0

0
0

文字

分享

0
0
0

瘋狂 T-ray:科學家破無線資料傳輸紀錄

only-perception
・2012/05/20 ・783字 ・閱讀時間約 1 分鐘 ・SR值 577 ・九年級

  WIFI     photo source:pixabay
WIFI             photo source:pixabay

週三的頭條大肆宣揚「日本研究者(如何)破了 Wi-Fi 紀錄」以及「科學家展示 Wi-Fi 的未來」。會激動是正常的。一個科學家團隊破了無線資料傳輸的紀錄。他們證明他們能在高達 542GHz 的頻率上以 3Gbps 的速率傳輸資料。他們在尚未勘測的領域中辦到這件事,這個領域即兆赫波段(terahertz band,兆赫頻帶),那是電磁頻譜的一部分,目前未受管制。他們報告成功使 Wi-Fi 快 20 倍以上。

他們突破 3Gbps 的障礙,被視為迷人的未來新聞,在此,寬頻用戶能獲得令人難忘地高資料傳輸率與寬頻速度。 Terahertz 或「T-ray」領域是介於 300 GHz 到 3 THz 之間的電磁頻譜。

研究場所使用 terahertz 進行成像是因為比起 X 光,它比較不危險,在其中,terahertz 波能穿透物質但投入的能量較少。

在這樣的設置(那裡有笨重、昂貴的機器在運作)之外,該頻譜並不被視為供日常使用的實用解決方案。研究者的研究也許使這樣的想法貌似合理。該團隊開發出特製硬體,能夠達到 3Gb 的資料傳輸。他們利用共振穿隧二極體(resonant tunneling diode,RTD),隨著電流增加,那產生更小的電壓,換言之,當電流增加時電壓會減少。一如 Gizmodo 網站的註解:”藉由電流調整,該團隊能使該裝置共振並分離出 terahertz 波段內的訊號。”

發現 T-ray 的研究者,來自於東京工業大學(Tokyo Institute of Technology),已經將論文發表在 Electronics Letters 上。該研究指出,利用這套系統的 Wi-Fi 或能支持高達 100 Gbps 的資料傳輸速率。然而,研究者提到,terahertz Wi-Fi 的有效範圍可能頂多只有 10 公尺,但在此範圍內的資料傳輸(速率)將比當前其他選擇高出好幾個數量級。他們的研究仍在進行當中,而且他們試圖要擴展此範圍。

除了他們的研究之外,Wi-Fi 觀察家預期更可行的進展會來自於新的 802.11ac 標準,那被視為無線網路的下一個演化階段。

原始文獻:K. Ishigaki, M. Shiraishi, S. Suzuki, M. Asada, N. Nishiyama, and S. Arai. Electron. Lett., 10 May 2012, Volume 48, Issue 10, p.582–583. doi: 10.1049/el.2012.0849

資料來源:PHYSORG:T-ray madness: Scientists score wireless data record[May 16, 2012 ]

轉載自only-perception

文章難易度
only-perception
153 篇文章 ・ 1 位粉絲
妳/你好,我是來自火星的火星人,畢業於火星人理工大學(不是地球上的 MIT,請勿混淆 :p),名字裡有條魚,雖然跟魚一點關係也沒有,不過沒有關係,反正妳/你只要知道我不是地球人就行了... :D

0

1
0

文字

分享

0
1
0
用這劑補好新冠預防保護力!防疫新解方:長效型單株抗體適用於「免疫低下族群預防」及「高風險族群輕症治療」
鳥苷三磷酸 (PanSci Promo)_96
・2023/01/19 ・2874字 ・閱讀時間約 5 分鐘

本文由 台灣感染症醫學會 合作,泛科學企劃執行。

  • 審稿醫生/ 台灣感染症醫學會理事長 王復德

「好想飛出國~」這句話在長達近 3 年的「鎖國」後終於實現,然而隨著各國陸續解封、確診消息頻傳,讓民眾再度興起可能染疫的恐慌,特別是一群本身自體免疫力就比正常人差的病友。

