繼續往下閱讀-----

即每一點均需要做四個 × 及兩個 + 的運算!如果每一運算需要 10-6 秒,那麼讓《我愛科學》一書做個簡單的角度旋轉,便需要 6 秒,這豈是電動玩具畫面變化所能接受的?

圖形處理的例子

人類的許多發明都是基於需要的關係,因此電腦硬件設計家便開始思考:這些點轉換都是獨立的,為什麼我們不讓它們同時進行(平行運算,parallel processing)呢?於是專門用來處理「圖形」的處理單元出現了——就是我們現在所知的 GPU。如果一個 GPU 可以同時處理 106 運算,那上圖的轉換只需 10-6 秒鐘!

GPU 的興起

GPU 可分成兩種:

  • 整合式圖形「卡」(integrated graphics)是內建於 CPU 中的 GPU,所以不是插卡,它與 CPU 共享系統記憶體,沒有單獨的記憶體組來儲存圖形/視訊,主要用於大部分的個人電腦及筆記型電腦上;早期英特爾(Intel)因為不讓插卡 GPU 侵蝕主機的地盤,在這方面的研發佔領先的地位,約佔 68% 的市場。
  • 獨立顯示卡(discrete graphics)有不與 CPU 共享的自己專用內存;由於與處理器晶片分離,它會消耗更多電量並產生大量熱量;然而,也正是因為有自己的記憶體來源和電源,它可以比整合式顯示卡提供更高的效能。

2007 年,英偉達發布了可以在獨立 GPU 上進行平行處理的軟體層後,科學家發現獨立 GPU 不但能夠快速處理圖形變化,在需要大量計算才能實現特定結果的任務上也非常有效,因此開啟了為計算密集型的實用題目編寫 GPU 程式的領域。如今獨立 GPU 的應用範圍已遠遠超出當初圖形處理,不但擴大到醫學影像和地震成像等之複雜圖像和影片編輯及視覺化,也應用於駕駛、導航、天氣預報、大資料庫分析、機器學習、人工智慧、加密貨幣挖礦、及分子動力學模擬(註三)等其它領域。獨立 GPU 已成為人工智慧生態系統中不可或缺的一部分,正在改變我們的生活方式及許多行業的遊戲規則。英特爾在這方面發展較遲,遠遠落在英偉達(80%)及超微半導體公司(Advance Micro Devices Inc.,19%,註四)之後,大約只有 1% 的市場。

-----廣告,請繼續往下閱讀-----
典型的CPU與GPU架構

事實上現在的中央處理單元也不再是真正的「單元」,而是如圖二可含有多個可以同時處理運算的核心(core)單元。GPU 犧牲大量快取和控制單元以獲得更多的處理核心,因此其核心功能不如 CPU 核心強大,但它們能同時高速執行大量相同的指令,在平行運算中發揮強大作用。現在電腦通常具有 2 到 64 個核心;GPU 則具有上千、甚至上萬的核心。

結論

我們一看到《我愛科學》這本書,不需要一點一點地從左上到右下慢慢掃描,即可瞬間知道它上面有書名、出版社等,也知道它擺斜了。這種「平行運作」的能力不僅限於視覺,它也延伸到其它感官和認知功能。例如筆者在清華大學授課時常犯的一個毛病是:嘴巴在講,腦筋思考已經不知往前跑了多少公里,常常為了追趕而越講越快,將不少學生拋到腦後!這不表示筆者聰明,因為研究人員發現我們的大腦具有同時處理和解釋大量感官輸入的能力。

人工智慧是一種讓電腦或機器能夠模擬人類智慧和解決問題能力的科技,因此必須如人腦一樣能同時並行地處理許多資料。學過矩陣(matrix)的讀者應該知道,如果用矩陣和向量(vector)表達,上面所談到之座標轉換將是非常簡潔的(註五)。而矩陣和向量計算正是機器學習(machine learning)演算法的基礎!也正是獨立圖形處理單元最強大的功能所在!因此我們可以了解為什麼 GPU 會成為人工智慧開發的基石:它們的架構就是充分利用並行處理,來快速執行多個操作,進行訓練電腦或機器以人腦之思考與學習的方式處理資料——稱為「深度學習」(deep learning)。

黃仁勳在 5 月 22 日的發布業績新聞上謂:「下一次工業革命已經開始了:企業界和各國正與英偉達合作,將價值數萬億美元的傳統資料中心轉變為加速運算及新型資料中心——人工智慧工廠——以生產新商品『人工智慧』。人工智慧將為每個產業帶來顯著的生產力提升,幫助企業降低成本和提高能源效率,同時擴大收入機會。」

附錄

人工智慧的實用例子:下面一段是微軟的「copilot」代書、谷歌的「translate」代譯之「one paragraph summary of GPU and AI」。讀完後,讀者是不是認為筆者該退休了?

