目前,這些不同類型的資料,都已經和標準的 3D 腦模型結合,可以套疊多次路徑追蹤實驗或是多個基因表現的資料同時呈現,預覽實驗中不容易實現的狀況,並能利用遮罩選擇繪圖範圍,從任意視角選擇最佳縮放比例,視覺上呈現有如在虛擬空間中遨遊的效果。對任一位置上的基因表現或是神經路徑想要更仔細了解,還可以在滑鼠點擊之後,呼叫出高解析的原始組織切片,甚至能與標示詳細的參考圖譜並排顯示。而單機版的 3D 立體瀏覽器「Brain Explorer 2」也開始轉型為線上網頁的服務,目前 beta 版尚在建構中,相信進化完成後會帶來更先進功能的線上圖譜。
開放資源、跨域合作,研究成果持續優化中
有了橫切面與縱切面詳細標示腦區的 2D 互動式網路圖譜,有了 3D 的模型以及各種基因的表現數據,有了高解析腦區間投射的連結路徑,有了個腦區的細胞種類、數量、密度的資訊……,每隔一段時間,各種「有了」的喜訊再度成為新聞的焦點,進化中的腦圖譜便又立下一個新的里程碑。
而這次 EPFL 所發表的藍腦細胞圖譜,分析的原始腦切片資料與基因表現的數據,正是艾倫腦科學研究所的開放源資料。這個趨勢誠如該機構所倡議 Big science(大規模、標準化)、Team science(跨領域、跨團隊)與 Open science(非營利、開放源)的發展方向,沿著這種進化的方向,持續將多元的資訊,加注到數位化的腦圖譜架構中,相信不久的將來,可以看到功能更強大,資訊更多元的數位腦圖譜。
1990 年,融合蛋白 CD4 免疫黏附素(CD4 immunoadhesin)誕生。這項設計,是為了對付令人類聞風喪膽的 HIV 病毒。
-----廣告,請繼續往下閱讀-----
我們知道 T 細胞是人體中一種非常重要的白血球。在這些 T 細胞中,大約有六到七成表面帶有一個叫做「CD4」的輔助受體。CD4 會和另一個受體 TCR 一起合作,幫助 T 細胞辨識其他細胞表面的抗原片段,等於是 T 細胞用來辨認壞人的「探測器」。表面擁有 CD4 受體的淋巴球,就稱為 CD4 淋巴球。
麻煩的來了。 HIV 病毒反將一軍,竟然把 T 細胞的 CD4 探測器,當成了自己辨識獵物的「標記」。沒錯,對 HIV 病毒來說,免疫細胞就是它的獵物。HIV 的表面有一種叫做 gp120 的蛋白,會主動去抓住 T 細胞上的 CD4 受體。
而另一端的 Fc 區域則有兩個重要作用:一是延長融合蛋白在體內的存活時間;二是理論上能掛上「這裡有敵人!」的標籤,這種機制稱為抗體依賴性細胞毒殺(ADCC)或免疫吞噬作用(ADCP)。當免疫細胞的 Fc 受體與 Fc 區域結合,就能促使免疫細胞清除被黏住的病毒顆粒。
不過,這裡有個關鍵細節。
在實際設計中,CD4免疫黏附素的 Fc 片段通常會關閉「吸引免疫細胞」的這個技能。原因是:HIV 專門攻擊的就是免疫細胞本身,許多病毒甚至已經藏在 CD4 細胞裡。若 Fc 區域過於活躍,反而可能引發強烈的發炎反應,甚至讓免疫系統錯把帶有病毒碎片的健康細胞也一併攻擊,這樣副作用太大。因此,CD4 免疫黏附素的 Fc 區域會加入特定突變,讓它只保留延長藥物壽命的功能,而不會與淋巴球的 Fc 受體結合,以避免誘發免疫反應。
從 DNA 藍圖到生物積木:融合蛋白的設計巧思
融合蛋白雖然潛力強大,但要製造出來可一點都不簡單。它並不是用膠水把兩段蛋白質黏在一起就好。「融合」這件事,得從最根本的設計圖,也就是 DNA 序列就開始規劃。
我們體內的大部分蛋白質,都是細胞照著 DNA 上的指令一步步合成的。所以,如果科學家想把蛋白 A 和蛋白 B 接在一起,就得先把這兩段基因找出來,然後再「拼」成一段新的 DNA。
根據廣義相對論的計算,一旦有重力波經過,不同脈衝星訊號之間的相關性與脈衝星在天球上的夾角會滿足一條特定的曲線,稱為 HD 曲線(Hellings-Downs curve)。
-----廣告,請繼續往下閱讀-----
科學家以兩顆脈衝星為一組觀測單位,藉由觀測多組脈衝星的訊號、計算它們之間的相關性,再比較這些數據是否符合 HD 曲線,就能夠進一步推斷低頻重力波是否存在。值得一提的是,由於重力波訊號非常微弱,用來作為陣列的脈衝星必須有非常穩定的計時條件,因此一般會選擇自轉週期在毫秒(ms)級別的毫秒脈衝星作為觀測對象。
NANOGrav 在今年 6 月發布的觀測結果就是利用位於波多黎各的阿雷西博天文台(Arecibo Observatory,已於 2020 年因結構老舊而退役)、美國的綠堤望遠鏡(Robert C. Byrd Green Bank Telescope)和甚大天線陣(Very Large Array, VLA)觀測 68 顆毫秒脈衝星。
他們分析了長達 15 年的觀測數據後,發現這些脈衝星訊號的相關性與 HD 曲線相當吻合,證實了低頻重力波確實存在於我們的宇宙中。