0

0
0

文字

分享

0
0
0

腸內菌,玄機多!

科學月刊_96
・2012/05/28 ・4304字 ・閱讀時間約 8 分鐘 ・SR值 542 ・八年級

你知道人的腸內菌可達100 兆,是所有身體真核細胞的10 倍嗎?若讓身體每個細胞都有投票權,決定人到底是細菌國還是哺乳類國,則鐵定屬於細菌國!

程樹德

動物的消化道內,經常有大量微生物存在,雖然口腔、食道、胃及小腸內,或因其酸度高或物質之流速快,均沒有很多的細菌(少於每毫升10 萬隻),但大腸內物質流速慢、有機物多,微生物就有機會增殖至極驚人程度,如大腸下端每毫升物質,就有1000 億至1 兆個細胞,成年人腸內菌總數可達100 兆,就是人類所有身體真核細胞的10 倍,若每個細胞都擁有一票,以投票決定人到底是屬於細菌國還是哺乳動物國,則人鐵定歸屬於細菌國,且是一個大細菌社會。

若以當今70 億人來計算,其微生物總量可達10 的24 次方,雖然只是海洋內微生物總數的十萬分之一,但綜合各種動物的腸內菌,腸內這一特殊棲地,也算是地球上微生物很重要的生態環境呢!

-----廣告,請繼續往下閱讀-----

益生菌的誤解

現在市面上頗為喧騰的「益生菌」概念,即吃活細菌可以對宿主有好處,是一項頗為根深柢固的想法,其源於20 世紀初年,曾獲得諾貝爾醫學獎的俄國科學家梅奇尼可夫(EliMetchnikoff, 1845~1916),於法國巴黎的巴斯德研究所任教時有的想法:是否人的老化與大腸內腐敗細菌有關呢?他假定,像大腸內常存的梭狀芽孢桿菌(Clostridium),既能水解蛋白質,並產生有毒物如酚(phenol)、吲哚(indole)及氨(Ammonia),這些東西可能讓腸子自我中毒(Auto-intoxication),而當長久中毒後,就產生老化特有的身體變化。

保加利亞或俄羅斯農人常喝 乳酸菌發酵的酸乳。

由於當時細菌學家業已知道,把乳酸菌加入牛奶中,菌因發酵了其中的乳糖而生酸,使牛奶變酸,這反而抑制了讓牛奶腐臭的細菌生長;梅氏也觀察到,保加利亞或俄羅斯農人常喝乳酸菌發酵的酸乳,當中有些人又特別長壽,於是推論常喝有活菌的酸奶,可將乳酸菌種植在大腸內,增進大腸的酸度,因而壓制水解蛋白質的細菌,他因而從保加利亞酸奶中分離出一種菌,用以製酸奶且親自飲用,並宣稱確有裨益,朋友中有追隨者,有些巴黎醫生也開始讓某些病人喝酸奶。但是到了1 9 2 0年,瑞特格(L. F.Rettger)讓人喝酸奶後,再檢視腸內菌群,發現梅氏所宣傳的「保加利亞桿菌」在大腸內根本活不了,於是一舉摧毀了梅氏的推論,他的老化學說也深受質疑。

回顧這一小段科學史,我驚訝梅氏有強大的觀察力及豐富想像力,能從試管的所見,直接跳躍到腸內的複雜世界,同時又能劍及履及的親自體驗,表現了傑出科學家最需要的特質,而他學說終歸錯誤,也無可避免,因為科學所根據的假設,常是靈光一現的遐想及猜測,很難經得住實際檢驗呢!

雖然迷人的假設已被打倒及拋棄,但還是有些人因依依不捨而讓它復活,還以之創立大企業呢!養樂多即為一例,日本人代田稔(1899~1982)在1930年於京都大學念醫學院時,即分離出了一株乳酸菌,名叫養樂多代田菌,5年後開始販賣,此產品在日本與日本曾殖民的地區頗為流行。但每100 克液體竟含有18 克的糖,這是否有益生效果,仍頗有爭議,但常喝者會變胖則是確定的。

-----廣告,請繼續往下閱讀-----

核酸定序與菌種劃分方法

然而開始以總體角度來研究人體腸內菌,則要等到大量定核酸順序的能力出現之後。核苷酸(DNA)是很長條的核酸單元聚合物,經由核糖上的氫氧基與磷酸相連,成為很長的鍊,側枝的鹼基則可以經由氫鍵與互補鏈相連,這A與T互補及G與C的互補,就能保證一條DNA 長鍊上的遺傳資訊能準確地複製到互補那一鍊上。

英國人桑格發明的核酸定序法,將一種特製的核酸單元加入到延長中的DNA鍊上,此單元因缺乏一個氫氧基,無法進一步延伸,於是形成各種不同長度的單鍊DNA ,再用電泳法將各種長度的片段展開後,短的跑得快,位居前列,長的跑得慢,滯延於後,整個鹼基的順序,便能由下而上讀出來。