全球約有 2% 的免疫功能低下病友,包括血癌、接受化放療、器官移植、接受免疫抑制劑治療、HIV 及先天性免疫不全的患者…等,由於自身免疫問題,即便施打新冠疫苗,所產生的抗體和保護力仍比一般人低。即使施打疫苗,這群病人一旦確診,因免疫力低難清除病毒,重症與死亡風險較高,加護病房 (ICU) 使用率是 1.5 倍,死亡率則是 2 倍。

進一步來看,部分免疫低下病患因服用免疫抑制劑,使得免疫功能與疫苗保護力下降,這些藥物包括高劑量類固醇、特定免疫抑制之生物製劑,或器官移植後預防免疫排斥的藥物。國外臨床研究顯示,部分病友打完疫苗後的抗體生成情況遠低於常人,以器官移植病患來說,僅有31%能產生抗體反應。

疫苗保護力較一般人低,靠「被動免疫」補充抗新冠保護力

為什麼免疫低下族群打疫苗無法產生足夠的抗體?主因為疫苗抗體產生的機轉,是仰賴身體正常免疫功能、自行激化主動產生抗體,這即為「主動免疫」,一般民眾接種新冠疫苗即屬於此。相比之下,免疫低下病患因自身免疫功能不足,難以經由疫苗主動激化免疫功能來保護自身,因此可採「被動免疫」方式,藉由外界輔助直接投以免疫低下病患抗體,給予保護力。

外力介入能達到「被動免疫」的有長效型單株抗體,可改善免疫低下病患因原有治療而無法接種疫苗,或接種疫苗後保護力較差的困境,有效降低確診後的重症風險,保護力可持續長達 6 個月。另須注意,單株抗體不可取代疫苗接種,完成單株抗體注射後仍需維持其他防疫措施。

長效型單株抗體緊急授權予免疫低下患者使用 有望降低感染與重症風險

2022年歐盟、英、法、澳等多國緊急使用授權用於 COVID-19 免疫低下族群暴露前預防,台灣也在去年 9 月通過緊急授權,免疫低下患者專用的單株抗體,在接種疫苗以外多一層保護,能降低感染、重症與死亡風險。

從臨床數據來看,長效型單株抗體對免疫功能嚴重不足的族群,接種後六個月內可降低 83% 感染風險,效力與安全性已通過臨床試驗證實,證據也顯示針對台灣主流病毒株 BA.5 及 BA.2.75 具保護力。

六大類人可公費施打 醫界呼籲民眾積極防禦

台灣提供對 COVID-19 疫苗接種反應不佳之免疫功能低下者以降低其染疫風險,根據 2022 年 11 月疾管署公布的最新領用方案,符合施打的條件包含:

一、成人或 ≥ 12 歲且體重 ≥ 40 公斤,且;
二、六個月內無感染 SARS-CoV-2,且;
三、一周內與 SARS-CoV-2 感染者無已知的接觸史,且;
四、且符合下列條件任一者:

(一)曾在一年內接受實體器官或血液幹細胞移植
(二)接受實體器官或血液幹細胞移植後任何時間有急性排斥現象
(三)曾在一年內接受 CAR-T 治療或 B 細胞清除治療 (B cell depletion therapy)
(四)具有效重大傷病卡之嚴重先天性免疫不全病患
(五)具有效重大傷病卡之血液腫瘤病患(淋巴肉瘤、何杰金氏、淋巴及組織其他惡性瘤、白血病)
(六)感染HIV且最近一次 CD4 < 200 cells/mm3 者 。

符合上述條件之病友,可主動諮詢醫師。多數病友施打後沒有特別的不適感,少數病友會有些微噁心或疲倦感,為即時處理發生率極低的過敏性休克或輸注反應,需於輸注時持續監測並於輸注後於醫療單位觀察至少 1 小時。

目前藥品存放醫療院所部分如下,完整名單請見公費COVID-19複合式單株抗體領用方案

  • 北部

台大醫院(含台大癌症醫院)、台北榮總、三軍總醫院、振興醫院、馬偕醫院、萬芳醫院、雙和醫院、和信治癌醫院、亞東醫院、台北慈濟醫院、耕莘醫院、陽明交通大學附設醫院、林口長庚醫院、新竹馬偕醫院