-----廣告,請繼續往下閱讀-----

GPU(圖形處理單元)和 AI(人工智慧)之間的協同作用徹底改變了高效能運算領域。GPU 具有平行處理能力,特別適合人工智慧和機器學習所需的複雜資料密集運算。這導致了影像和視訊處理等領域的重大進步,使自動駕駛和臉部辨識等技術變得更加高效和可靠。NVIDIA 開發的平行運算平台 CUDA 進一步提高了 GPU 的效率,使開發人員能夠透過將人工智慧問題分解為更小的、可管理的、可同時處理的任務來解決這些問題。這不僅加快了人工智慧研究的步伐,而且使其更具成本效益,因為 GPU 可以在很短的時間內執行與多個 CPU 相同的任務。隨著人工智慧的不斷發展,GPU 的角色可能會變得更加不可或缺,推動各產業的創新和新的可能性。大腦透過神經元網路實現這一目標,這些神經元網路可以獨立但有凝聚力地工作,使我們能夠執行複雜的任務,例如駕駛、導航、觀察交通信號、聽音樂並同時規劃我們的路線。此外,研究表明,與非人類動物相比,人類大腦具有更多平行通路,這表明我們的神經處理具有更高的複雜性。這個複雜的系統證明了我們認知功能的卓越適應性和效率。我們可以一邊和朋友聊天一邊走在街上,一邊聽音樂一邊做飯,或一邊聽講座一邊做筆記。人工智慧是模擬人類腦神經網路的科技,因此必須能同時並行地來處理許多資料。研究人員發現了人腦通訊網路具有一個在獼猴或小鼠中未觀察獨特特徵:透過多個並行路徑傳輸訊息,因此具有令人難以置信的多任務處理能力。

註解

(註一)當讀者看到此篇文章時,其股票已一股換十股,現在每一股約在 $100 左右。

(註二)組裝或升級過個人電腦的讀者或許還記得「英偉達精視 256」(GeForce 256)插卡吧?

(註三)筆者於 1984 年離開清華大學到 IBM 時,就是參加了被認為全世界使用電腦時間最多的量子化學家、IBM「院士(fellow)」Enrico Clementi 的團隊:因為當時英偉達還未有可以在 GPU 上進行平行處理的軟體層,我們只能自己寫軟體將 8 台中型電腦(非 IBM 品牌!)與一大型電腦連接來做平行運算,進行分子動力學模擬等的科學研究。如果晚生 30 年或許就不會那麼辛苦了?

-----廣告,請繼續往下閱讀-----

(註四)補助個人電腦用的 GPU 品牌到 2000 年時只剩下兩大主導廠商:英偉達及 ATI(Array Technology Inc.)。後者是出生於香港之四位中國人於 1985 年在加拿大安大略省成立,2006 年被超微半導體公司收購,品牌於 2010 年被淘汰。超微半導體公司於 2014 年 10 月提升台南出生之蘇姿豐(Lisa Tzwu-Fang Su)博士為執行長後,股票從每股 $4 左右,上升到今天每股超過 $160,其市值已經是英特爾的兩倍,完全擺脫了在後者陰影下求生存的小眾玩家角色,正在挑戰英偉達的 GPU 市場。順便一題:超微半導體公司現任總裁(兼 AI 策略負責人)為出生於台北的彭明博(Victor Peng);與黃仁勳及蘇姿豐一樣,也是小時候就隨父母親移居到美國。

(註五)

延伸閱讀

  • 熱力學與能源利用」,《科學月刊》,1982 年 3 月號;收集於《我愛科學》(華騰文化有限公司,2017 年 12 月出版),轉載於「嘉義市政府全球資訊網」。
  • 網路安全技術與比特幣」,《科學月刊》,2020 年 11 月號;轉載於「善科教育基金會」的《科技大補帖》專欄。
文章難易度

討論功能關閉中。

賴昭正_96
43 篇文章 ・ 56 位粉絲
成功大學化學工程系學士,芝加哥大學化學物理博士。在芝大時與一群留學生合創「科學月刊」。一直想回國貢獻所學,因此畢業後不久即回清大化學系任教。自認平易近人,但教學嚴謹,因此穫有「賴大刀」之惡名!於1982年時當選爲 清大化學系新一代的年青首任系主任兼所長;但壯志難酬,兩年後即辭職到美留浪。晚期曾回台蓋工廠及創業,均應「水土不服」而鎩羽而歸。正式退休後,除了開始又爲科學月刊寫文章外,全職帶小孫女(半歲起);現已成七歲之小孫女的BFF(2015)。首先接觸到泛科學是因爲科學月刊將我的一篇文章「愛因斯坦的最大的錯誤一宇宙論常數」推薦到泛科學重登。

2

2
1

文字

分享

2
2
1
奠定現代通信基礎的克勞德.香農(Claude Shannon)
數感實驗室_96
・2024/06/06 ・743字 ・閱讀時間約 1 分鐘

-----廣告,請繼續往下閱讀-----

本文由 國立臺灣師範大學 委託,泛科學企劃執行。 

以前小時候如果調皮不聽話,就會被大人叫去跪算盤,現在的家長家裡沒算盤了,反而會拿出電路板讓小孩跪。

咦?為什麼總是拿算數工具來懲罰小孩呢?

