0

4
0

文字

分享

0
4
0

使用前讓它更安全:基因神剪 CRISPR 還有哪些問題待解?

研之有物│中央研究院_96
・2019/04/30 ・4078字 ・閱讀時間約 8 分鐘 ・SR值 504 ・六年級

本文轉載自中央研究院研之有物,泛科學為宣傳推廣執行單位

  • 採訪編輯|歐宇甜    美術編輯|林洵安

人體基因編輯的現況與未來

基因神剪 CRISPR 宛如科技魔戒,威力橫掃全球,大多數科學家積極用它改良物種,甚至人類自身。但是編輯人體基因的技術已經足夠安全了嗎?真的毫無副作用嗎?中研院生物化學研究所助研究員凌嘉鴻,站在 CRISPR 研究最前線,非常熟悉這把剪刀的優缺點。因此比起拿起 CRISPR 神剪改造人類,他更想把這把剪刀改得更安全。就讓我們一起問問他對 CRISPR 還有哪些期待!

Q:您是人體基因編輯的專家,去年發生基因編輯寶寶的爭議,您怎麼看?

基因編輯寶寶事件」是中國生物學家賀建奎和他的團隊,利用 CRISPR 技術,修改人類受精卵的 CCR5 基因,目的是讓胚胎在發育過程中對愛滋病毒免疫。

2018 年 11 月,賀建奎宣稱:已有一對基因經過編輯的雙胞胎姊妹誕生。這對姊妹的父親是愛滋病帶原者,但兩姊妹出生後證實均未感染愛滋。

-----廣告,請繼續往下閱讀-----
當父母有一方是愛滋帶原者,胚胎發育的過程中就可能會感染愛滋病毒。賀建奎宣稱,經由剪除 CCR5 基因,可以讓胚胎對愛滋病毒免疫。
示意圖來源│iStock

Q:寶寶不會感染愛滋,聽起來很棒啊,為什麼全世界科學家都跳腳?

主要原因有三:

一、這個實驗是沒有必要的冒險!當夫妻一方感染愛滋病,又想要生下健康寶寶,可以有更好、更安全的醫療方案,不需要進行風險還很大的基因編輯。

二、這次基因編輯的雙胞胎,只有一個實驗成功,另一顆受精卵雖然也放入 CRISPR ,卻沒有切掉 CCR5 基因。但是,賀建奎竟將這顆實驗失敗的受精卵,也放到母體孕育,這讓科學界無法接受!

因為這顆失敗的受精卵,不但沒有達到抗愛滋的醫療初衷,出生的寶寶還必須承受巨大的風險。如果 CRISPR 剪到其他基因,可能為這個新生命帶來難以承受的後果。

-----廣告,請繼續往下閱讀-----

三、雖然剔除基因 CCR5 可能抵抗愛滋病毒,但這個基因會不會有其他重要、人類還沒發現的功能?剪掉這個基因會不會造成嚴重的副作用?目前的科學仍無法預料。

Q:看來基因編輯寶寶現階段還是母湯啊!您目前在改造人類的什麼基因呢?

CRISPR 門檻很低,許多人很快跑到應用面。但我比較關心安全性、副作用等問題。

在細胞裡丟進一把剪刀和 DNA,難道細胞完全沒反應嗎?我不太相信。

最近我的實驗室發現,細胞對外來 DNA 跟 RNA 的免疫反應很激烈:細胞會認出這些 RNA 跟 DNA 不是自己的,產生發炎反應,甚至放出求救訊號:「有奇怪的 RNA 或 DNA 出現!」如果細胞會對 CRISPR 出現發炎反應,未來想在活體上進行治療,問題就很大。

另一個重要的問題:雖然現在有一把精準有效的基因剪刀,但修復過程是細胞在控制,跟剪刀一點關係都沒有。理想狀況下,當 Cas9 剪開 DNA 時,會有機會更改 DNA,但細胞願不願意將正確的 DNA 片段接上去?當細胞已出現發炎反應,它會怎麼修復 DNA?目前仍沒辦法掌握。

-----廣告,請繼續往下閱讀-----

Q:細胞會怎麼修復自己的 DNA?

