Loading [MathJax]/extensions/tex2jax.js

0

0
0

文字

分享

0
0
0

近地小行星淘金正夯

臺北天文館_96
・2012/05/11 ・1441字 ・閱讀時間約 3 分鐘 ・SR值 554 ・八年級

創投業者和行星探險家得到豐沛資金挹注,由大導演James Cameron、億萬富翁Ross Perot Jr.和Google 執行長 Larry Page等人熱錢贊助,打算帶小行星採礦概念走出科幻小說,進入華爾街以及現實世界。

該公司創始成員包括亞利桑那大學已退休行星科學家 John Lewis,他早在1997年著書出版了《Mining the Sky》,他表示,該公司具體計劃尚未完成,但應該幾年之內就能發現適於開採的目標小行星。最終,該公司打算將開採物送回地球軌道上,開採物將包括製造太空船所需的材料,以及:水。一旦將水分離成氫氣和氧氣,便可以充當其他太空任務的火箭推進劑使用。

Planetary Resources公司的共同創始人之一Eric Anderson說,這家公司並非紙上談兵,他們是「玩真的。」

這家公司的目的是賺錢。

-----廣告,請繼續往下閱讀-----

在他們的計畫中,有了這些取自於太空中的材料,未來將可節省數十億美金的火箭發射費用。有些罕見金屬價值不斐,即使千里迢迢把它們運回地球上都划得來。這些統稱為鉑族金屬的稀有元素包括鉑、銥和鋨等等,每28.3公克(一盎司)價值高達1500美元,每公克大約值台幣1500元。按平均值,所有落在地球上的隕石的鉑族金屬含量都高於地球上任何一個已知礦藏量最豐富的礦區。根據Planetary Resources公司計算,單一顆寬500米的小行星所含的鉑族元素就比人類史上所有已經開採的鉑族金屬還多。

NASA JPL火箭工程師Brian Wilcox 表示,要前往地球附近的小行星實際上很容易,因為很多小行星的軌道都與地球類似。弱重力場也使得太空船在小行星上起降更方便,不需消耗太多燃料。「只要達到地球的逃逸速度,接下來就可以慢慢飄達目的地。」

事實上,如果不計較份量多寡,小行星採礦的創舉可回溯到8年前 – 早在2005年,日本所發射的隼鳥號(Hayabusa)就曾經從一顆近地小行星”25143 Itokawa”上採集了樣本。但由於採樣機械的故障,隼鳥號2010年回到地球時只成功地帶回幾微克的樣本。此外,NASA還有另一個稱為OSIRIS REx的任務,預計將在2016年發射,並且在2023年返回地球, 屆時將從另一顆小行星上取得至少60公克的物質。

Planet Resources的出手是否將擊敗OSIRIS Rex,拔得小行星採礦的頭籌,現在言之過早。該公司的共同創辦人表示,首先該公司打算一系列地發射多次太空望遠鏡,大批調查50萬~100萬顆大於50米的近地小行星,科學家們相信其中包含許多值得進一步探索和發現的標的物。然後會有一組大約6顆探測器,將成群結隊地「蜂擁」前往那些榜上有名的優先目標。探測器的結伴而至,意味著它們可同時提供多角度的探測調查,並且將提供備用偵測結果,以防單一探測器萬一失敗,還不至於一切都白費苦工。

-----廣告,請繼續往下閱讀-----

探測器上的儀器將可以告訴我們每個小行星的組成成分為何。這樣科學家可找到在地球上和它成份相同的岩石隕石。在採礦樣品運回地球之前,先把這些地球版的隕石送上太空微重力環境中,讓工程團隊去詳加研究,就可以先準備好這些貴金屬在微重力環境下應如何提取。

不過,科學家當然還是偏好在自己的實驗室中看得到樣品。譬如,碳粒隕星(carbonaceous chondrite)這類的隕石,就令一些行星科學家特別有興趣,碳粒隕星通常富含水、氨和其他揮發物,但無法通過穿越地球大氣層的考驗,它卻是行星形成的原始材料。

雖然Planetary Resources的設立目標不是為科學,而是為了拼經濟(賺錢),創辦人之一表示,該公司還是可能會跨進「採樣返回地球」這類業務,服務科學家。當然,這也是符合生財之道的另一個市場。(Lauren譯)

其他相關新聞:

-----廣告,請繼續往下閱讀-----

資料來源:中研院天文網, 2012.04.26

轉載自台北天文館之網路天文館網站

-----廣告,請繼續往下閱讀-----
文章難易度
臺北天文館_96
482 篇文章 ・ 44 位粉絲
臺北市立天文科學教育館是國內最大的天文社教機構,我們以推廣天文教育為職志,做為天文知識和大眾間的橋梁,期盼和大家一起分享天文的樂趣!