電路板上看似複雜電路板密密麻麻的,是電腦進行邏輯計算的關鍵。這小小的薄片能執行驚人的運算功能,背後的奧秘離不開一位傳奇科學家的貢獻。他不僅奠定了現代通信的基礎,還開創了人工智慧研究,這可不是一般人一生能做到的成就,但克勞德.香農(Claude Shannon)卻一次搞定。

-----廣告,請繼續往下閱讀-----

這位非凡的科學家是如何改變了我們的時代?

他讓我們今天能享受高效的通訊技術和智慧生活。如果你也覺得現在生活離不開手機和電腦,那你應該感謝這位數學和電機工程的天才。

對於 2000 年後出生的人而言,或許覺得用手機傳訊息、用電腦看影片再平常不過。但在 Shannon 出現之前,沒有人能系統性地定義「資訊」和「通訊」。他以其對動手實驗的熱忱,將這些看似無形的概念轉化為實際的理論,為世界帶來了一場資訊革命。

正是因為 Shannon 的卓越貢獻,我們才能享受如此便捷的現代通信技術。他不僅改變了科學的面貌,還深刻地影響了我們的日常生活。

Shannon 的故事也提醒我們,熱愛與好奇心是推動進步的核心力量。他用智慧和創造力,為我們打造現代通信的基礎,並開啟未來的無限可能。

-----廣告,請繼續往下閱讀-----

更多、更完整的內容,歡迎上數感實驗室 Numeracy Lab 的 YouTube 頻道觀看完整影片,並開啟訂閱獲得更多有趣的資訊!

所有討論 2
數感實驗室_96
76 篇文章 ・ 49 位粉絲
數感實驗室的宗旨是讓社會大眾「看見數學」。 數感實驗室於 2016 年 4 月成立 Facebook 粉絲頁,迄今超過 44,000 位粉絲追蹤。每天發布一則數學文章,內容包括介紹數學新知、生活中的數學應用、或是數學和文學、藝術等跨領域結合的議題。 詳見網站:http://numeracy.club/ 粉絲專頁:https://www.facebook.com/pg/numeracylab/

0

0
0

文字

分享

0
0
0
古人用的超大型手機?從烽火臺到智能手機:通信科技的演進
數感實驗室_96
・2024/05/13 ・883字 ・閱讀時間約 1 分鐘

-----廣告,請繼續往下閱讀-----

本文由 國立臺灣師範大學 委託,泛科學企劃執行。 

現代人手機普及率極高,你可能正在用手機閱讀這篇文章。

仔細想想,我們每天使用的手機真的很厲害。只需幾下操作,就能傳訊息、視訊通話,還能上網看影片、玩遊戲、使用社群網路等。

你可能知道全世界的第一支手機是 Motorola 在 1973 年 4 月 3 日推出的黑金剛,重達 2 公斤的程度。不過,早在幾千年前,其實已經有「手機」存在了。

-----廣告,請繼續往下閱讀-----

當時的手機不只兩公斤重或兩公升水壺大,甚至是有好幾層樓那麼高,那這些手機的傳輸速率也超級慢,看影片一定是不可能,連打電話聊天都辦不到。超級陽春,基本上只能傳遞「有」或「沒有」這樣的是非題。

應該有些人猜到了,其實就是「烽火臺」。

烽火臺是中國古代為了傳遞軍情所設計的通信系統。一座烽火臺上有幾位士兵,備有大量的稻草與木柴,如果看到敵人侵犯,或是前後的烽火臺燃起狼煙,士兵們就會立刻燃燒乾柴,釋放狼煙,傳遞攸關國家存亡的重要資訊。雖然,烽火臺的尺寸大小與現今我們常用的手機差很多,傳輸能力也差很多,但烽火臺還真是上古時代標準的通信設施哦!

接下來還會推出一系列「通信科技」相關的節目,內容囊括了通信發展的歷史故事、重要的通信科學家、通信相關的技術知識。

-----廣告,請繼續往下閱讀-----

讓你認識新聞報導中,常聽到的一些通信專有名詞,什麼是頻帶、頻寬?現代通信技術如此厲害的關鍵又在哪裡?甚至,這些技術跟我們平常在學校裡學到的各科知識,又有怎樣的連結呢?

這系列將用影片帶領大家進入這個有趣、改變全人類生活的通信世界,敬請期待哦!有更多想法也可以留言分享喔!

更多、更完整的內容,歡迎上數感實驗室 Numeracy Lab 的 YouTube 頻道觀看完整影片,並開啟訂閱獲得更多有趣的資訊!

討論功能關閉中。

數感實驗室_96
76 篇文章 ・ 49 位粉絲
數感實驗室的宗旨是讓社會大眾「看見數學」。 數感實驗室於 2016 年 4 月成立 Facebook 粉絲頁,迄今超過 44,000 位粉絲追蹤。每天發布一則數學文章,內容包括介紹數學新知、生活中的數學應用、或是數學和文學、藝術等跨領域結合的議題。 詳見網站:http://numeracy.club/ 粉絲專頁:https://www.facebook.com/pg/numeracylab/