最重要的 DNA 修復方式有兩種:

一種是非同源性末端結合 (NHEJ):直接將 DNA 雙股斷裂的尾端拉近、黏上。如果細胞選擇這條路,就不會接受外來的 DNA 片段。

一種是同源性重組 (HDR):正常的 DNA 有兩副,今天斷在某一副的某個位置,另一副通常不會這麼巧合斷在同一個位置,可以作為修復模板,複製一段正確 DNA,接在 DNA 的斷口處。

細胞修復 DNA 有兩條路,NHEJ 是直接把斷裂處接起來,HDR 是拿另一副 DNA 做模板複製正確的 DNA 片段,接在斷裂處。當細胞選擇走 HDR,才有可能接受外界送入的正確基因。
圖說設計│黃曉君、林洵安 資料來源│凌嘉鴻

當細胞選擇走 HDR 這條路,才有可能接受接受我們送進去的 DNA 片段,完成基因編輯。可惜的是,細胞喜歡走 NHEJ,直接把斷掉的 DNA 兩端接起來,雖然這條路破壞性很大,DNA 序列可能多一些、少一些,無法指揮細胞做出正確的蛋白質。

-----廣告,請繼續往下閱讀-----

Q:細胞為什麼會喜歡這麼破壞性的修補方式呢?

原因可能是:人體 65 億個鹼基序列上,真正存放基因的只有 1~2%,其他 98% 還不清楚有什麼功能。細胞的概念是:DNA 斷在不重要的位置的機率比較高,直接接上至少快。

HDR 雖然可以精準複製 DNA,但其實更危險。因為基因體序列重複性高,胡亂交換 DNA 片段的機率也很高,所以很多細胞寧可不走這條路。

總而言之,每種細胞面對 CRISPR 的反應不太一樣,有些細胞的開關是 HDR 一半、NHEJ 一半。幹細胞或一些免疫細胞,完全是 NHEJ。我們會特地選一些喜歡 NHEJ 的人體細胞做研究,了解細胞做決定的關鍵因素。

凌嘉鴻研究基因編輯的主要關懷,在於降低 CRISPR 這把剪刀放入人體細胞後的安全性、副作用,以及細胞的修復機制等問題,圖中紅色液體就是人體細胞的樣本。
攝影│林洵安

Q:未來 CRISPR 會怎麼治療人體?有可能做成藥劑嗎?

這是另一個技術瓶頸!CRISPR一定要成為藥劑,才能廣泛使用。例如:當病人的心臟有基因突變,不需開刀剖開心臟,只要將 CRISPR 包入膠囊吃下去,或是注射入血液,經過血液循環系統,就能抵達生病的心臟細胞進行治療。

-----廣告,請繼續往下閱讀-----

但這麼一來, CRISPR 必須能「精準」傳送到需要治療的細胞,就像寄包裹,必須抵達正確的地址。

目前最簡單的構想是:用一層膜包起 Cas9 跟 RNA,膜上有一些結構,能夠辨識特定的人體細胞。當這個「包裹」進入血液、組織、器官,找到正確目標(正確地址),才會把 Cas9 跟 RNA 送進細胞。

有人嘗試用病毒來「包裝」 Cas9 與運送,因為大自然中有很多病毒專門攻擊某個生物或器官。有人選擇用奈米材質的包裹,例如:有人的肌肉細胞基因突變,可以把奈米材質包裹注射到肌肉附近,讓它局部擴散,至少可治療某區的細胞。

雖然 CRISPR 比過去的基因剪刀好用多了,但這把剪刀的精準度、後續的細胞反應、DNA 修復方式以及藥物傳送問題……統統需要研究。我希望把 CRISPR 改到沒有副作用,精準、完全交換到正確的 DNA。

Q:如果 CRISPR 沒有副作用、可以做成藥劑,就可以打造完美寶寶嗎?

