0

1
0

文字

分享

0
1
0

給《復仇者聯盟4》裡的薩諾斯:這是可以讓你理性拯救世界的物理指南

余海峯 David
・2019/05/17 ・2551字 ・閱讀時間約 5 分鐘 ・SR值 504 ・六年級
前方有雷別說我沒提醒啊。圖 / IMDb

 

——本文含雷,還未看《復仇者聯盟3、4》的讀者請斟酌服用 ——

 

很多文章已經寫過薩諾斯(Thanos) 在在《復仇者聯盟3》 裡50%宇宙滅絕計劃會碰到的問題(延伸閱讀:《復仇者3》魁隆的救世計劃──哲學家早就想好了。例如,50%其實並沒有聽起來那麼多,只需要幾代人的時間就能夠恢復。也未考慮到每個既得利益的權力高位都有50%機會變成真空狀態,搶奪權力和資源的行為根本不會因為有半數人被殺而停止,搞不好還會更會加劇。

而在《復仇者聯盟4:終局之戰( Avengers:Endgame)》 裡,來自過去的薩諾斯看到未來自己的成功,卻了解到宇宙並沒有因而變得更好。他意識到,無論如何,都總會有倖存的人未能接受事實,用盡方法回復原狀。

薩諾斯表示「我有個大膽的想法。」source:moegirl.org

 

薩諾斯因此改變計劃,決定用無限寶石把全世界宇宙生命連同宇宙本身一起消滅,然後再創造一個新的宇宙,在新宇宙裡創造新生命。他認為這樣做就不會有人反對,大家都會快快樂樂起在新宇宙享受他創造的一切。

喂喂喂,薩諾斯你是嫌夜神月當得不夠好,想試試做真正新世界的神嗎?以下是我們推薦你可以更理性拯救世界的方法。

在自動存檔多重宇宙中,為何要執著自己刪除再另存新檔?

宇宙來自一場大爆炸,從虛無之中誕生。根據多重宇宙論,這過程已經發生無限次;在你讀這行字的時候又再發生了無限次,以後也會發出無限次。前面一句話所說的「已經」、「這時」、「以後」也不太正確,因為時間會連同宇宙本身一起誕生。就好像無限寶石也是宇宙誕生時一起誕生的,在宇宙誕生之前並不存在時間。或者應該說「並不存在『宇宙誕生之前』」。

六顆無限寶石。圖/fandom

這樣的話,問題就來了。薩諾斯這樣做,與在另外多重宇宙裡開一個新的宇宙出來,有什麼分別?既然他並不打算「救贖」每個宇宙,那麼他倒不如帶著手套離開原來的宇宙,另外創造一個新的?這就好像玩電動遊戲時另外再多一個新的存檔,根本無需理會舊的存檔的生死啊?

薩諾斯難道是偏執狂,非要刪掉舊的存檔嗎?這樣的話又為什麼不去刪除其餘無限個宇宙呢?或者乾脆把多重宇宙都抹殺掉吧?但這也是不可能的,即使來自個別宇宙的無限寶石有能力抹掉其他宇宙,也不能在虛無中阻止新的宇宙從量子漣漪中誕生。新的宇宙原本就不存在,要怎麼去消滅不存在的東西?

而且,每彈指一次,使用者都會承受極大的傷害,所以比較理性的做法是不用彈指,直接簡單地用空間寶石到其他宇宙裡去,逐個看看生命有否為爭奪資源而互相殘殺。無限個宇宙之間,必定會有一個合薩諾斯心意,因為他希望創造的新宇宙,必然屬於無限個宇宙的其中無限個。

所以,比較能保持身體健康,又不會惹到復仇者聯盟為自己製造麻煩的方法,就是利用六顆無限寶石轉移到其他宇宙,不再理會舊的。也不用傷害身體自己創造,因為他想創造的宇宙本身已經存在於多重宇宙之中!

帶走原本的寶石還能夠減低爭奪的機會,相信復仇者聯盟大多數都會樂意拱手相讓 除了奇異博士之外 。而且在宇宙之間穿梭的旅程上,也能順道收集其他宇宙的無限寶石!還可以把多餘的寶石賣給其他宇宙的薩諾斯,賺取一些旅費。

就算要毀滅世界也不要浪費既有資源啊!