養樂多自1935年問世以來就深受大眾喜歡、 長銷不衰。此產品是由日本代田稔博士在 1930年分離的養樂多代田菌所製造,然而是 否有益生效果仍頗有爭議,但因其含糖量甚 高,常喝者會變胖是確定的。

這真是極精巧的設計,但實作時仍要幾天時間,才能得到數百個核苷酸的序列。然而經過30 年的逐步創新,當極大量平行定序機器發明時,可在玻璃片上一微小區域放上定序過程,同時對數萬個小區定序,雖然每個小區肉眼難見,但仍可以用細束激光或精細的螢光感應器,偵測此一小區內,某一核酸是否能被酵素加入生長中的DNA 鍊上,偵測同時即記錄之,於是短時間內,可產生百萬以上核酸序列,再用電腦程式互相比對,將短鍊資訊連的更長。

執行這種亂槍打鳥的定序後,細菌的種類如何能劃分呢?這要拜伊利諾大學細菌學家伍茲(Carl Woese, 1928~)之功所賜,他長期對細菌核糖體內一條小核醣核酸(16S rRNA)的基因定序,現已累積20 萬筆資訊於基因銀行(Gene Bank)中,只要定到這一基因的序列,便能將這一細菌分類。

-----廣告,請繼續往下閱讀-----

有了這種強大的工具,美國密蘇里州聖路易市華盛頓大學的戈登(J.I. Gorden)研究小組,便運用這策略,決定人體糞便內可有多少種細菌。

 

腸內菌大觀

決定腸內菌有多少種,並不容易,腸內是個很特殊的生態環境,並非人造的機器所能模擬,故可培養及分離的菌種類,遠遠小於不能培養的菌種類,現在單從總群體的核酸予以定序,再由序列中找出與核糖體次單元核酸分子(16S rRNA)相似的分子,予以收集排比後,就可窺見大致的菌相。

如以98%次單元核酸分子的相同程度來劃分種,則戈登所蒐集的人腸內菌核酸序列可得約800種,但若以每一種特殊的次單元核酸分子順序當一個細菌株(strain ,是分類在「種」這一大群體下的更小純系群體),則超過7000 株,這是頗大的變異,存在種及株這兩個分類層次。

但若從細菌域(domain)這最高層級的分類來看,細菌域內已知可粗分為55 個大枝(Divisions)——這所謂「枝」,現在被賦予超界或深演化分枝(Super Kingdom 或Deep Evolutionary Lineage)的分類地位,即18 世紀時林奈(Carl Linnaeus, 1707~1778)所定界門綱目科屬種七大層次,業已不符使用,故疊床架屋地加於界以上,構築了超界及域兩個更高層次,而在種以下,也加了一個株的層次。

-----廣告,請繼續往下閱讀-----

人腸內菌的核酸序列只分布於55 大枝中的8 枝,其中有5 枝相對較稀少,故絕大多數的腸內菌只歸類於3大枝之內,即噬細胞菌—黃桿菌— 類桿菌類(C y t o p h a g a -Flavobacterium-Bacteroides)、厚壁菌類(Firmicutes)及變形菌(Proteobacteria),前兩枝各占30%以上的菌株。

與人類共同演化的證據

這就指出一個有趣現象,即人腸內菌是地質史上細菌演化出的55 大分枝中,僅有的3大枝予以使用腸道作為棲息環境,這是否意味寄主施予強烈的選擇壓力?以及天擇施予寄主及腸內菌另一種強烈選擇,逼迫寄主與腸內菌共同演化呢?也就是說,寄主的腸內免疫系統是否利用分泌性抗體(IgA)及吞噬細胞或溶菌,來監控腸內菌的行為?以鼓勵合作者,並懲罰破壞者呢?且若腸內菌破壞了寄主的健康,讓他病厭厭甚至死亡,則整個腸內菌大社會也同時進了棺材內?

有項證據似乎顯示人與腸內菌有共同演化關係。在噬細胞菌這一枝(CFB),有許多腸內菌的核酸變異量最多,也只有它們與這一枝的祖先,有最大的改變量,及最遠的遺傳距離,換句話說,這些進駐腸道的菌,曾經加速度演化以適應寄主環境,同枝(CFB)很多菌,也存在其他哺乳動物腸道內,這也指出,這枝內某些菌與哺乳動物的共生,可能已很久遠了。

母親否也把自己腸內菌傳給兒女呢?胎兒腸內無菌,但經過產道時,是否順便接收了媽媽的腸內菌? 2001 年柔天道(Zoetandal etal.)等人用檢驗核酸片段之特徵方法,發現同卵雙生子的腸內菌間相似性,大於雙生子與其同桌共食的配偶間相似程度,同一研究也及於異卵雙生子及兄弟,他們間的相似度,也與同卵雙生子間一樣,支持母子相傳的理論。

-----廣告,請繼續往下閱讀-----

長達幾千萬年的共生關係,是否代表某些腸內菌對於寄主大有助益呢?以前面所提益生菌為例,腸內菌可製造維生素B12,讓大腸攝取,現在似乎有證據,顯示腸內菌可能貢獻能源及廣泛的代謝能力予寄主呢!