0

0
0

文字

分享

0
0
0
LDL-C 正常仍中風?揭開心血管疾病的隱形殺手 L5
鳥苷三磷酸 (PanSci Promo)_96
・2025/06/20 ・3659字 ・閱讀時間約 7 分鐘

本文與 美商德州博藝社科技 HEART 合作,泛科學企劃執行。

提到台灣令人焦慮的交通,多數人會想到都市裡的壅塞車潮,但真正致命的「塞車」,其實正悄悄發生在我們體內的動脈之中。

這場無聲的危機,主角是被稱為「壞膽固醇」的低密度脂蛋白( Low-Density Lipoprotein,簡稱 LDL )。它原本是血液中運送膽固醇的貨車角色,但當 LDL 顆粒數量失控,卻會開始在血管壁上「違規堆積」,讓「生命幹道」的血管日益狹窄,進而引發心肌梗塞或腦中風等嚴重後果。

科學家們還發現一個令人困惑的現象:即使 LDL 數值「看起來很漂亮」,心血管疾病卻依然找上門來!這究竟是怎麼一回事?沿用數十年的健康標準是否早已不敷使用?

膽固醇的「好壞」之分:一場體內的攻防戰

膽固醇是否越少越好?答案是否定的。事實上,我們體內攜帶膽固醇的脂蛋白主要分為兩種:高密度脂蛋白(High-Density Lipoprotein,簡稱 HDL)和低密度脂蛋白( LDL )。

-----廣告,請繼續往下閱讀-----

想像一下您的血管是一條高速公路。HDL 就像是「清潔車隊」,負責將壞膽固醇( LDL )運來的多餘油脂垃圾清走。而 LDL 則像是在血管裡亂丟垃圾的「破壞者」。如果您的 HDL 清潔車隊數量太少,清不過來,垃圾便會堆積如山,最終導致血管堵塞,甚至引發心臟病或中風。

我們體內攜帶膽固醇的脂蛋白主要分為兩種:高密度脂蛋白(HDL)和低密度脂蛋白(LDL)/ 圖片來源:shutterstock

因此,過去數十年來,醫生建議男性 HDL 數值至少應達到 40 mg/dL,女性則需更高,達到 50 mg/dL( mg/dL 是健檢報告上的標準單位,代表每 100 毫升血液中膽固醇的毫克數)。女性的標準較嚴格,是因為更年期後]pacg心血管保護力會大幅下降,需要更多的「清道夫」來維持血管健康。

相對地,LDL 則建議控制在 130 mg/dL 以下,以減緩垃圾堆積的速度。總膽固醇的理想數值則應控制在 200 mg/dL 以內。這些看似枯燥的數字,實則反映了體內一場血管清潔隊與垃圾山之間的攻防戰。

那麼,為何同為脂蛋白,HDL 被稱為「好」的,而 LDL 卻是「壞」的呢?這並非簡單的貼標籤。我們吃下肚或肝臟製造的脂肪,會透過血液運送到全身,這些在血液中流動的脂肪即為「血脂」,主要成分包含三酸甘油酯和膽固醇。三酸甘油酯是身體儲存能量的重要形式,而膽固醇更是細胞膜、荷爾蒙、維生素D和膽汁不可或缺的原料。

-----廣告,請繼續往下閱讀-----

這些血脂對身體運作至關重要,本身並非有害物質。然而,由於脂質是油溶性的,無法直接在血液裡自由流動。因此,在血管或淋巴管裡,脂質需要跟「載脂蛋白」這種特殊的蛋白質結合,變成可以親近水的「脂蛋白」,才能順利在全身循環運輸。