  • 中部

         大千醫院、中國醫藥大學附設醫院、台中榮總、彰化基督教醫療財團法人彰化基督教醫院

  • 南部/東部

台大雲林醫院、成功大學附設醫院、奇美醫院、高雄長庚醫院、高雄榮總、義大醫院、高雄醫學大學附設醫院、花蓮慈濟

除了預防 也可用於治療確診者

長效型單株抗體不但可以增加免疫低下者的保護力,還可以用來治療「具重症風險因子且不需用氧」的輕症病患。根據臨床數據顯示,只要在出現症狀後的 5 天內投藥,可有效降低近七成 (67%) 的住院或死亡風險;如果是3天內投藥,則可大幅減少到近九成 (88%) 的住院或死亡風險,所以把握黃金時間盡早治療是關鍵。

  • 新冠治療藥物比較表:
藥名Evusheld
長效型單株抗體
Molnupiravir
莫納皮拉韋
Paxlovid
倍拉維
Remdesivir
瑞德西韋
作用原理結合至病毒的棘蛋白受體結合區域,抑制病毒進入人體細胞干擾病毒的基因序列,導致複製錯亂突變蛋白酵素抑制劑,阻斷病毒繁殖抑制病毒複製所需之酵素的活性,從而抑制病毒增生
治療方式單次肌肉注射(施打後留觀1小時)口服5天口服5天靜脈注射3天
適用對象發病5天內、具有重症風險因子、未使用氧氣之成人與兒童(12歲以上且體重至少40公斤)的輕症病患。發病5天內、具有重症風險因子、未使用氧氣之成人與兒童(12歲以上且體重至少40公斤)的輕症病患。發病5天內、具有重症風險因子、未使用氧氣之成人(18歲以上)的輕症病患。發病7天內、具有重症風險因子、未使用氧氣之成人與孩童(年齡大於28天且體重3公斤以上)的輕症病患。
*Remdesivir用於重症之適用條件和使用天數有所不同
注意事項病毒變異株藥物交互作用孕婦哺乳禁用輸注反應

免疫低下病友需有更多重的防疫保護,除了戴口罩、保持社交距離、勤洗手、減少到公共場所等非藥物性防護措施外,按時接種COVID-19疫苗,仍是最具效益之傳染病預防介入措施。若有符合施打長效型單株抗體資格的病患,應主動諮詢醫師,經醫師評估用藥效益與施打必要性。

文章難易度
鳥苷三磷酸 (PanSci Promo)_96
160 篇文章 ・ 270 位粉絲
充滿能量的泛科學品牌合作帳號!相關行銷合作請洽:contact@pansci.asia

0

2
1

文字

分享

0
2
1
一卡在手便利無窮,悠遊卡的設計原理——《我們的生活比你想的還物理》
商周出版_96
・2022/12/05 ・2482字 ・閱讀時間約 5 分鐘

時事話題

NEWS|在課堂介紹電磁波概念時,有位同學佳琦舉手提問筆者:「老師,用悠遊卡刷進捷運站非常方便,那個背後的原理和電磁波有關嗎?」另一位同學婕妤回答:「應該是悠遊卡會發出電磁波,傳遞訊息到門閘的感應器吧?」

悠遊卡如今早已融入臺灣大都會的生活中,不論是捷運、超商、購物或搭乘公車,悠遊卡在手,便利許多。然而,悠遊卡內並無電池,也不需要插入讀卡機,為何能夠溝通而傳遞資訊呢?

刷悠遊卡進出捷運站,其背後原理和電磁波有關嗎?圖/Pixabay

為何沒裝電池的悠遊卡可以產生電流?

