當前,像是企業、醫院、學校內部的伺服器,個人電腦,甚至手機等裝置,都可以成為「邊緣節點」。當數據在這些邊緣節點進行運算,稱為邊緣運算;而在邊緣節點上運行 AI ,就被稱為邊緣 AI。簡單來說,就是將原本集中在遠端資料中心的運算能力,「搬家」到更靠近數據源頭的地方。
-----廣告,請繼續往下閱讀-----
那麼,為什麼需要這樣做?資料放在雲端,集中管理不是更方便嗎?對,就是不好。
當數據在這些邊緣節點進行運算,稱為邊緣運算;而在邊緣節點上運行 AI ,就被稱為邊緣 AI。/ 圖片來源:MotionArray
第一個不好是物理限制:「延遲」。 即使光速已經非常快,數據從你家旁邊的路口傳到幾千公里外的雲端機房,再把分析結果傳回來,中間還要經過各種網路節點轉來轉去…這樣一來一回,就算只是幾十毫秒的延遲,對於需要「即刻反應」的 AI 應用,比如說工廠裡要精密控制的機械手臂、或者自駕車要判斷路況時,每一毫秒都攸關安全與精度,這點延遲都是無法接受的!這是物理距離與網路架構先天上的限制,無法繞過去。
第三個挑戰:系統「可靠性」與「韌性」。 如果所有運算都仰賴遠端的雲端時,一旦網路不穩、甚至斷線,那怎麼辦?很多關鍵應用,像是公共安全監控或是重要設備的預警系統,可不能這樣「看天吃飯」啊!邊緣處理讓系統更獨立,就算暫時斷線,本地的 AI 還是能繼續運作與即時反應,這在工程上是非常重要的考量。 所以你看,邊緣運算不是科學家們沒事找事做,它是順應數據特性和實際應用需求,一個非常合理的科學與工程上的最佳化選擇,是我們想要抓住即時數據價值,非走不可的一條路!
邊緣 AI 的實戰魅力:從工廠到倉儲,再到你的工作桌
知道要把 AI 算力搬到邊緣了,接下來的問題就是─邊緣 AI 究竟強在哪裡呢?它強就強在能夠做到「深度感知(Deep Perception)」!
-----廣告,請繼續往下閱讀-----
所謂深度感知,並非僅僅是對數據進行簡單的加加減減,而是透過如深度神經網路這類複雜的 AI 模型,從原始數據裡面,去「理解」出更高層次、更具意義的資訊。
以研華科技為例,旗下已有多項邊緣 AI 的實戰應用。以工業瑕疵檢測為例,利用物件偵測模型,快速將工業產品中的瑕疵挑出來,而且由於 AI 模型可以使用同一套參數去檢測,因此品管上能達到一致性,減少人為疏漏。尤其在高產能工廠中,檢測速度必須快、狠、準。研華這套 AI 系統每分鐘最高可處理 8,000 件產品,替工廠節省大量人力,同時確保品質穩定。這樣的效能來自於一台僅有膠囊咖啡機大小的邊緣設備—IPC-240。
這樣的效能來自於一台僅有膠囊咖啡機大小的邊緣設備—IPC-240。/ 圖片提供:研華科技
此外,在智慧倉儲場域,研華與威剛合作,研華與威剛聯手合作,在 MIC-732AO 伺服器上搭載輝達的 Nova Orin 開發平台,打造倉儲系統的 AMR(Autonomous Mobile Robot) 自走車。這跟過去在倉儲系統中使用的自動導引車 AGV 技術不一樣,AMR 不需要事先規劃好路線,靠著感測器偵測,就能輕鬆避開障礙物,識別路線,並且將貨物載到指定地點存放。
當硬體資源有限,大模型卻越來越龐大,「幫模型減肥」就成了邊緣 AI 的重要課題。/ 圖片來源:MotionArray
模型剪枝(Model Pruning)—基於重要性的結構精簡
建立一個 AI 模型,其實就是在搭建一整套類神經網路系統,並訓練類神經元中彼此關聯的參數。然而,在這麼多參數中,總會有一些參數明明佔了一個位置,卻對整體模型沒有貢獻。既然如此,不如果斷將這些「冗餘」移除。
這就像種植作物的時候,總會雜草叢生,但這些雜草並不是我們想要的作物,這時候我們就會動手清理雜草。在語言模型中也會有這樣的雜草存在,而動手去清理這些不需要的連結參數或神經元的技術,就稱為 AI 模型的模型剪枝(Model Pruning)。
-----廣告,請繼續往下閱讀-----
模型剪枝的效果,大概能把100變成70這樣的程度,說多也不是太多。雖然這樣的縮減對於提升效率已具幫助,但若我們要的是一個更小幾個數量級的模型,僅靠剪枝仍不足以應對。最後還是需要從源頭著手,採取更治本的方法:一開始就打造一個很小的模型,並讓它去學習大模型的知識。這項技術被稱為「知識蒸餾」,是目前 AI 模型壓縮領域中最具潛力的方法之一。
知識蒸餾(Knowledge Distillation)—讓小模型學習大師的「精髓」