技術上還是不可能!CRISPR 只是一把精準的基因剪刀,你得告訴它要剪什麼基因。上面說過,我們對人類基因體的了解不夠,可說是非常淺薄,光是改個身高,到底涉及哪些基因?它們怎麼運作?機制完全不清楚。

-----廣告,請繼續往下閱讀-----

更重要的是,一個基因在成長各個階段會扮演不同的角色,或在不同細胞有不同功能,把這些基因一口氣改掉,有什麼影響?會不會有危險?我們都不知道。

另外,許多技術在研究室都可以做,但要應用到人類醫療,會有很多道德問題,這個底線應該是整個社會一起討論,不是科學家決定。

舉例來說:每個孕婦都會做產檢,如果產前就知道寶寶有基因缺陷,每位媽媽一定都會希望在受精卵或胚胎上修好寶寶的基因,以免寶貝出生後受苦。

這條底線可以繼續往前推:未來地球會越來越髒亂、氣候異常,小孩更容易罹癌。有些基因就算沒突變,是不是也能預防重於治療,先改得好一點?

總之,你可以有種種理由推進這條底線,但推到怎樣才算過頭?身高、眼睛、頭髮,什麼都要改嗎?難道真的要改成超級人種?

-----廣告,請繼續往下閱讀-----

另外,這些技術絕對很昂貴,只有少數人負擔得起。

如果富人能隨意改東改西的話,可能更不怕生病,活得更久,或是具特殊優勢。那麼,憑什麼他們可以使用,其他人卻不行?

我認為罕見疾病或致命疾病應該治療,千萬不要走向超級人類或完美寶寶,造成不公平,但這是政府、國家必須立法規範的。

Q:您博士班學的是基礎微生物學,後來為什麼會轉向人體基因編輯研究?

完全是誤打誤撞(哈哈)。原本我在博士班是研究細菌怎麼合成天然物,有次 CRISPR 發明人之一的道納 (Jennifer A. Doudna) 博士到我們學校演講,內容是解蛋白質結構的生化技術。

我對這個主題很感興趣,主動寄信問道納博士能否到她實驗室做研究。面試時,她提到發現 CRISPR 是細菌的免疫機制,剛好我是念微生物學,可以幫得上忙,於是順利錄取了。

沒想到,我正式加入她的實驗室時,碰巧遇上 CRISPR 和 Cas9 研究大突破,成為最熱門的基因編輯技術。結果,面試的東西完全撇在一邊,我也投入基因編輯的研究。那時每天都很忙碌、很像坐雲霄飛車,但非常值得,畢竟這種見證歷史的機會很難得。

Q:您對人體基因編輯還有什麼建議嗎?

請社會大眾不要只是直覺基因編輯好美好、或多可怕,可以多多了解相關知識。有了正確的知識,才能判斷它的底線應該劃在哪裡。

另外,CRISPR 仍有很多瓶頸有待突破,讓這項技術更精準、更安全,這需要很多科學家一起努力,徹底了解這把剪刀,把它改得更好。

最後,我覺得基礎科學很重要,還有很多東西等待發現。

試想,如果過去科學家不曾研究細菌免疫學,就無法發現 CRISPR了。唯有我們對基礎生物學夠了解,才能繼續發現新東西。

凌嘉鴻(右一)本來是微生物學家,博士班畢業後「誤打誤撞」進入 CRISPR 發明人之一的道納 (Jennifer A. Doudna) 博士的實驗室,參與了 CRISPR 的爆炸性發展。現在,他在中研院帶領年輕科學家,繼續努力將這把神剪改的更精準、更安全。
攝影│林洵安

延伸閱讀

本文轉載自中央研究院研之有物,原文為隨心所欲編輯人體基因的時代來了?專訪凌嘉鴻,泛科學為宣傳推廣執行單位

文章難易度
研之有物│中央研究院_96
293 篇文章 ・ 3355 位粉絲
研之有物,取諧音自「言之有物」,出處為《周易·家人》:「君子以言有物而行有恆」。探索具體研究案例、直擊研究員生活,成為串聯您與中研院的橋梁,通往博大精深的知識世界。 網頁:研之有物 臉書:研之有物@Facebook

0

8
2

文字

分享

0
8
2
快!還要更快!讓國家級地震警報更好用的「都會區強震預警精進計畫」
鳥苷三磷酸 (PanSci Promo)_96
・2024/01/21 ・2584字 ・閱讀時間約 5 分鐘

本文由 交通部中央氣象署 委託,泛科學企劃執行。

  • 文/陳儀珈

從地震儀感應到地震的震動,到我們的手機響起國家級警報,大約需要多少時間?