悠遊卡系統主要是應用法拉第電磁感應定律來辨識與傳遞資訊,此與無接觸感應技術有關,該技術稱為「無線射頻辨識系統」(radio frequency identification,RFID)。完整的一套無線射頻辨識系統,是由讀卡機(reader)、電子標籤(tag)和應用程式資料庫電腦系統部分所組成。

運作過程先由讀卡機發射一特定頻率的無線電波能量給電子標籤,藉此驅動標籤內建電路,輸送內部的身分代碼,以開啟溝通之路。

若以法拉第電磁感應的物理概念解釋,讀卡機產生變動磁場, 同步提供電子標籤變動磁場,驅動電子標籤產生感應電流,也就是讓悠遊卡內部迴路產生感應電流,並讓電子標籤發送身分代碼訊息給讀卡機,也即驅動內部晶片能夠發送訊號,讀卡機依序接收資訊、解讀此身分代碼,再透過應用程式資料庫系統讀取悠遊卡內的晶片資料,完整達成溝通與解讀任務。

電子標籤發送身分代碼訊息給讀卡機,即驅動內部晶片發送訊號。圖/維基百科

每一張悠遊卡都有獨立的電子標籤,當卡片靠近悠遊卡標誌的磁場感應範圍內,即可透過電磁感應的原理,驅使電子標籤內的線圈產生感應電流,此電流供應電子標籤傳送資訊至讀卡機,以解讀晶片資料。

或許讀者會好奇,沒有電池的悠遊卡怎麼產生電流呢?這個問題也需要以法拉第電磁感應定律說明。

依法拉第電磁感應定律,悠遊卡的線圈迴路會因為磁場強弱的變化,以及通過的面積區域角度變化而產生類似電池驅動電流功能的「感應電動勢」,或稱為感應電壓。此感應電壓大小與線圈匝數及每匝線圈中磁場隨時間的變化率有關。匝數愈多,磁場變化率愈大,悠遊卡迴路中的感應電壓愈大,產生的感應電流就愈大。

當卡片靠近標誌的磁場感應範圍內,即透過電磁感應產生感應電流。圖/《我們的生活比你想的還物理

因此,悠遊卡雖然沒有內建電池,但可以透過電磁波的應用,採用無線射頻辨識系統,在運作時,讀卡機持續發出電磁波,當卡片接近時,其內部線圈產生感應電動勢,再進一步驅動感應電流。此感應電流讓卡片內的晶片發出電磁波,回傳必要的資訊給讀卡機,完成感應過閘的流程。

以臺北、臺中和高雄的悠遊卡來說,採用的是無線射頻辨識系統模式,屬於比較低頻率的電磁波,卡片必須距離讀卡機約 14 公分內,才能讀取卡片的晶片資料。因此若將悠遊卡裝在比較厚的皮夾或兩張磁卡疊在一起,可能無法第一時間完成讀卡,而形成「卡片無法讀取」的「卡卡」現象,建議單純使用悠遊卡過閘,較能順暢通過閘門。

其他如進出家門的感應磁扣、停車場的票卡、信用卡感應支付、國道收費系統 ETC 等,皆是應用無線射頻辨識系統 RFID 的技術,只不過國道收費系統 ETC 的感應器的感應距離約需 60 公尺內,才能順利讀取通過車輛的相關資訊。

台灣高速公路的電子道路收費系統(electronic toll collection, ETC)。圖/維基百科

物理小教室

  • 手機行動支付的物理學原理

手機支付的運作原理也是基於 RFID 發展而出的近場通訊(near-field communication,NFC) 技術。目前近場通訊技術採用頻率為 13.56 MHz 的電磁波,以 106 kbit/s、212 kbit/s 或 424 kbit/s 這 3 種速率傳輸資料,bit 翻譯為位元,是電腦資料的最小單位。

利用手機支付時,須靠近刷卡機約 4 公分距離內,此時可藉由電磁波傳遞相關資訊,完成付款手續。近場通訊技術不只有用在手機支付, 也可運用傳輸文字、照片、音樂檔案,是目前手機常見的內建功能。

  • 電磁感應的進階說明

電動勢(electromotive force, emf)可以驅動導體內的電荷移動, 產生電流。電池因為內部材料的屬性,會在正負極產生固定的電位差或電壓。電動勢是電池正負極間的電位差,也常稱為電壓,其國際單位制(SI)單位為伏特(V)。