肝臟是生產這些「運輸用蛋白質」的主要工廠,製造出多種蛋白質來運載脂肪。其中,低密度脂蛋白載運大量膽固醇,將其精準送往各組織器官。這也是為什麼低密度脂蛋白膽固醇的縮寫是 LDL-C (全稱是 Low-Density Lipoprotein Cholesterol )。

當血液中 LDL-C 過高時,部分 LDL 可能會被「氧化」變質。這些變質或過量的 LDL 容易在血管壁上引發一連串發炎反應,最終形成粥狀硬化斑塊,導致血管阻塞。因此,LDL-C 被冠上「壞膽固醇」的稱號,因為它與心腦血管疾病的風險密切相關。

高密度脂蛋白(HDL) 則恰好相反。其組成近半為蛋白質,膽固醇比例較少,因此有許多「空位」可供載運。HDL-C 就像血管裡的「清道夫」,負責清除血管壁上多餘的膽固醇,並將其運回肝臟代謝處理。正因為如此,HDL-C 被視為「好膽固醇」。

-----廣告,請繼續往下閱讀-----
為何同為脂蛋白,HDL 被稱為「好」的,而 LDL 卻是「壞」的呢?這並非簡單的貼標籤。/ 圖片來源:shutterstock

過去數十年來,醫學界主流觀點認為 LDL-C 越低越好。許多降血脂藥物,如史他汀類(Statins)以及近年發展的 PCSK9 抑制劑,其主要目標皆是降低血液中的 LDL-C 濃度。

然而,科學家們在臨床上發現,儘管許多人的 LDL-C 數值控制得很好,甚至很低,卻仍舊發生中風或心肌梗塞!難道我們對膽固醇的認知,一開始就抓錯了重點?

傳統判讀失準?LDL-C 達標仍難逃心血管危機

早在 2009 年,美國心臟協會與加州大學洛杉磯分校(UCLA)進行了一項大型的回溯性研究。研究團隊分析了 2000 年至 2006 年間,全美超過 13 萬名心臟病住院患者的數據,並記錄了他們入院時的血脂數值。

結果發現,在那些沒有心血管疾病或糖尿病史的患者中,竟有高達 72.1% 的人,其入院時的 LDL-C 數值低於當時建議的 130 mg/dL「安全標準」!即使對於已有心臟病史的患者,也有半數人的 LDL-C 數值低於 100 mg/dL。

-----廣告,請繼續往下閱讀-----

這項研究明確指出,依照當時的指引標準,絕大多數首次心臟病發作的患者,其 LDL-C 數值其實都在「可接受範圍」內。這意味著,單純依賴 LDL-C 數值,並無法有效預防心臟病發作。

科學家們為此感到相當棘手。傳統僅檢測 LDL-C 總量的方式,可能就像只計算路上有多少貨車,卻沒有注意到有些貨車的「駕駛行為」其實非常危險一樣,沒辦法完全揪出真正的問題根源!因此,科學家們決定進一步深入檢視這些「駕駛」,找出誰才是真正的麻煩製造者。

LDL 家族的「頭號戰犯」:L5 型低密度脂蛋白

為了精準揪出 LDL 裡,誰才是最危險的分子,科學家們投入大量心力。他們發現,LDL 這個「壞膽固醇」家族並非均質,其成員有大小、密度之分,甚至帶有不同的電荷,如同各式型號的貨車與脾性各異的「駕駛」。

為了精準揪出 LDL 裡,誰才是最危險的分子,科學家們投入大量心力。發現 LDL 這個「壞膽固醇」家族並非均質,其成員有大小、密度之分,甚至帶有不同的電荷。/ 圖片來源:shutterstock

早在 1979 年,已有科學家提出某些帶有較強「負電性」的 LDL 分子可能與動脈粥狀硬化有關。這些帶負電的 LDL 就像特別容易「黏」在血管壁上的頑固污漬。

-----廣告,請繼續往下閱讀-----

台灣留美科學家陳珠璜教授、楊朝諭教授及其團隊在這方面取得突破性的貢獻。他們利用一種叫做「陰離子交換層析法」的精密技術,像是用一個特殊的「電荷篩子」,依照 LDL 粒子所帶負電荷的多寡,成功將 LDL 分離成 L1 到 L5 五個主要的亞群。其中 L1 帶負電荷最少,相對溫和;而 L5 則帶有最多負電荷,電負性最強,最容易在血管中暴衝的「路怒症駕駛」。