臺灣從 1991 年開始大量增建地震測站;1999 年臺灣爆發了 921 大地震,當時的地震速報系統約在震後 102 秒完成地震定位;2014 年正式對公眾推播強震即時警報;到了 2020 年 4 月,隨著技術不斷革新,當時交通部中央氣象局地震測報中心(以下簡稱為地震中心)僅需 10 秒,就可以發出地震預警訊息!

然而,地震中心並未因此而自滿,而是持續擴建地震觀測網,開發新技術。近年來,地震中心執行前瞻基礎建設 2.0「都會區強震預警精進計畫」,預計讓臺灣的地震預警系統邁入下一個新紀元!

-----廣告,請繼續往下閱讀-----

連上網路吧!用建設與技術,換取獲得地震資料的時間

「都會區強震預警精進計畫」起源於「民生公共物聯網數據應用及產業開展計畫」,該計畫致力於跨部會、跨單位合作,由 11 個執行單位共同策畫,致力於優化我國環境與防災治理,並建置資料開放平台。

看到這裡,或許你還沒反應過來地震預警系統跟物聯網(Internet of Things,IoT)有什麼關係,嘿嘿,那可大有關係啦!

當我們將各種實體物品透過網路連結起來,建立彼此與裝置的通訊後,成為了所謂的物聯網。在我國的地震預警系統中,即是透過將地震儀的資料即時傳輸到聯網系統,並進行運算,實現了對地震活動的即時監測和預警。

地震中心在臺灣架設了 700 多個強震監測站,但能夠和地震中心即時連線的,只有其中 500 個,藉由這項計畫,地震中心將致力增加可連線的強震監測站數量,並優化原有強震監測站的聯網品質。

-----廣告,請繼續往下閱讀-----

在地震中心的評估中,可以連線的強震監測站大約可在 113 年時,從原有的 500 個增加至 600 個,並且更新現有監測站的軟體與硬體設備,藉此提升地震預警系統的效能。

由此可知,倘若地震儀沒有了聯網的功能,我們也形同完全失去了地震預警系統的一切。

把地震儀放到井下後,有什麼好處?

除了加強地震儀的聯網功能外,把地震儀「放到地下」,也是提升地震預警系統效能的關鍵做法。

為什麼要把地震儀放到地底下?用日常生活來比喻的話,就像是買屋子時,要選擇鬧中取靜的社區,才不會讓吵雜的環境影響自己在房間聆聽優美的音樂;看星星時,要選擇光害比較不嚴重的山區,才能看清楚一閃又一閃的美麗星空。

-----廣告,請繼續往下閱讀-----

地表有太多、太多的環境雜訊了,因此當地震儀被安裝在地表時,想要從混亂的「噪音」之中找出關鍵的地震波,就像是在搖滾演唱會裡聽電話一樣困難,無論是電腦或研究人員,都需要花費比較多的時間,才能判讀來自地震的波形。

這些環境雜訊都是從哪裡來的?基本上,只要是你想得到的人為震動,對地震儀來說,都有可能是「噪音」!

當地震儀靠近工地或馬路時,一輛輛大卡車框啷、框啷地經過測站,是噪音;大稻埕夏日節放起絢麗的煙火,隨著煙花在天空上一個一個的炸開,也是噪音;台北捷運行經軌道的摩擦與震動,那也是噪音;有好奇的路人經過測站,推了推踢了下測站時,那也是不可忽視的噪音。

因此,井下地震儀(Borehole seismometer)的主要目的,就是盡量讓地震儀「遠離塵囂」,記錄到更清楚、雜訊更少的地震波!​無論是微震、強震,還是來自遠方的地震,井下地震儀都能提供遠比地表地震儀更高品質的訊號。

-----廣告,請繼續往下閱讀-----

地震中心於 2008 年展開建置井下地震儀觀測站的行動,根據不同測站底下的地質條件,​將井下地震儀放置在深達 30~500 公尺的乾井深處。​除了地震儀外,站房內也會備有資料收錄器、網路傳輸設備、不斷電設備與電池,讓測站可以儲存、傳送資料。

既然井下地震儀這麼強大,為什麼無法大規模建造測站呢?簡單來說,這一切可以歸咎於技術和成本問題。

安裝井下地震儀需要鑽井,然而鑽井的深度、難度均會提高時間、技術與金錢成本,因此,即使井下地震儀的訊號再好,若非有國家建設計畫的支援,也難以大量建置。

人口聚集,震災好嚴重?建立「客製化」的地震預警系統!