想像一下,一位經驗豐富、見多識廣的老師傅,就是那個龐大而強悍的 AI 模型。現在,他要培養一位年輕學徒—小型 AI 模型。與其只是告訴小型模型正確答案,老師傅 (大模型) 會更直接傳授他做判斷時的「思考過程」跟「眉角」,例如「為什麼我會這樣想?」、「其他選項的可能性有多少?」。這樣一來,小小的學徒模型,用它有限的「腦容量」,也能學到老師傅的「智慧精髓」,表現就能大幅提升!這是一種很高級的訓練技巧,跟遷移學習有關。
但是!即使模型經過了這些科學方法的優化,變得比較「苗條」了,要真正在邊緣環境中處理如潮水般湧現的資料,並且高速、即時、穩定地運作,仍然需要一個夠強的「引擎」來驅動它們。也就是說,要把這些經過科學千錘百鍊、但依然需要大量計算的 AI 模型,真正放到邊緣的現場去發揮作用,就需要一個強大的「硬體平台」來承載。
-----廣告,請繼續往下閱讀-----
邊緣 AI 的強心臟:SKY-602E3 的三大關鍵
像研華的 SKY-602E3 塔式 GPU 伺服器,就是扮演「邊緣 AI 引擎」的關鍵角色!那麼,它到底厲害在哪?
三、可靠性 SKY-602E3 用的是伺服器等級的主機板、ECC 糾錯記憶體、還有備援電源供應器等等。這些聽起來很硬的規格,背後代表的是嚴謹的工程可靠性設計。畢竟在邊緣現場,系統穩定壓倒一切!你總不希望 AI 分析跑到一半就掛掉吧?這些設計確保了部署在現場的 AI 系統,能夠長時間、穩定地運作,把實驗室裡的科學成果,可靠地轉化成實際的應用價值。
-----廣告,請繼續往下閱讀-----
研華的 SKY-602E3 塔式 GPU 伺服器,體積僅如後背包大小,卻能輕鬆支援語言模型的運作,實現高效又安全的 AI 解決方案。/ 圖片提供:研華科技
北落師門殘屑盤的觀測始於 1983 年。當時,美國國家航空暨太空總署(National Aeronautics and Space Administration, NASA)的紅外線天文衛星(Infrared Astronomical Satellite, IRAS)發現北落師門在紅外線波段的亮度異常高,代表周圍很可能有殘屑盤圍繞。由於北落師門離地球僅約 25 光年,這項發現引起眾多天文學家的關注,並在未來數十年前仆後繼地拿出各波段最好的望遠鏡,希望藉此深入了解殘屑盤的特性。其中,哈伯太空望遠鏡(Hubble Space Telescope, HST,簡稱哈伯望遠鏡)、阿塔卡瑪大型毫米及次毫米波陣列(Atacama Large Millimeter/submillimeter Array, ALMA)與韋伯望遠鏡擁有非常好的空間解析度,因此能夠清楚地觀測殘屑盤的結構。
● 哈伯的觀測
2008 年, NASA 公布哈伯望遠鏡在 2004 與 2006 年對北落師門的觀測結果(圖三),讓天文學家首次清晰地看到北落師門殘屑盤的影像。這張照片是哈伯望遠鏡以日冕儀(coronagraph)在 600 奈米(nm)的可見光波段下拍攝,中間的白點代表北落師門的位置,而周圍的環狀亮帶正是因散射的北落師門星光而發亮的殘屑盤,放射狀的條紋則是日冕儀沒能完全消除的恆星散射光。除此之外,天文學家還發現有一個亮點正圍繞著北落師門運行,並認為此亮點可能是一顆圍繞北落師門的行星,於是將它命名為「北落師門 b 」。很可惜在往後的觀測中,天文學家發現北落師門 b 漸漸膨脹消散,到 2014 年時就已經完全看不見了。因此它很可能只是一團塵埃,而非真正的行星。
圖三:哈伯望遠鏡於 2008 年公布的北落師門。中間白點代表北落師門的位置,周圍環狀亮帶是因散射北落師門的星光而發亮的殘屑盤,放射狀條紋則是沒完全消除的恆星散射光。右下角亮點當時被認為是圍繞北落師門的行星,但很可能只是塵埃。(Ruffnax (Crew of STS-125);NASA, ESA, P. Kalas, J. Graham, E. Chiang, and E. Kite (University of California, Berkeley), M. Clampin (NASA Goddard Space Flight Center, Greenbelt, Md.), M. Fitzgerald (Lawrence Livermore National Laboratory, Livermore, Calif.), and K. Stapelfeldt and J. Krist (NASA Jet Propulsion Laboratory, Pasadena, Calif.)