腸內菌是造成胖瘦的主因?

腸內的類桿菌中有一種常見致病菌,叫多形類桿菌(Bacteroides thetaiotaomicron),因它的細菌體內常有液泡狀物,使細菌外型像希臘字母,這種伺機引起病症的厭氧菌有很大的基因體,達630萬核酸,當完全定序後,發現它帶有許多代謝碳水化合物的基因,光是醣的水解酵素就有226個,這是否能幫忙寄主消化植物多醣,以產生醋酸等小分子,供寄主為能源呢?

同一研究組在2004 年就曾以此觀念來指導實驗,它們讓同種鼠分兩組,一組經剖腹產,並養在完全無菌環境中,是俗稱的無菌鼠,另一組則自然生產,腸內有菌,兩組給相同富含多醣的飼料,雖然有菌鼠食量低於無菌鼠,但是初成年時,有菌鼠體脂肪,比無菌鼠要高出40%。

這與腸內菌幫忙擷能有關嗎?實驗者拿了一些有菌鼠糞摻入飼料中,讓無菌鼠也建立腸內菌群,很快地, 10 天到2 週後,無菌鼠就變得一樣肥了。

-----廣告,請繼續往下閱讀-----
研究發現老鼠腸內菌會影響對食物的運用效率,進而造成胖瘦的差異。

這項實驗顯示腸內菌可能幫寄主獲取更多能量,那麼胖寄主與瘦寄主間,腸內菌相是否不同呢?於是戈登小組就用基因只差一個的同株純系老鼠進行這實驗。

瘦素是一個小蛋白質,由脂肪組織分泌給腦,下視丘收到瘦素信號後,會降低食慾,以調節脂肪量,當這激素發現時,給予全球胖子極高的期望,想賺大錢的公司也先掏出大錢,包下瘦素可能衍生的商業利益。

可惜事與願違,胖子腦中大都不聽瘦素指揮了,故使這一減肥藥的黃金大夢提早破滅,但科學家破壞老鼠瘦素的一對基因後,卻使老鼠胖嘟嘟呢!

戈登取出胖及瘦鼠盲腸的菌群,並予定序,共得1 億6000 萬個核苷酸序列。在胖鼠腸內菌中,厚壁菌類與類桿菌類之比例,要高於瘦鼠的腸內菌,例如厚壁菌內常見的是直腸優桿菌(Eubacteriumrectale),而類桿菌中常見的是多形類桿菌,其核酸序列出現的頻率比,胖鼠樣本是7.3 ,而瘦鼠內只有1.5 。

-----廣告,請繼續往下閱讀-----

戈登也發現胖鼠樣本內,古菌序列出現次數高於瘦鼠,此常見古菌是史密斯產甲烷短桿菌(Methanobrevibactersmithii),產甲烷的古菌如何能增進多醣的發酵呢?有一種可能是產甲烷的古菌在無氧環境中,搜刮二氧化碳及氫分子,以產生甲烷,當氫分子濃度降低,大有利於細菌發酵,因為移走了發酵的最終產物。

戈登對這一古菌的可能效用,曾以無菌鼠做了一組實驗,一組給予史密斯產甲烷短桿菌及多形類桿菌,另外兩個控制組則只給其中一種菌,他們發現有這兩種菌的鼠,食物運用效率高,且脂肪增加也多於兩控制組。

那麼將胖瘦鼠腸內菌接種到成年無菌鼠(品系C57 BL16)之腸內,會有何差異呢?實驗結果發現,兩週後兩組鼠食量沒差異,但接種胖鼠腸內菌群的老鼠增重了,約為瘦鼠增重的一倍(47%比27%)。

腸內菌與寄主的互動,該是一個很複雜的大領域,目前的研究,顯示古典益生菌的觀念的確單純了些!未來將面臨更多考驗。

參考資料

1. Backhed, F. et al., Host-Bacterial Mutualism in theHuman Intestine, Science, Vol. 307:1915-1920, 2005.

2. Turnbaugh, P.J. et al., An obesity-associated gutmicrobiome with increased capacity for energyharvest, Nature, Vol. 444:1027-1031, 2006.