臺灣人口主要聚集於西半部,然而此區的震源深度較淺,再加上密集的人口與建築,容易造成相當重大的災害。

-----廣告,請繼續往下閱讀-----

許多都會區的建築老舊且密集,當屋齡超過 50 歲時,它很有可能是在沒有耐震規範的背景下建造而成的的,若是超過 25 年左右的房屋,也有可能不符合最新的耐震規範,並未具備現今標準下足夠的耐震能力。 

延伸閱讀:

在地震界有句名言「地震不會殺人,但建築物會」,因此,若建築物的結構不符合地震規範,地震發生時,在同一面積下越密集的老屋,有可能造成越多的傷亡。

因此,對於發生在都會區的直下型地震,預警時間的要求更高,需求也更迫切。

-----廣告,請繼續往下閱讀-----

地震中心著手於人口密集之都會區開發「客製化」的強震預警系統,目標針對都會區直下型淺層地震,可以在「震後 7 秒內」發布地震警報,將地震預警盲區縮小為 25 公里。

111 年起,地震中心已先後完成大臺北地區、桃園市客製化作業模組,並開始上線測試,當前正致力於臺南市的模組,未來的目標為高雄市與臺中市。

永不停歇的防災宣導行動、地震預警技術研發

地震預警系統僅能在地震來臨時警示民眾避難,無法主動保護民眾的生命安全,若人民沒有搭配正確的防震防災觀念,即使地震警報再快,也無法達到有效的防災效果。

因此除了不斷革新地震預警系統的技術,地震中心也積極投入於地震的宣導活動和教育管道,經營 Facebook 粉絲專頁「報地震 – 中央氣象署」、跨部會舉辦《地震島大冒險》特展、《震守家園 — 民生公共物聯網主題展》,讓民眾了解正確的避難行為與應變作為,充分發揮地震警報的效果。

-----廣告,請繼續往下閱讀-----

此外,雖然地震中心預計於 114 年將都會區的預警費時縮減為 7 秒,研發新技術的腳步不會停止;未來,他們將應用 AI 技術,持續強化地震預警系統的效能,降低地震對臺灣人民的威脅程度,保障你我生命財產安全。

文章難易度

討論功能關閉中。

鳥苷三磷酸 (PanSci Promo)_96
196 篇文章 ・ 300 位粉絲
充滿能量的泛科學品牌合作帳號!相關行銷合作請洽:contact@pansci.asia

0

3
0

文字

分享

0
3
0
用迷幻藥治憂鬱?基因編輯療法將通過批准?——2023 最值得關注十大科學事件(上)
PanSci_96
・2023/01/30 ・2348字 ・閱讀時間約 4 分鐘

-----廣告,請繼續往下閱讀-----

在 2022 年裡,我們見證了低軌通訊衛星在戰爭中的作用、Omicron 肆虐與次世代疫苗、韋伯太空望遠鏡捕捉系外生命印記、銀河中心黑洞初次現身、人類精準回擊小行星、台灣 CAR-T 首例、特斯拉的平價人形機器人、與超強的 LaMDA 跟 ChatGPT AI 語言模型!

2023 年能更刺激嗎?有哪些值得我們關注的科學大事呢?

我們綜合整理了 Nature、Science、Scientific American、NewScientist、富比世雜誌、經濟學人雜誌,結合泛科學的觀察與期待程度,提出這份「2023 最值得關注十大科學事件」;今年的科學界將會熱鬧非凡,令人目不暇給!