另一方面,也談談資源的問題。且不談為何不利用無限寶石把宇宙中的資源加倍事情就解決了,事實上宇宙原有的資源薩諾斯你也都沒好好利用好嗎!還說什麼資源不足!

太陽。圖/pixabay

首先,最低限度也要把太陽的能量100%完全利用才算環保吧。薩諾斯你都去過矮人國度了,人家工匠都懂得造個罩罩住一顆中子星,有效地提取能量,作為 MCU 裡面智勇雙全的新世界的神,不會不懂吧?這種天文學家稱為「戴森球(Dylan sphere)」的恆星罩,可是地球人都能理解的程度,是一個行星文明進化成為恆星際文明的101程度課程啊。

只要能完全利用一顆恆星放出的能量,就能保障一顆行星上的文明好幾十億年供應的能源了。即使每顆星上都有生命,恆星提供的能量依舊足夠行星上每個人都過著富裕的生活。即使恆星會死亡,那也是幾十億年後的事,到時候只要用寶石把整個行星搬去其他的恆星就可以了。

行星死亡後會變成白矮星、中子星或黑洞,而且仍能持續提供能量。白矮星和中子星的情況與普通行星的戴森球沒有太大分別,只是白矮星和中子星比較細小(分別約為地球和香港大小)和比較熱(亦即提供更多能量)。

黑洞。 圖 / Wikipedia

黑洞的情況比較有趣。連光也逃不掉的黑洞,竟然也能夠用來提取能量!黑洞的事件視界就是那條不歸路的分隔面,穿過了事件視界的一切都不可能再走出來。神奇的是,在事件視界外面一段距離,光能夠在穩定的「軌道」上環繞黑洞公轉,這軌道叫做光子圈(photon sphere)。如果黑洞會自轉的話(極可能會),在這光子圈與事件視界之前會有一片時空,被黑洞自轉拉扯著,形成叫做動圈(ergosphere)的時空區域。

在動圈裡面,你需要跑得把光更快才能「原地靜止」。所以,如果把一束光沿着動圈自轉的方向發射,其中部份會落入黑洞事件是界之中,另一部份就會被動圈加強強度。只要造一個完全由鏡子造成的戴森球罩住黑洞,再打開少許然後往裡面照射一束光線,光就會自動不斷加強。最後要做的是聰明地定時打開缺口,讓光線跑出來,然後就能利用光線裡變多、變強的能量。不小心的話就會爆炸,不過有無限寶石,隨時能夠復原吧。

總而言之,宇宙裡的資源多得離譜,只視乎薩諾斯懂不懂去利用它。等到最後,連白矮星、中子星、黑洞都蒸發消失,宇宙就會進入所謂的「熱寂(heat death)」,不會再有在任何物理過程發生。到時候才用手套變出更多資源吧!

原來如此!這樣我懂了!(設計對白) 圖 / IMDb

文章難易度
余海峯 David
16 篇文章 ・ 14 位粉絲
天體物理學家。工作包括科研、教學和科學普及。德國馬克斯・普朗克地外物理研究所博士畢業。現任香港大學理學院助理講師。現為《立場科哲》科學顧問、《物理雙月刊》副總編輯及專欄作者、《泛科學》專欄作者。合著有《星海璇璣》。


1

4
2

文字

分享

1
4
2

什麼是「造父變星」?標準燭光如何幫助人類量測天體距離?——天文學中的距離(四)

CASE PRESS_96
・2021/10/22 ・3032字 ・閱讀時間約 6 分鐘
  • 撰文|許世穎

「造父」是周穆王的專屬司機,也是現在「趙」姓的始祖。以它為名的「造父變星」則是標準燭光的一種,讓我們可以量測外星系的距離。這幫助哈柏發現了宇宙膨脹,大大開拓了人們對宇宙的視野。然而發現這件事情的天文學家勒梅特卻沒有獲得她該有的榮譽。