2003 年,陳教授團隊首次從心肌梗塞患者血液中,分離並確認了 L5 的存在。他們後續多年的研究進一步證實,在急性心肌梗塞或糖尿病等高風險族群的血液中,L5 的濃度會顯著升高。

L5 的蛋白質結構很不一樣,不僅天生帶有超強負電性,還可能與其他不同的蛋白質結合,或經過「醣基化」修飾,就像在自己外面額外裝上了一些醣類分子。這些特殊的結構和性質,使 L5 成為血管中的「頭號戰犯」。

當 L5 出現時,它並非僅僅路過,而是會直接「搞破壞」:首先,L5 會直接損傷內皮細胞,讓細胞凋亡,甚至讓血管壁的通透性增加,如同在血管壁上鑿洞。接著,L5 會刺激血管壁產生發炎反應。血管壁受傷、發炎後,血液中的免疫細胞便會前來「救災」。

-----廣告,請繼續往下閱讀-----

然而,這些免疫細胞在吞噬過多包括 L5 在內的壞東西後,會堆積在血管壁上,逐漸形成硬化斑塊,使血管日益狹窄,這便是我們常聽到的「動脈粥狀硬化」。若這些不穩定的斑塊破裂,可能引發急性血栓,直接堵死血管!若發生在供應心臟血液的冠狀動脈,就會造成心肌梗塞;若發生在腦部血管,則會導致腦中風。

L5:心血管風險評估新指標

現在,我們已明確指出 L5 才是 LDL 家族中真正的「破壞之王」。因此,是時候調整我們對膽固醇數值的看法了。現在,除了關注 LDL-C 的「總量」,我們更應該留意血液中 L5 佔所有 LDL 的「百分比」,即 L5%。

陳珠璜教授也將這項 L5 檢測觀念,從世界知名的德州心臟中心帶回台灣,並創辦了美商德州博藝社科技(HEART)。HEART 在台灣研發出嶄新科技,並在美國、歐盟、英國、加拿大、台灣取得專利許可,日本也正在申請中,希望能讓更多台灣民眾受惠於這項更精準的檢測服務。

一般來說,如果您的 L5% 數值小於 2%,通常代表心血管風險較低。但若 L5% 大於 5%,您就屬於高風險族群,建議進一步進行影像學檢查。特別是當 L5% 大於 8% 時,務必提高警覺,這可能預示著心血管疾病即將發作,或已在悄悄進展中。

-----廣告,請繼續往下閱讀-----

對於已有心肌梗塞或中風病史的患者,定期監測 L5% 更是評估疾病復發風險的重要指標。此外,糖尿病、高血壓、高血脂、代謝症候群,以及長期吸菸者,L5% 檢測也能提供額外且有價值的風險評估參考。

隨著醫療科技逐步邁向「精準醫療」的時代,無論是癌症還是心血管疾病的防治,都不再只是單純依賴傳統的身高、體重等指標,而是進一步透過更精密的生物標記,例如特定的蛋白質或代謝物,來更準確地捕捉疾病發生前的徵兆。

您是否曾檢測過 L5% 數值,或是對這項新興的健康指標感到好奇呢?

-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

1

3
0

文字

分享

1
3
0
平民登月計劃?核融合真的來了?——2023 最值得關注十大科學事件(下)
PanSci_96
・2023/01/31 ・3226字 ・閱讀時間約 6 分鐘

-----廣告,請繼續往下閱讀-----

在上一篇中,我們介紹了將在 2023 年發生的五個醫藥健康大事件。

延伸閱讀:
用迷幻藥治憂鬱?基因編輯療法將通過批准?——2023 最值得關注十大科學事件(上)

這次我們轉向能源、宇宙與科技領域,從首趟平民月球之旅、物理學的標準模型新發現,再到第一個核廢料永久儲存設施正式營運!