No.10 病原體通緝名單

2022 年 11 月,法國科學家在 bioRxiv 上發表了從西伯利亞永凍土中復活的多種病毒;這些「殭屍病毒」中最古老的已經有 48500 歲,在溫度升高後,這些病毒都復甦了過來……。雖然這批古老病毒只能感染變形蟲,但也暗示著,冰層之下存在更多正在休眠、極可能對哺乳動物或人類造成危險的病毒。

-----廣告,請繼續往下閱讀-----

隨著氣溫與海溫升高,這些不定時病毒炸彈正在醞釀著。

世界衛生組織將在今年發布修訂後的「重點病原體清單」,至少 300 位科學家嚴謹審查超過 25 個病毒與細菌家族的各種證據,針對目前還未知、但可能造成全球疫情的未知疾病 Disease X 做出預測,擬出一份優先名單。被列入名單的病原體通緝犯將會被重點研究調查,以利未來開發疫苗、治療與診斷技術。

被列入優先名單的病原體將會被重點研究調查。圖/Envato Elements

No.9 新一代 mRNA 疫苗

乘著在 COVID-19 大流行間快速成熟的 mRNA 疫苗研發平台,許多疫苗正蓄勢待發。

BNT 在 2023 年初針對瘧疾、肺結核和生殖器皰疹的 mRNA 疫苗開始了首次人體實驗;也與輝瑞合作,研發能降低帶狀皰疹發病率的疫苗。另一家 mRNA 大廠莫德納,也在研發能預防生殖器皰疹和帶狀皰疹病毒疫苗。

-----廣告,請繼續往下閱讀-----

除此之外,莫德納開發的黑色素瘤 mRNA 疫苗與默克的藥物合併療法,在去年底公布中期臨床試驗結果,顯示能降低 44% 的死亡率及復發風險,臨床試驗也將在 2023 年進入最後階段。

這些將在 2023 年揭曉的成果,將拓展人類使用 mRNA 疫苗對抗疾病的手段。

新一代 mRNA 疫苗正蓄勢待發。圖/Envato Elements

No.8 CRISPR 療法獲批准

由於之前的臨床試驗結果很不錯,CRISPR 基因編輯療法極有可能會在今年首次正式通過批准!

這種 exagamlogene autotemcel(exa-cel)療法,是由美國波士頓的 Vertex Pharmaceuticals 和英國劍橋的 CRISPR Therapeutics 公司共同開發。用超簡化的方式來説,治療方法就是先收集一個人自己的幹細胞,接著用 CRISPR-Cas9 編輯修正幹細胞中有缺陷的基因,最後再把這些細胞輸回人體。

-----廣告,請繼續往下閱讀-----

Vertex 公司預計會在 3 月向美國 FDA 申請批准,讓 exa-cel 療法可以用於治療 β-地中海貧血或鐮狀細胞病的患者。

然而,隨著療法上市,相關的討論預期也將甚囂塵上……。

CRISPR 基因編輯療法極有可能在今年正式通過批准。圖/Envato Elements

No.7 阿茲海默有藥醫

美國 FDA 將在年初宣布,Eisai 製藥公司和 Biogen 生技公司開發的 lecanemab,是否可以用來治療阿茲海默患者。

該藥物就像一台大腦專用的掃地機器人,為單克隆抗體,可以清除大腦中積累的 β 澱粉樣蛋白;在包含了 1785 名早期阿茲海默患者的臨床試驗中顯示,比起安慰劑,能減緩認知能力下降的速度約 27%。不過,有些科學家認為這效果只能說是還好,也有些擔心藥物不夠安全。

-----廣告,請繼續往下閱讀-----

無獨有偶,另一款由美國的 Anavex Life Sciences 開發的阿茲海默藥物 blarcamesine,目前也正在臨床試驗階段;它能啟動一種可提高神經元穩定性及相互連接能力的蛋白質,就像是幫神經元升級了連線速度與品質,估計在今年會持續帶來新消息。

blarcamesine 能幫神經元升級連線速度與品質。圖/Envato Elements

No.6 迷幻療法

2023 年,也極可能立下迷幻藥被用於醫療用途的里程碑。

多個相關臨床研究都進展到第三期,例如為 PTSD 創傷後症候群設計的新療法,結合了心理治療與 MDMA 亞甲二氧甲基苯丙胺,也就是所謂的搖頭丸,在臨床三期中,67% 的患者不再被診斷有 PTSD。

而來自迷幻蘑菇的裸蓋菇素,則被用來治療難治型憂鬱症,其臨床二期結果令人鼓舞。233 名難治型憂鬱症患者分成三組,在服用不同劑量裸蓋菇素後,每一組的憂鬱症量表分數都降低;而劑量最重的那組,其降幅最顯著。

-----廣告,請繼續往下閱讀-----

最後是 K 他命,竟然成為對抗酒精使用障礙的療法!酒精使用障礙包括酗酒、酒精依賴、成癮等,86% 的臨床試驗病人,在接受新療法後六個月,持續戒除酒精。

然而,也有科學家警告這些樂觀訊息中有炒作成份,就讓我們持續關注吧!