● ALMA 的觀測
ALMA 對北落師門的完整觀測於 2017 年亮相,他們展示出更加清晰漂亮的環狀結構,且位置與哈伯望遠鏡的觀測吻合。正如前面提到,殘屑盤中的塵埃溫度愈低,放出的輻射波長就愈長。因此 ALMA 在 1.3 毫米(mm)波段觀測到的影像,主要來自離殘屑盤中恆星最遠、最冷的部分。
圖四: ALMA 於 2017 年拍攝的北落師門殘屑盤,展示出清晰漂亮的環狀結構。(Sergio Otárola|ALMA (ESO/NAOJ/NRAO);M. MacGregor)
最後,在類古柏帶環與內側殘屑盤之間,還存在著一個半長軸約 104 AU 的「中間環」,在太陽系中則沒有對應的結構,這項新發現也需要進一步的研究來了解它的來源。
此外,雖然北落師門 b 最終被證實並不是一顆行星,但這並不代表北落師門旁沒有行星環繞。最初,殘屑盤的形成原因是由小行星等天體不斷碰撞所產生,經過不斷地碰撞合併,其實就有可能已經產生直徑數百到數千公里的行星。從北落師門的殘屑盤還可以推論,在內側殘屑盤與中間環之間可能有一顆海王星質量以上的行星,它就像鏟雪車般清除軌道上的塵埃,從而產生「內側裂縫」(inner gap)的結構。
Galicher, R. et al. (2013). Fomalhaut b: Independent analysis of the Hubble space telescope public archive data. The Astrophysical Journal, 769(1), 42.
MacGregor, M. A. et al. (2017). A complete ALMA map of the Fomalhaut debris disk. The Astrophysical Journal, 842(1), 8.
Gáspár, A. et al. (2023). Spatially resolved imaging of the inner Fomalhaut disk using JWST/MIRI. Nature Astronomy, 1–9.
其實暗能量的「暗」,指的是我們看不到也摸不到,用上各種波段的電磁波都察覺不到,甚至現今沒有任何儀器能偵測到它的存在。因為我們無法感受到它、不知道他們的型態,所以稱為暗能量。也就是說,如果暗影大人或是哪個最終 BOSS 的絕招是「暗能量波動」,當巨大的能量朝你襲來,不用擔心,站在原地就好,因為它只會穿過你的身體,打不中你的。同樣的,你可能聽過的「暗物質」,指的也是我們無法探知的未知物質。也就是說,暗物質並不是指某種特定物質叫做暗物質,任何我們現在還無法探測到的,都可能是暗物質的其中一種。題外話,近年某些暗物質面紗底下的容貌,已經逐漸能被我們窺見,例如微中子。這部分,之後我們介紹暗物質的節目中,再來好好討論,今天先來和大家聊聊佔了宇宙質能 7 成的暗能量。
科學家主要透過三種方法,分別用來觀測晚期、中期、到早期的宇宙。第一種方法是觀測 Ia 型超新星爆炸,它指的是當一顆緻密白矮星到了生命末期,吸收大量鄰近伴星的氣體,使得內部重力超過某個極限,引發失控的核融合而形成的超新星爆炸。這個爆炸會在瞬間釋放出許多能量,亮度甚至可以媲美整個星系,因此即使是很遙遠的超新星也可以被地球觀測到。最受天文學家關注的是,因為每個 Ia 型超新星爆炸時產生的尖峰光度都相同,可以直接作為觀測或是亮度的比對參考點,又稱為標準燭光。當它離我們愈遠亮度就愈小,只要觀測亮度就可以得知它離我們的距離。