No. 5 氣候與能源衝擊

世界各國能否聽從科學家的警告,採取實際行動,朝淨零之路前進嗎?看起來不行。由於疫情與俄烏戰爭,去年 11 月在埃及舉辦的「聯合國氣候變化會議 COP27」幾乎是原地踏步。

不過還是有一個重要的決議,那就是建立氣候損失和損害基金。根據協議,排放量較高的富裕國家將在經濟上補償受氣候變化影響最大的貧窮國家。「過渡委員會」將於 2023 年 3 月底前舉行會議,提出資金運用的建議,並在 11 月的 COP28 會議上提交給世界各地的代表。

-----廣告,請繼續往下閱讀-----

至於核能的部分,新型核分裂發電與核融合發電,都會在 2023 年有所進展。

另外,世界上第一個核廢料儲存設施,今年將在芬蘭西南海岸外的奧爾基洛托島正式啟用。這個由芬蘭政府於 2015 年批准建造的地下處置庫,將負責封存超過 6500 噸有放射性的鈾;這些鈾會被裝在銅罐中,再用厚厚的粘土覆蓋,最後埋在地下 400 公尺深的花崗岩隧道內,預期將被密封數十萬年,直到輻射水平達到完全無害的程度。

另一個好消息是,今年 1 月 1 日就任的巴西總統——魯拉(Luiz Inácio Lula da Silva),將推翻前任總統開放的雨林開發,保護生態與文化。

然而深海則有新危機。若 2023 年 7 月前,聯合國的國際海床管理局(ISA)沒能讓各國對深海採礦管理準則達成共識,那海底的礦產資源可能會被某些政府和企業盯上,不受限制地開挖,海洋生態將迎來浩劫……。

-----廣告,請繼續往下閱讀-----

許多關於能源的抉擇包含了科學和政治,能源短缺也激勵了綠能跟潔淨能源的投資力道及採用意願;至於今年還會不會發生更棘手的麻煩?使能源轉型更加舉步維艱。

巴西新任總統推翻雨林開發,保護生態與文化。圖/Envato Elements

No. 4 超越標準模型

2022 年 4 月,美國費米國家加速器實驗室的物理學家,公佈了渺子 g-2 實驗的首批結果;這項實驗研究了被稱為「渺子的短命粒子在磁場中的行為」。

過去 50 年來,標準模型(Standard Model)[註]的理論預測通過了所有測試,但其實物理學家普遍認為標準模型肯定還不完備,並且認為可以從渺子身上找到破綻;如果今年再次公佈更精確的數據,顯示渺子的磁矩比理論預測來得大,那就代表還有新粒子等待被發現,而標準模型就得修正。

位於中國廣東的江門地下的微中子實驗觀測站,也將在今年展開尋找超越標準模型的物理學之旅;利用位於地下七百公尺的探測器,來準確測量微中子的振盪。

-----廣告,請繼續往下閱讀-----

註:標準模型為能描述強核力、弱核力、電磁力這三種基本力,以及所有物質基本粒子的理論。

另外,物理學家們在今年會有升級的新設備。第一個是 LCLS-II 直線加速器相干光源 2 代(Linac Coherent Light Source-II),它將創造終極 X 射線機器,看到分子內原子的運動!另一個則是新的重力波獵人—— Matter-Wave Laser Interferometric Gravitation Antenna(物質波雷射干涉重力天線);這個設施把銣原子冷卻成「物質波」,能夠梳理黑洞和其他超大質量天體碰撞產生的時空漣漪,揪出現有重力波設施錯放的事件,甚至可以幫我們尋找暗物質!

而在瑞典隆德附近、由歐洲 17 國攜手成立的歐洲散裂中子源(ESS),將使用史上最強大的線性質子加速器產生強中子束,來研究材料的結構;雖然預計 2025 年才會完工,但於今年迎來第一批研究人員,開始實驗。

No.3 就是要抬頭看天空

許多人心中 2022 年科學事件第一名,正是韋伯太空望遠鏡傳回的驚人照片;沒有意外的話,韋伯在 2023 年會繼續大顯身手,揭露星系演變的真相,與遙遠系外行星的生命印記,找尋地球之外的生命。