迷幻藥能有效治療病情!?圖/Envato Elements

看到這你可能會想,第六到十名怎麼都是跟醫療健康有關的大事件呢?別急!在下一篇中,我們接著介紹更精采的第五到第一名!

也歡迎大家跟我們分享,你知道的、即將在 2023 年發生的科學大事件!

-----廣告,請繼續往下閱讀-----
期待在 2023 年即將發生的科學大事件!圖/GIPHY

歡迎訂閱 Pansci Youtube 頻道 獲取更多深入淺出的科學知識!

PanSci_96
1217 篇文章 ・ 2145 位粉絲
PanSci的編輯部帳號,會發自產內容跟各種消息喔。

1

2
3

文字

分享

1
2
3
你知道基因改造,那知道「基因編輯」技術嗎?讓專家一次告訴你!
台灣科技媒體中心_96
・2022/06/29 ・3505字 ・閱讀時間約 7 分鐘

英國環境食品與鄉村事務部(DEFRA)於 2022 年提出的《基因技術(精準育種)法案》。
圖/envato

英國環境食品與鄉村事務部(DEFRA)於今(2022)年 5 月 25 日提出的《基因技術(精準育種)法案》(Genetic Technology (Precision Breeding) Bill),6 月 15 日已過二讀討論,6 月 28 日將進入下一個審議階段。該法案針對精準育種的動植物,以及由這些動植物生產出的食品與飼料,提供開放銷售相關的風險評估。

台灣科技媒體中心邀請專家說明目前的研究與技術,4 位專家皆解釋精準育種技術更能縮短育種作物的時程,並指出該法案可供臺灣參考的面向。

法案修訂,提升糧食生產策略的重要性

臺灣大學生物科技研究所教授 兼 生物資源暨農學院副院長 劉嚞睿 表示,目前各國用基因編輯技術,做為基礎開發的新興精準育種技術產品,管理方式並不一致。所以目前國際上,是否以基因改造生物的規範來管理新興的精準育種技術產品,仍未達成共識,會影響新興精準育種技術產品的開發。

成功大學生物科技與產業科學系副教授 郭瑋君 指出,過去,美國對科技作物相對開放,而多年來歐盟強力反對。英國作為歐洲的三大強權之一,提出此修訂案,開放精準育種作物的產業研發及銷售,反應出此技術不再只是美國自身的國際貿易考量,而是提升未來糧食生產的重要策略。

-----廣告,請繼續往下閱讀-----
英國開放精準育種技術,可能是提升糧食產量的重要策略。圖/envato

郭瑋君認為,這對全球有顯著的指標作用,相信此舉也會帶動歐盟未來思量修改相關法案。但郭瑋君也指出,該法案所提的專一基因編輯,在臺灣的精準育種技術只在研究單位進行,以分析作物的基因功能為主,目前仍未發展於產業育種。

郭瑋君表示,精準育種技術可以直接修改植物的基因,因此最大的潛力是可以去除造成植物生長弱勢的基因,而提高生長能力及永續栽培方法的應用。她說,精準育種技術可以顯著縮短育種時程,從 10 年縮短到 1 年半,這在因應氣候變遷造成每年極端氣候,加快培育有抗性的作物品種,有極大的助益。

郭瑋君舉例,自精準育種技術於 2013 年成功改變植物基因後,2017 年美國食品藥物管理局(FDA)即已核準了精準育種可抗旱的大豆、増加含油量的亞麻,及不會變黑的蘑菇上市。