宇宙中的距離指引:標準燭光

經過了三篇文章的鋪陳以後,我們終於要離開銀河系,開始量測銀河系以外的星系距離。在前作<天有多大?宇宙中的距離(3)—「人口普查」>中,介紹了距離和亮度的關係。想像一支燃燒中、正在發光的蠟燭。距離愈遠,發出來的光照射到的範圍就愈大,看起來就會愈暗。

我們把「所有發射出來的光」稱為「光度」,而用「亮度」來描述實際上看到的亮暗程度,而它們之間的關係就是平方反比。一旦我們知道一支蠟燭的光度,再搭配我們看到的亮度,很自然地就可以推算出這支蠟燭所在區域的距離。

舉例來說,我們可以在台北望遠鏡觀測金門上的某支路燈亮度。如果能夠找到那支路燈的規格書,得知這支路燈的光度,就可以用亮度、光度來得到這支路燈的距離。如果英國倫敦也安裝了這支路燈,那我們也可以用一樣的方法來得知倫敦離我們有多遠。

我們把「知道光度的天體」稱為「標準燭光(Standard Candle)」。可是下一個問題馬上就來了:我們哪知道誰是標準燭光啊?經過許多的研究、推論、歸納、計算等方法,我們還是可以去「猜」出一些標準燭光的候選。接下來,我們就來實際認識一個最著名的標準燭光吧!

「造父」與「造父變星」

「造父」是中國的星官之一。傳說中,「造父」原本是五帝之一「顓頊」的後代。根據《史記‧本紀‧秦本紀》記載:造父很會駕車,因此當了西周天子周穆王的專屬司機。後來徐偃王叛亂,造父駕車載周穆王火速回城平亂。平亂後,周穆王把「趙城」(現在的中國山西省洪洞縣一帶)封給造父,而後造父就把他的姓氏就從本來的「嬴」改成了「趙」。因此,造父可是趙姓的始祖呢!(《史記‧本紀‧秦本紀》:造父以善御幸於周繆王……徐偃王作亂,造父為繆王御,長驅歸周,一日千里以救亂。繆王以趙城封造父,造父族由此為趙氏。)

圖一:危宿敦煌星圖。造父在最上方。圖片來源/參考資料 2

回到星官「造父」上。造父是「北方七宿」中「危宿」的一員(圖一),位於西洋星座中的「仙王座(Cepheus)」。一共有五顆恆星(造父一到造父五),清代的星表《儀象考成》又加了另外五顆(造父增一到造父增五)。[3]

英籍荷蘭裔天文學家約翰‧古德利克(John Goodricke,1764-1786)幼年因為發燒而失聰,也無法說話。1784 年古德利克(John Goodricke,1764-1786)發現「造父一」的光度會變化,代表它是一顆「變星(Variable)」。2 年後,年僅 22 歲的他就當選了英國皇家學會的會員。卻在 2 週後就就不幸因病去世。[4]

造父一這顆變星的星等在 3.48 至 4.73 間週期性地變化,變化週期大約是 5.36 天(圖二)。經由後人持續的觀測,發現了更多不同的變星。其中一群變星的性質(週期、光譜類型、質量……等)與造父一接近,因此將這一類變星統稱為「造父變星(Cepheid Variable)」。[5]

圖二:造父一的亮度變化圖。橫軸可以看成時間,縱軸可以看成亮度。圖片來源:ThomasK Vbg [5]

勒維特定律:週光關係

時間接著來到 1893 年,年僅 25 歲的亨麗埃塔‧勒維特(Henrietta Leavitt,1868-1921)她在哈佛大學天文台的工作。當時的哈佛天文台台長愛德華‧皮克林(Edward Pickering,1846-1919)為了減少人事開銷,將負責計算的男性職員換成了女性(當時的薪資只有男性的一半)。[6]

這些「哈佛計算員(Harvard computers)」(圖三)的工作就是將已經拍攝好的感光板拿來分析、計算、紀錄等。這些計算員們在狹小的空間中分析龐大的天文數據,然而薪資卻比當時一般文書工作來的低。以勒維特來說,她的薪資是時薪 0.3 美元。順帶一提,這相當於現在時薪 9 美元左右,約略是台灣最低時薪的 1.5 倍。[6][7][8]