今年還會有更多驚喜!來自於新的太空望遠鏡,如:由歐洲太空總署開發的歐幾里得太空望遠鏡,今年發射後將繞行太陽六年,拍攝宇宙的 3D 圖;日本宇宙航空研究開發機構 JAXA 的 X 射線成像、光譜任務 XRISM,則是繞地球軌道運行的太空望遠鏡,將探測來自遙遠恆星和星系的 X 射線,預計在今年 4 月升空。

-----廣告,請繼續往下閱讀-----

在地球上,位於智利的薇拉魯賓天文台(Vera C. Rubin Observatory)將於今年 7 月啟用;其望遠鏡採用特殊的三鏡面設計,相機包含超過 30 億像素的固態探測器,每三個夜晚就能掃描整個南天,也是監測可能危害地球小行星的守護者之一。而世界上最大的可動望遠鏡——新疆奇台射電望遠鏡(QTT)也將在今年完工;其口徑達 110 公尺,能夠觀測天空中 75% 的星星。

詹姆斯.韋伯太空望遠鏡(James Webb Space Telescope,JWST)去年發布的圖片——史蒂芬五重星系。圖/維基百科

No. 2 好多月球任務,還有一個鐵小行星

2022/12/11 這天,包括阿拉伯聯合大公國的拉希德漫遊者月球車、NASA 的月球手電筒立方衛星、以及日本的白兔 HAKUTO-R M1 登陸器,共同搭乘 SpaceX 的獵鷹九號發射升空;HAKUTO-R 如今正緩緩帶著拉希德前往月球,預計在今年 4 月著陸。

而印度太空研究組織 ISRO 的第三次探月任務月球飛船 Chandrayaan-3,預計今年年中發射,並於月球的南極著陸。

還有首次民間人士的月球之旅 dearMoon。SpaceX 的 Starship 將載著 11 位平民上太空,包含創業家、明星跟 YouTuber;如果 Starship 成功發射,將會成為史上最大的火箭。Blue Origin 的 New Glenn 也預計在今年首度發射。若兩者都成功,將推動太空科學與商業進入新時代,讓進入太空的成本大幅下降。

-----廣告,請繼續往下閱讀-----

歐洲太空總署的木星冰月探測器 JUICE 也將在今年 4 月升空,並於 2031 年抵達木星系統;目標是研究木星以及三顆衛星:木衛二三四的環境,了解他們有沒有可能支持生命存在。

NASA 將於今年 10 月後發射延遲了一年的 Psyche 靈神星小行星軌道飛行器,其研究對象為 16 Psyche 靈神星小行星;科學家認為它可能不是一般的小行星,而是一顆年輕行星裸露的鐵核心。如果今年順利發射,將在 2029 年到達。 

看來對太空迷來說,2023 又將是幸福熱鬧的一年。

由超大型望遠鏡(Very Large Telescope,VLT)拍攝的靈神星。圖/維基百科

No.1 GPT-4 跟 AlphaFold 的衝擊波襲來

借過借過,AI 已預約登上 2023 年最大科學事件!

-----廣告,請繼續往下閱讀-----

如果 GPT-3.5 開發的 ChatGPT 還沒有嚇到你,那 GPT-4 就要來了!

而在科學領域,DeepMind 的 AlphaFold 帶來的衝擊不亞於 ChatGPT;它能夠根據蛋白質的一維氨基酸序列,準確預測折疊後的三維形狀,對生物與醫療研究影響非常大。 AlphaFold 2 於 2021 年發布了另外 2 億多種蛋白質的結構,幾個月來,來自 190 個國家/地區、超過 50 萬名研究人員,使用 AlphaFold 研究了 200 萬種不同的蛋白質結構。另外,Meta 的 ESMFold 的速度甚至又比 AlphaFold 快 60 倍,預測的蛋白質超過 6 億種!

基於 AlphaFold 跟 ESMFold 的研究量將大大增加,這些龐大新知識也將開始應用於各學科,包括新疫苗和塑膠開發。

法規管制總是比科技進步緩慢,隨著 AI 越來越強大、滲透到社會的方方面面,各國政府必須回應。歐盟在今年將通過人工智慧法案,為使用人工智慧制定標準,其他國家和科技巨頭將密切關注,跟進與調適。

-----廣告,請繼續往下閱讀-----
圖/GIPHY

以上就是「2023 最值得關注十大科學事件」,你最期待的是哪一個?哪個是你心中的 No.1?又有哪些我們漏掉了,但你覺得該列入的呢?歡迎留言討論!