導體內的電流與電壓成正比,假設導線的電阻及電池的內電阻都可略去不計,電路中流動的電流是電壓與電阻相除後的數值。可知電池的電動勢,可以驅動迴路上的電流,讓燈泡發光發熱。

然而,一個未接電源的迴路導線圈,可不可能產生電流?可以。若是通過迴路導線圈的磁場變化或磁通量改變,也會產生感應電流,這是發電機的原理,也是物理學家法拉第和冷次的電磁感應概念。

電磁爐和捷運列車的磁煞車也是運用電磁感應的概念。電磁爐內部的主要構造是由絕緣體包覆的導線環繞的線圈,當交流電通過線圈時, 電磁爐表面就會產生隨時間改變的磁場,這個磁場的變化會同時在鍋子底面產生應電流,再透過電流熱效應加熱鍋子,也加熱食物。

——本文摘自《我們的生活比你想的還物理》,2022 年 11 月,商周出版,未經同意請勿轉載。

商周出版_96
110 篇文章 ・ 343 位粉絲
閱讀商周,一手掌握趨勢,感受愜意生活!商周出版為專業的商業書籍出版公司,期望為社會推動基礎商業知識和教育。

0

0
0

文字

分享

0
0
0
交流電必須死!?走向白熱化的電流之戰──《光之帝國:愛迪生、特斯拉、西屋的電流大戰》
商周出版_96
・2018/01/23 ・2374字 ・閱讀時間約 4 分鐘 ・SR值 533 ・七年級

國民法官生存指南:用足夠的智識面對法庭裡的一切。

為何我們挑選了這本書:
在十九世紀末,美國三位傳奇人物與「電能」的發展息息相關:最著名的夢想者與發明家湯瑪斯‧愛迪生、對發電和電力輸送有革命貢獻的電力奇才尼古拉‧特斯拉、創建多家公司的發明家和企業家喬治‧西屋,《光之帝國:愛迪生、特斯拉、西屋的電流大戰》主要介紹了這三位人物成功、失敗以及彼此的宿怨,美國企業史上最獨特的惡鬥「電流之戰」於此展開。

  • 本篇前情提要:
    在「電流之戰」中,愛迪生掌握的直流電(DC)與西屋和特斯拉的交流電(AC)系統爆發技術之爭,在這段摘錄之前,一八八九年 11 月 11 日眾目睽睽之下,西聯的舖線工人約翰‧菲克斯(John Feeks)被高壓電電死,公眾群情激憤,紐約市長宣布關閉曼哈頓所有高壓電弧燈,導致全區失去照明。
    而在此事件之後,愛迪生正式走到幕前,宣稱必須:消滅交流電!認為交流電「只會為人孔口、房屋、商店、辦公室、電話轉接處、低壓系統和高壓電流設備帶來死亡事件。」我們在此初窺電流之戰中的媒體爭論片段。

電流大戰越演越烈,喬治.西屋在一八八九年秋天決定雇用一個叫恩斯特.海因希斯(Ernest Heinrichs)的匹茲堡報社記者,企圖利用媒體宣傳自己的公司。海因希斯第一天上班時,西屋特地路過向他致意,並解釋自己的目的:

「我希望看到報紙上印出的東西精確無誤。事實是不傷人的。」

西屋與特斯拉結盟,用交流電與愛迪生抗衡,因而引發科技史上一場獨特的恩怨--電流大戰。圖/Joseph G. Gessford@wikipedia

對交流電而言,受攻擊就是最好的宣傳

不久後的一個十一月清晨,海因希斯在他任職於西屋公司九層大樓的辦公桌前,瀏覽一篇攻擊交流電與西屋的文章,這位年輕人被激怒了。他跳起來,連門都忘了敲,就衝進老闆的辦公室。西屋坐在他寬大的軟墊椅子上,用大型木頭餐桌當書桌。他也正在讀同一份報紙,但是他心情平靜。