程樹德任教陽明大學微免所

本文原發表於科學月刊第四十三卷第四期

文章難易度
科學月刊_96
249 篇文章 ・ 3365 位粉絲
非營利性質的《科學月刊》創刊於1970年,自創刊以來始終致力於科學普及工作;我們相信,提供一份正確而完整的科學知識,就是回饋給讀者最好的品質保證。

0

5
1

文字

分享

0
5
1
快!還要更快!讓國家級地震警報更好用的「都會區強震預警精進計畫」
鳥苷三磷酸 (PanSci Promo)_96
・2024/01/21 ・2584字 ・閱讀時間約 5 分鐘

本文由 交通部中央氣象署 委託,泛科學企劃執行。

  • 文/陳儀珈

從地震儀感應到地震的震動,到我們的手機響起國家級警報,大約需要多少時間?

臺灣從 1991 年開始大量增建地震測站;1999 年臺灣爆發了 921 大地震,當時的地震速報系統約在震後 102 秒完成地震定位;2014 年正式對公眾推播強震即時警報;到了 2020 年 4 月,隨著技術不斷革新,當時交通部中央氣象局地震測報中心(以下簡稱為地震中心)僅需 10 秒,就可以發出地震預警訊息!

然而,地震中心並未因此而自滿,而是持續擴建地震觀測網,開發新技術。近年來,地震中心執行前瞻基礎建設 2.0「都會區強震預警精進計畫」,預計讓臺灣的地震預警系統邁入下一個新紀元!

-----廣告,請繼續往下閱讀-----

連上網路吧!用建設與技術,換取獲得地震資料的時間

「都會區強震預警精進計畫」起源於「民生公共物聯網數據應用及產業開展計畫」,該計畫致力於跨部會、跨單位合作,由 11 個執行單位共同策畫,致力於優化我國環境與防災治理,並建置資料開放平台。

看到這裡,或許你還沒反應過來地震預警系統跟物聯網(Internet of Things,IoT)有什麼關係,嘿嘿,那可大有關係啦!

當我們將各種實體物品透過網路連結起來,建立彼此與裝置的通訊後,成為了所謂的物聯網。在我國的地震預警系統中,即是透過將地震儀的資料即時傳輸到聯網系統,並進行運算,實現了對地震活動的即時監測和預警。

地震中心在臺灣架設了 700 多個強震監測站,但能夠和地震中心即時連線的,只有其中 500 個,藉由這項計畫,地震中心將致力增加可連線的強震監測站數量,並優化原有強震監測站的聯網品質。

-----廣告,請繼續往下閱讀-----

在地震中心的評估中,可以連線的強震監測站大約可在 113 年時,從原有的 500 個增加至 600 個,並且更新現有監測站的軟體與硬體設備,藉此提升地震預警系統的效能。

由此可知,倘若地震儀沒有了聯網的功能,我們也形同完全失去了地震預警系統的一切。

把地震儀放到井下後,有什麼好處?

除了加強地震儀的聯網功能外,把地震儀「放到地下」,也是提升地震預警系統效能的關鍵做法。

為什麼要把地震儀放到地底下?用日常生活來比喻的話,就像是買屋子時,要選擇鬧中取靜的社區,才不會讓吵雜的環境影響自己在房間聆聽優美的音樂;看星星時,要選擇光害比較不嚴重的山區,才能看清楚一閃又一閃的美麗星空。

-----廣告,請繼續往下閱讀-----

地表有太多、太多的環境雜訊了,因此當地震儀被安裝在地表時,想要從混亂的「噪音」之中找出關鍵的地震波,就像是在搖滾演唱會裡聽電話一樣困難,無論是電腦或研究人員,都需要花費比較多的時間,才能判讀來自地震的波形。

這些環境雜訊都是從哪裡來的?基本上,只要是你想得到的人為震動,對地震儀來說,都有可能是「噪音」!

當地震儀靠近工地或馬路時,一輛輛大卡車框啷、框啷地經過測站,是噪音;大稻埕夏日節放起絢麗的煙火,隨著煙花在天空上一個一個的炸開,也是噪音;台北捷運行經軌道的摩擦與震動,那也是噪音;有好奇的路人經過測站,推了推踢了下測站時,那也是不可忽視的噪音。

因此,井下地震儀(Borehole seismometer)的主要目的,就是盡量讓地震儀「遠離塵囂」,記錄到更清楚、雜訊更少的地震波!​無論是微震、強震,還是來自遠方的地震,井下地震儀都能提供遠比地表地震儀更高品質的訊號。

-----廣告,請繼續往下閱讀-----

地震中心於 2008 年展開建置井下地震儀觀測站的行動,根據不同測站底下的地質條件,​將井下地震儀放置在深達 30~500 公尺的乾井深處。​除了地震儀外,站房內也會備有資料收錄器、網路傳輸設備、不斷電設備與電池,讓測站可以儲存、傳送資料。

既然井下地震儀這麼強大,為什麼無法大規模建造測站呢?簡單來說,這一切可以歸咎於技術和成本問題。

安裝井下地震儀需要鑽井,然而鑽井的深度、難度均會提高時間、技術與金錢成本,因此,即使井下地震儀的訊號再好,若非有國家建設計畫的支援,也難以大量建置。

人口聚集,震災好嚴重?建立「客製化」的地震預警系統!