歡迎訂閱 Pansci Youtube 頻道 鎖定 2023 年的每一個科學大事件!

-----廣告,請繼續往下閱讀-----
所有討論 1

0

6
10

文字

分享

0
6
10
如果天空少了月亮,地球會怎麼樣?——《有趣的天文學》
麥浩斯
・2022/04/25 ・1477字 ・閱讀時間約 3 分鐘

-----廣告,請繼續往下閱讀-----

如果天空少了月亮?文學家應該會很難過,音樂家也會少了創作的題材,沒有中秋節就少了月餅,也沒有烤肉。不過夜晚少了一個大光害,天文學家絕對會很高興!

潮汐變小、一天變短

地球上的潮起潮落,主要是月球繞地球運行造成的。太陽也會影響地球的潮汐,不過對地球的潮汐力只有月球的 46%。如果沒有月球的話,造成地球潮起潮落就只剩下太陽,滿潮和乾潮的幅度就會變小。

月球讓地球產生的潮汐,使地球愈轉愈慢。數十億年前,地球剛形成時,地球自轉的速度比現在快許多;因為月球的潮汐力,讓地球自轉的速度漸漸變慢,慢到現在的一天 24 小時。如果沒有月球,地球的一天可能不到 10 小時。

月球讓地球產生的潮汐,使地球愈轉愈慢。圖/Pexels

左搖右晃的地球

月球就像是走鋼索的人握的平衡桿,讓地球自轉軸保持穩定,如果少了月球這個平衡桿,地球自轉軸左搖右晃的幅度就會變大。

目前地球自轉軸相對於公轉平面的傾斜角是 23.4 度,因為月球的存在,這個傾角的變化幅度不大,大約在 22.1 度和 24.5 度之間。傾角讓太陽直射地球的位置在北回歸線和南回歸線間移動,讓地球出現四季變化。

-----廣告,請繼續往下閱讀-----

如果沒有月球,地球的自轉軸變動的幅度就會變大,自轉軸的變動會對我們有什麼樣的影響?假設兩個極端的例子,地球的自轉軸傾角是 0 度和 90 度。

如果地球傾角是 0 度,太陽永遠直射赤道,地球上不會有北回和南回歸線,地球將不再有四季變化。

如果地球傾角是 90 度,太陽直射的區域會從北極到南極,也就是北回歸線位在北緯 90 度(也就是北極點),而南回歸線在南緯 90 度(南極點)。這種情況下,地球四季變化會非常劇烈,北半球夏天時,北極不會結冰,溫度比現在還高,南半球冰凍的區域比現在還大,這種極端氣候絕對不利現在地球上生物的生存。

未來人類可能先在月球建立基地,作為人類前進火星的跳板,在月球上測試火星裝備和訓練太空人,準備完成後再前往火星。如果少了月球的整備演練,要一步登陸火星將會困難重重。圖/麥浩斯出版

月球替地球擋子彈

月球是地球的衛星,一直以來它都保護著我們的地球。用望遠鏡看月球,會發現月球上有許多坑洞,這些坑洞幾乎都是隕石撞擊後形成的隕石坑,表示月球在早期受到許多的撞擊。如果少了月球擋下這些隕石,這些隕石可能就會撞上地球。

-----廣告,請繼續往下閱讀-----

隕石撞擊對地球的生命影響很大。6600 萬年前,一顆 10 公里左右的隕石撞擊地球,造成恐龍滅絕。恐龍滅絕後,哺乳類才能興起,人類才有機會出現在地球上。

那些沒有被月球擋下的隕石,如果撞上地球,可能會改變地球物種的演化,人類說不定就不會出現在地球! 最後,如果沒有月亮,阿姆斯壯和另外 11 名阿波羅太空人也就無法登陸月球。人類少了探索月球的寶貴經驗,要直接踏上其他行星表面(例如火星),難度會高許多,甚至變得不可能!

——本文摘自《噢!原來如此 有趣的天文學》,2022 年 3 月,麥浩斯出版
-----廣告,請繼續往下閱讀-----