他看見海因希斯被自己也在讀的文章搞得激動不安,這位匹茲堡工業家翹起頭問他:「好啦,為何那麼急?」

「您不認為我們應該說些什麼來反擊這些誹謗和錯誤陳述嗎?」海因希斯永遠不會忘記西屋看他那幾秒的眼神。這時,只有壁爐台上方的木鐘在寂靜中發出滴答滴答響。

西屋笑了。「海因希斯,他們告訴我,你是玩惠斯特牌戲的高手,對嗎?」

他承認了。

「好,那你明白這個說法的含義吧?不要人云亦云。」

惠斯特牌源自於英國,後來演變成為橋牌。圖/Charles Goodall@wikipedia

海因希斯聽後很困惑,紙牌遊戲與愛迪生的誹謗又有什麼關係?

西屋解釋:「現在說正經的,所有這些交流電的敵人都在幫我們大忙。我們正在獲得許多免費廣告……就實用性與商業性來說,交流電系統比直流電領先多了,兩者無法相比……宣傳『交流電致命』是在幫我們忙,我們以巧撥千斤。」

他們希望仰仗自己的勢力、自己的影響力,就能阻止事態前進。這在自然法則中是做不到的……那些對我個人的攻擊當然很無恥,但是我的尊嚴與良心不會讓我用相同的武器去反擊。」

西屋接著解釋:「此外,我覺得自己的道德品質和商業聲望已經很好,不會不堪一擊。但是我將準備一篇文章給《北美觀察》,回答愛迪生先生對交流電的指責,除此之外,我沒有什麼讓你發表的……讓別人暢所欲言,只要不降低自己的人格與惡意攻擊者一樣水準,我們反而會得到更多朋友。」

西屋樂於使用媒體,發揚自己的商業成果,或是與競爭對手隔空嗆聲。圖/Unknown@wikipedia

《答愛迪生先生》強硬反駁電力危險的論述

《北美觀察》十二月號沒有改變愛迪生對西屋的敵意,因為西屋寫了一篇直率強硬的文章《答愛迪生先生》

電流之戰進入長期「控制電力生意的階段,激烈程度超過史上任何商業之爭。數以千計的人與此有金錢利害關係,而且可以想像,許多人完全是站在個人利益角度來看這場戰爭」。

西屋做了以下歸納:一八八八年,紐約市有六十四人死於街車事故,五十五人死於公共汽車與貨車事故,二十三人死於煤氣中毒,總共只有五個人死於觸電。

大膽的西屋這樣描述愛迪生珍愛的直流中央發電站,「許多有能力的電力工程師認為,它在許多方面都有根本缺陷;事實上它的缺陷只有用交流電能彌補。它注定被更科學和無論哪方面(取決於用戶或建築物所有人)都更安全的感應系統取代。」

愛迪生、特斯拉、西屋的電流大戰在2017年翻拍成電影,讓我們有機會在大螢幕一睹這場大戰之精彩。圖/The Current War (2017)@imdb

迄今為止的爭論都受到銅價漲跌影響,因為銅價決定變壓器的造價,但是西屋(在文章中)以兩記重拳結束了對愛迪生的反擊。

第一是愛迪生陣營中痛苦的內訌。西屋說,八月在尼加拉大瀑布召開的愛迪生公司年會上,通過一項底特律分公司經理提出的決議。它要求母公司提供「一種靈活方法讓他們的發電站擴大經營規模,為此應有比三相系統更高的電壓和相對較少的銅耗」。愛迪生自己的陣營在分裂──在要求交流電!

西屋最有力的重磅炸彈是:「三年來購買電燈照明裝備的客戶有充分自由從任何公司購買產品,但其中大部分傾向使用交流電系統,所以如今交流電系統的中央發電站電燈照明規模起碼是直流電的五倍。」

 

 

 

本文摘自泛科學 2018 年 1 月選書《光之帝國——愛迪生、特斯拉、西屋的電流大戰》,商周出版

 

 

 

商周出版_96
110 篇文章 ・ 343 位粉絲
閱讀商周,一手掌握趨勢,感受愜意生活!商周出版為專業的商業書籍出版公司,期望為社會推動基礎商業知識和教育。