臺灣人口主要聚集於西半部,然而此區的震源深度較淺,再加上密集的人口與建築,容易造成相當重大的災害。

-----廣告,請繼續往下閱讀-----

許多都會區的建築老舊且密集,當屋齡超過 50 歲時,它很有可能是在沒有耐震規範的背景下建造而成的的,若是超過 25 年左右的房屋,也有可能不符合最新的耐震規範,並未具備現今標準下足夠的耐震能力。 

延伸閱讀:

在地震界有句名言「地震不會殺人,但建築物會」,因此,若建築物的結構不符合地震規範,地震發生時,在同一面積下越密集的老屋,有可能造成越多的傷亡。

因此,對於發生在都會區的直下型地震,預警時間的要求更高,需求也更迫切。

-----廣告,請繼續往下閱讀-----

地震中心著手於人口密集之都會區開發「客製化」的強震預警系統,目標針對都會區直下型淺層地震,可以在「震後 7 秒內」發布地震警報,將地震預警盲區縮小為 25 公里。

111 年起,地震中心已先後完成大臺北地區、桃園市客製化作業模組,並開始上線測試,當前正致力於臺南市的模組,未來的目標為高雄市與臺中市。

永不停歇的防災宣導行動、地震預警技術研發

地震預警系統僅能在地震來臨時警示民眾避難,無法主動保護民眾的生命安全,若人民沒有搭配正確的防震防災觀念,即使地震警報再快,也無法達到有效的防災效果。

因此除了不斷革新地震預警系統的技術,地震中心也積極投入於地震的宣導活動和教育管道,經營 Facebook 粉絲專頁「報地震 – 中央氣象署」、跨部會舉辦《地震島大冒險》特展、《震守家園 — 民生公共物聯網主題展》,讓民眾了解正確的避難行為與應變作為,充分發揮地震警報的效果。

-----廣告,請繼續往下閱讀-----

此外,雖然地震中心預計於 114 年將都會區的預警費時縮減為 7 秒,研發新技術的腳步不會停止;未來,他們將應用 AI 技術,持續強化地震預警系統的效能,降低地震對臺灣人民的威脅程度,保障你我生命財產安全。

文章難易度

討論功能關閉中。

鳥苷三磷酸 (PanSci Promo)_96
194 篇文章 ・ 297 位粉絲
充滿能量的泛科學品牌合作帳號!相關行銷合作請洽:contact@pansci.asia

0

1
1

文字

分享

0
1
1
陸地上的首批動物是什麼?又是如何上岸的呢?——《直立猿與牠的奇葩家人》
大塊文化_96
・2023/08/19 ・3911字 ・閱讀時間約 8 分鐘

-----廣告,請繼續往下閱讀-----

從志留紀末期到泥盆紀這段時間,地球的大陸成了首批陸生動物的家園。
狀似馬陸的呼氣蟲是最早的節肢動物先驅。
同時,蜘蛛與蠍子的早期親屬,也利用已在地球表面建立起來的植物與真菌生態系。
牠們在陸地上進食、繁殖與死亡,為陸地食物網增添了新的複雜性,也為後來從水邊冒險登陸的其他動物提供了獎勵。

動物隨著地球的演化踏上岸

隨著地球表面被植物染綠,動物跟隨植物的腳步上岸只是時間問題。

隨著地球表面被植物染綠,動物跟隨植物的腳步上岸只是時間問題。圖/envato

第一批維管束植物在地球大陸的年輕土壤中安家後不久,節肢動物踏進了這些矮樹叢。這些無畏探險家留下的最古老證據之一,是在蘇格蘭亞伯丁附近出土的一塊化石,名為呼氣蟲(Pneumodesmus)。

牠是一種多足類,與馬陸和蜈蚣屬於同一個群體。雖然原本將牠的年代界定在四億兩千三百萬年前的志留紀,但是近期研究顯示牠可能更年輕,生活在最早期的泥盆紀。

無論如何,到了泥盆紀,動物已經在陸地上站穩腳跟,而呼氣蟲更是最早在地球上行走的動物之一。

-----廣告,請繼續往下閱讀-----

發現目前唯一的呼氣蟲化石

目前出土的呼氣蟲化石只有一件,而且只是一塊一公分(○.四英寸)的身體碎片。

然而在這一小塊化石中,可以清楚看到很多隻腳,從一隻可識別的馬陸狀動物的六個體節長出來。

呼氣蟲的外觀可能和這種現代的馬陸很像。圖/大塊文化

更重要的是,呼吸結構的細節清楚可見:外骨骼角質層上有稱作氣門的孔。這些氣門讓氧氣與其他氣體進入並離開身體,這塊化石也是根據這項特徵而命名為呼氣蟲(Pneumodesmus 的「pneumo」來自希臘文的「呼吸」或「空氣」)。