圖三:哈佛計算員。左三為勒維特。圖片來源:參考資料 9

勒維特接到的目標是「變星」,工作就是量測、記錄那些感光板上變星的亮度 。她在麥哲倫星雲中標示了上千個變星,包含了 47 顆造父變星。從這些造父變星的數據中她注意到:這些造父變星的亮度變化週期與它們的平均亮度有關!愈亮的造父變星,變化的週期就愈久。麥哲倫星雲離地球的距離並不遠,可以利用視差法量測出距離。用距離把亮度還原成光度以後,就能得到一個「光度與週期」的關係(圖四),稱為「週光關係(Period-luminosity relation)」,又稱為「勒維特定律(Leavitt’s Law)」。藉由週光關係,搭配觀測到的造父變星變化週期,就能得知它的平均光度,能把它當作一支標準燭光![6][8][10]

圖四:造父變星的週光關係。縱軸為平均光度,橫軸是週期。光度愈大,週期就愈久。圖片來源:NASA [11]

從「造父變星」與「宇宙膨脹」

發現造父變星的週光關係的數年後,埃德溫‧哈柏(Edwin Hubble,1889-1953)就在 M31 仙女座大星系中也發現了造父變星(圖五)。數個世紀以來,人們普遍認為 M31 只是銀河系中的一個天體。但在哈柏觀測造父變星之後才發現, M31 的距離遠遠遠遠超出銀河系的大小,最終確認了 M31 是一個獨立於銀河系之外的星系,也更進一步開拓了人類對宇宙尺度的想像。後來哈柏利用造父變星,得到了愈來愈多、愈來愈遠的星系距離。發現距離我們愈遠的星系,就以愈快的速度遠離我們。從中得到了「宇宙膨脹」的結論。[10]

圖五:M31 仙女座大星系裡的造父變星亮度隨時間改變。圖片來源:NASA/ESA/STSci/AURA/Hubble Heritage Team [1]

造父變星作為量測銀河系外星系距離的重要工具,然而勒維特卻沒有獲得該有的榮耀與待遇。當時的週光關係甚至是時任天文台的台長自己掛名發表的,而勒維特只作為一個「負責準備工作」的角色出現在該論文的第一句話。哈柏自己曾數度表示勒維特應受頒諾貝爾獎。1925 年,諾貝爾獎的評選委員之一打算將她列入提名,才得知勒維特已經因為癌症逝世了三年,由於諾貝爾獎原則上不會頒給逝世的學者,勒維特再也無法獲得這個該屬於她的殊榮。[12]

本系列其它文章:

天有多大?宇宙中的距離(1)—從地球到太陽
天有多大?宇宙中的距離(2)—從太陽到鄰近恆星
天有多大?宇宙中的距離(3)—「人口普查」
天有多大?宇宙中的距離(4)—造父變星

參考資料:

[1] Astronomy / Meet Henrietta Leavitt, the woman who gave us a universal ruler
[2] wiki / 危宿敦煌星圖
[3] wiki / 造父 (星官)
[4] wiki / John Goodricke
[5] wiki / Classical Cepheid variable
[6] wiki / Henrietta Swan Leavitt
[7] Inflation Calculator
[8] aavso / Henrietta Leavitt – Celebrating the Forgotten Astronomer
[9] wiki / Harvard Computers
[10] wiki / Period-luminosity relation
[11] Universe Today / What are Cepheid Variables?
[12] Mile Markers to the Galaxies

所有討論 1
CASE PRESS_96
156 篇文章 ・ 375 位粉絲
CASE的全名是 Center for the Advancement of Science Education,也就是台灣大學科學教育發展中心。創立於2008年10月,成立的宗旨是透過台大的自然科學學術資源,奠立全國基礎科學教育的優質文化與環境。
網站更新隱私權聲明
本網站使用 cookie 及其他相關技術分析以確保使用者獲得最佳體驗,通過我們的網站,您確認並同意本網站的隱私權政策更新,了解最新隱私權政策