這塊化石提供了第一個呼吸空氣的決定性證據,這是一種全新的演化適應,為數百萬微小的節肢動物探索者,以及追隨牠們的捕食者,開放了大陸的表面。

-----廣告,請繼續往下閱讀-----

最古老的多足類演化過程

在泥盆紀,呼氣蟲並非獨自生活在植被中。還有許多多足類和牠一起生活,最古老的多足類化石出現在志留紀與泥盆紀的岩層。

儘管不屬於任何現代的馬陸或蜈蚣群體,牠們是現存馬陸與蜈蚣的早期親戚,外表與馬陸和蜈蚣非常相似,具有分節的長條狀身體許多腳―馬陸每個體節的兩側各有兩隻腳,蜈蚣則只有一隻。

目前已知有最多腳的馬陸是全足顛峰馬陸(Illacme plenipes),擁有七百五十隻腳。現存的大多數馬陸都是食碎屑動物,以腐爛的植物為食。這些動物的化石紀錄很少,因此每一件化石對於我們瞭解生命從水裡浮現的過程都特別珍貴。

一隻有著 618 條腿的雌性 Illacme plenipes。圖/wikipedia

最早的多足類,可能是受到早期植物產生的新食物來源所吸引,才來到陸地上。

-----廣告,請繼續往下閱讀-----

最早的蛛形綱動物也充分利用了頭頂上的廣闊天地。蛛形綱動物包括蟎、蠍子、蜘蛛與盲蛛。牠們有八隻腳(不同於昆蟲的六隻腳),大多數仍生活在陸地上,儘管少數(如水蛛〔Argyroneta〕)又回到水中生活。

奧陶紀與志留紀的化石顯示,蛛形綱動物和其他節肢動物可能在更早的時候就偶爾會出現在陸地上,但是到了泥盆紀,有些已經完全過渡到能夠呼吸空氣的狀態。最早的蛛形綱動物是角怖蛛,這是一個已經滅絕的群體,看起來像是蜘蛛與蟎的雜交體。

蟎與擬蠍也很多,後來還有類似蜘蛛、具有吐絲管能製造絲的始蛛(Attercopus)。就像今天一樣,這些早期的蛛形綱動物大多是捕食者,可能以其他從水邊冒出來的節肢動物為食。

到泥盆紀末期,出現了第一批昆蟲,據估計,昆蟲構成今日地球上所有動物生命的 90%。最後,一些脊椎動物也過渡到陸地上,這或許是受到尋找新的食物來源所驅動。

-----廣告,請繼續往下閱讀-----

我們所知的陸地生命基礎終於到位了。自此之後,演化在這些群體中繼續發揮作用,創造出我們今日所見的驚人多樣與多量。

節肢動物牠們有什麼用處呢?

節肢動物通常被看作是害蟲,昆蟲尤其如此。

然而,牠們在整個地球的運行中扮演十分重要的角色。現在有超過一萬六千個多足類物種、六萬種蛛形綱動物,以及大約一千萬種的昆蟲。

牠們不僅在地球最早期生態系中舉足輕重,至今對自然界及人類的世界仍然非常重要。

-----廣告,請繼續往下閱讀-----

多足類處理森林中的落葉,成為營養循環中的一個重要齒輪。蜈蚣通常是捕食者,最大的蜈蚣甚至能吃小型哺乳動物與爬蟲類。

蛛形綱動物大多也是捕食性的,因此在調節獵物的族群數量方面,發揮重要的作用。這裡所指的包括昆蟲害蟲在內,這些害蟲數量不受控制,就會損害植物的族群數量。因此,不起眼的蜘蛛對人農業非常重要。

蟎與蜱可以寄生並傳染疾病,對人類及其他動物構成威脅,其他昆蟲也會造成類似的危險。然而,昆蟲的角色變化多端,其價值確實無法估量,包括生產蜂蜜,甚至以其勤奮的活動精明操控整個生態系,例如蜜蜂、螞蟻與白蟻。

許多節肢動物都有毒,有些對人類甚至具有致命性。然而,讓獵物喪失能力和死亡的毒液也可發揮其他用處;蜘蛛毒液已被用作替代的殺蟲劑,科學家也正在研究其醫藥用途,以及在新材料上的應用。

-----廣告,請繼續往下閱讀-----
蜘蛛毒液已被用作替代的殺蟲劑,科學家也正在研究其醫藥用途,以及在新材料上的應用。圖/envato

此外,節肢動物可以為包括彼此在內的無數動物提供食物來源。許多節肢動物是人類的食物,包括狼蛛、蠍子、蚱蜢、白蟻與象鼻蟲等。

目前,世界各地有多達二千零八十六種節肢動物被當成食物,而且至少從舊石器時代開始,牠們已經成為食物的來源。

有人認為,隨著人類人口不斷增加,昆蟲尤其可能在未來提供重要的蛋白質來源―這是資源密集型肉類養殖的替代方案。

我們很難想像一個沒有節肢動物的地球;事實上,這樣的地球可能無法存在。早在泥盆紀,世界就是節肢動物的天下。

-----廣告,請繼續往下閱讀-----

但牠們冒險去到的地方,捕食者也在不遠處。節肢動物的存在,為另一個從水中出現的動物群體提供了食物,而這個動物群體在人類的演化史上特別重要:這裡講的是四足動物。

——本文摘自《直立猿與牠的奇葩家人:47種影響地球生命史的關鍵生物》,2023 年 7 月,大塊文化,未經同意請勿轉載。

大塊文化_96
11 篇文章 ・ 13 位粉絲
由郝明義先生創辦於1996年,旗下擁有大辣出版、網路與書、image3 等品牌。出版領域除了涵括文學(fiction)與非文學(non-fiction)多重領域,尤其在圖像語言的領域長期耕耘不同類別出版品,不但出版幾米、蔡志忠、鄭問、李瑾倫、小莊、張妙如、徐玫怡等作品豐富的作品,得到讀者熱切的回應,更把這些作家的出版品推廣到國際市場,以及銷售影視版權、周邊產品的能力與經驗。

0

3
1

文字

分享

0
3
1
黔金絲猴物種起源,竟是近親雜交形成?
寒波_96
・2023/08/11 ・3267字 ・閱讀時間約 6 分鐘

新物種如何誕生,是演化最重要的主題之一,正如達爾文代表作的書名《物種起源》(The Origin of Species,也常譯作《物種源始》)。隨著基因體學帶來愈來愈多新知識,人們對物種的想法也不斷演變。

2023 年發表的一項研究調查多種金絲猴的基因組,意外發現有一種金絲猴,竟然直接由不同物種合體形成。這是靈長類的第一個案例,動物中也相當少見。

黔金絲猴。圖/Current status and conservation of the gray snub-nosed monkey Rhinopithecus brelichi (Colobinae) in Guizhou, China

五種金絲猴的親戚關係

金絲猴(snub-nosed monkey,學名 Rhinopithecus,也稱為仰鼻猴)主要住在中國西南部和東南亞,目前有五個物種。牠們的中文名字依照地名,英文名字則多半根據顏色。

古時候金絲猴的分布範圍更廣,像是台灣也曾經存在過,如今卻只剩下化石。現今五個物種分別為:

-----廣告,請繼續往下閱讀-----

*(雲南)滇金絲猴(black-white 黑白,學名 Rhinopithecus bieti

* 緬甸金絲猴(black 黑,學名 Rhinopithecus strykeri

*(四川)川金絲猴(golden 金,學名 Rhinopithecus roxellana

*(貴州)黔金絲猴(gray 灰,學名 Rhinopithecus brelichi

-----廣告,請繼續往下閱讀-----

* 越南金絲猴(Tonkin 越南東京,學名 Rhinopithecus avunculus

五種金絲猴。圖/參考資料1

比對五款吱吱的 DNA 差異,可知滇、緬甸金絲猴的親戚關係最近,川金絲猴則和黔金絲猴較近,但是黔金絲猴明顯介於兩者之間。黔金絲猴在自己獨特的變異之外,僅管基因組整體更接近川金絲猴,也有不少部分和滇、緬甸金絲猴相似。

見到不同物種之間共享血緣,最直覺的想法是,兩者的祖先發生過遺傳交流。但是詳細比對後,研究猿認為還有機率更高的可能性。

最滑順的劇本是,大約 197 萬年前,滇、緬甸金絲猴的共同祖先,和川金絲猴分家;又經過十幾萬年,約莫 187 萬年前,兩群金絲猴再度合體,形成一個全新的支系,也就是黔金絲猴的祖先;後來滇、緬甸金絲猴再衍生出兩個物種。

-----廣告,請繼續往下閱讀-----

這形成如今我們見到的狀態:黔金絲猴大約 75% 血緣來自川金絲猴,25% 源於滇、緬甸金絲猴的共同祖先。

四種金絲猴的親戚關係,與遺傳交流。圖/參考資料1

靈長類首見,雜交直接形成新物種

或許有人會疑惑,看起來都是共享 DNA 變異,上述說法和「不同物種之間,發生過遺傳交流」有何差別?

差別在於,所謂「不同物種之間」,指的是新物種已經誕生一段時間以後,彼此間又發生 DNA 交流,這個一點都不稀奇。例如 A、B 物種間發生關係,變成 A 的遺傳背景下,又有一點 B 血緣的物種。

但是黔金絲猴的狀況是,新物種之所以誕生,就是不同物種直接合體所致。例如 A、B 物種發生關係,衍生出差異更大,不是 A 也不是 B,足以認定為新物種的 C。

-----廣告,請繼續往下閱讀-----

假如重建的劇本為真,這就是首度在靈長類中觀察到,不同物種直接合體形成新物種的「hybrid speciation」。可以翻譯為「雜交種化」,不過「合體種化」似乎更直觀。

哥倫比亞猛獁,想像畫面。圖/wiki

經由兩個物種雜交,直接產生新物種的方式,植物較為常見,哺乳類動物極少。此前古代 DNA 研究認為,已經滅絕的美洲大象「哥倫比亞猛獁」(Columbian mammoth,學名 Mammuthus columbi)是不同猛獁象合體產生的新物種,但是證據沒那麼充分。

或許沒有那麼罕見?

直接雜交產生新物種,會很難想像嗎?仔細想想,金絲猴的案例可能沒那麼驚悚,或許還有某種程度的普遍性。

回到當初的情境,所謂「兩個物種」在當時其實只分家十萬年而已,差異應該仍很有限。是又累積 180 萬年的分歧到今日,才顯得親戚之間明顯有別。

-----廣告,請繼續往下閱讀-----

這邊 197 萬、187 萬、十萬年都是根據 DNA 變異的估計,實際數字未必如此。不過順序大概差不太多,就是首先分出兩群,很短的時間後又合體產生第三群,再經歷好幾倍的時間直到現在。

假如川金絲猴不幸滅團,缺乏樣本可供比較,那麼黔金絲猴與另外兩種近親,看起來就單純是 187 萬年前分家。

值得注意的是,我們能判斷演化樹上的不同分枝曾經合流,來自對樹形的比對。假如川金絲猴不幸滅團,這棵演化樹中我們只剩下三個物種的樣本,便會判斷黔金絲猴是跟另外兩種親戚分家而成,卻完全不會察覺有過合體種化。

這麼想來,雜交誕生新物種的現象,或許沒那麼罕見,只是時光抹去了許多痕跡。

血緣融合,猴毛也是奇美拉

另一有趣的發現是毛色演化。金絲猴現今四個物種,外表的毛色為一大差異。毛色與深色素有關,深色素愈多,毛色會顯得愈黑,相對則是愈淡,會呈現白毛、黃毛、金毛。

-----廣告,請繼續往下閱讀-----

身為不同演化支系合體的產物,黔金絲猴的毛色也混合兩邊的風格。頭和肩膀的淺色,類似川金絲猴;手腳的深色,則類似滇、緬甸金絲猴。

基因組合體以後,兼具兩群影響毛色的基因,形成混合的毛色搭配。圖/參考資料1

金絲猴毛的顏色深淺,取決於不同色素的相對比例。棕黑色素(pheomelanin)愈高,毛色愈淡;真黑素(eumelanin)愈高,毛色愈深。例如猴毛中含有大量棕黑色素、少量真黑素,便會呈現金毛。

很多基因有機會影響色素與毛色。分析得知金絲猴們有 5 個基因和毛色關係密切,黔金絲猴的基因組來自兩個支系,比對發現,三個基因 SLC45A2MYO7AELOVL4 繼承自川金絲猴,兩個基因 PAHAPC 則源於滇、緬甸金絲猴。

這些基因如何影響毛色,仍有許多不明朗之處。最明確知道的是,SLC45A2 基因表現降低,會使得棕黑色素產量上升,令顏色變淡。PAH 基因表現增加,可以讓顏色加深。

-----廣告,請繼續往下閱讀-----

同一隻金絲猴不同部位的細胞,同一批基因經由不同調控,就能控制毛色深淺。

這篇文章介紹的演化基因體學分析手法,對許多人大概不算容易,但是這些研究帶來的趣味,倒是不難體會。

延伸閱讀

參考資料

  1. Wu, H., Wang, Z., Zhang, Y., Frantz, L., Roos, C., Irwin, D. M., … & Yu, L. (2023). Hybrid origin of a primate, the gray snub-nosed monkey. Science, 380(6648), eabl4997.
  2. The Primate Genome Project unlocks hidden secrets of primate evolution
  3. Biggest ever study of primate genomes has surprises for humanity
  4. Hundreds of new primate genomes offer window into human health—and our past
  5. van der Valk, T., Pečnerová, P., Díez-del-Molino, D., Bergström, A., Oppenheimer, J., Hartmann, S., … & Dalén, L. (2021). Million-year-old DNA sheds light on the genomic history of mammoths. Nature, 591(7849), 265-269.

本文亦刊載於作者部落格《盲眼的尼安德塔石匠》暨其 facebook 同名專頁

寒波_96
193 篇文章 ・ 985 位粉絲
生命科學碩士、文學與電影愛好者、戳樂黨員,主要興趣為演化,希望把好東西介紹給大家。部落格《盲眼的尼安德塔石器匠》、同名粉絲團《盲眼的尼安德塔石器匠》。