臺灣大學農藝學系副教授 蔡育彰 表示,英國提出修訂精準育種法案,是繼美國、澳洲、日本等國之後,將基因編輯作物與基因改造作物做出區別。

-----廣告,請繼續往下閱讀-----

目前已訂定法規中允許的精準育種作物,主要是影響作物本身特定的基因表現。

精準育種可以大幅縮短育種時程、因應快速來臨的極端氣候。圖/envato

蔡育彰認為,這種改變原本特定基因表現的作物,與現行一般育種方法所育成的作物相似,若再輔以目前成熟的全基因組定序分析技術,可完整的比對出精準育種作物與對照品種的基因組序列差異,後續相關安全性評估可與過去一般品種育成的流程相似。

臺灣海洋大學水產養殖學系副教授/前系主任 龔紘毅,同時也是執行科技部、農委會與多項產學合作的計畫主持人。龔紘毅指出,精準育種技術幫助我們減少對農藥及抗生素的依賴,減少對環境的影響並改善動物福利,增加動植物的營養價值,從而提高糧食系統的生產力、復原力及可持續性。

龔紘毅說明,臺灣現在發展的精準育種技術有「基因體選育」(Genome selection)與「基因體編輯技術」,前者需要有明顯不同性狀的族群樣品並選育物種,但相對也會投入很高的成本,較適合少數高產量與高經濟規模的物種。

-----廣告,請繼續往下閱讀-----
臺灣現在發展的精準育種技術有「基因體選育」(Genome selection)與「基因體編輯技術」。
圖/envato

龔紘毅表示,臺灣在農業基因體學和遺傳技術有豐沛的能量及基礎研究,可借鏡英國法規,制定輕度監管的方式,釋放研發及促進農業產業發展的能量,且制定符合台灣最大效益的規則。龔紘毅提到,日本專家及政府在制訂精準育種法規的前瞻性、推廣經驗與鼓勵新創,也值得臺灣加以借鏡學習。

他指出,日本與臺灣均為水產消費大國,日本雖然在基因改造生物(GMO)法規上嚴格管理,但學界與政府認為基因編輯技術在精準育種具有龐大的發展潛力,因此在基因編輯法規超前部署,制定明確且兼顧產業發展與生物安全的法規制度。同時在科學教育及注重新興技術與民眾溝通、宣導和知的權利。

精準育種,相對縮短培育時程

劉嚞睿說明,依臺灣「食品安全衛生管理法」定義,基因改造是指使用基因工程或分子生物技術,將遺傳物質轉移或轉殖到活細胞或生物體,產生基因重組現象。基因改造技術食品含有外源基因,對人體健康與環境生態可能有影響。

不過他舉例,三種基因編輯技術中,其中兩種技術的衍生產品,不含有外源基因。所以除了歐盟仍以基因改造生物的規範進行管理以外,大多數國家認定風險與安全性應與傳統育種無異,故認為不屬於基因改造產品。

-----廣告,請繼續往下閱讀-----

劉嚞睿指出,基因編輯技術可在不含外源基因的情況下,精準快速的改變生物體內特定的基因序列,大幅縮短育種時間,帶動新興精準育種技術的發展。但此精準育種技術,透過人為的操控物種基因體,甚至影響物種的基因多樣性,仍引起諸多道德倫理與社會價值的矛盾與衝突。

用人為方式改變生物基因的精準育種技術,仍有道德倫理上的疑慮。圖/envato

蔡育彰說明,精準育種使用的基因編輯技術,與傳統基因改造不同,傳統基因改造是經由外加的基因。他指出,實際應用的困難在於,精準育種此技術應用在不同作物、品種和品系上,效率也都不同。由於目前法規允許的精準育種技術有限制 DNA 序列的變異型式,應用於許多現行栽培的作物種類上可能預期效果較有限。蔡育彰也提醒,精準育種技術的應用也需要對目標作物的基因組序列有完整的了解。

郭瑋君指出,基因改造主要技術核心是,永久放置「非植物」的基因片段於農作物體內,如抗病或抗蟲或抗農藥基因,可能來源是昆蟲或細菌,以提高基因改造作物的產量。因此這些外來基因在作物內會產生外來的蛋白質,可能栽種時造成其它生物如昆蟲的生長或演化上的變異,在食用時可能成為人類食物的過敏源。

郭瑋君解釋,精準育種技術是直接去除或變異「植物」本身的基因片段,最終的育種作物不會有外來的基因或蛋白質。

-----廣告,請繼續往下閱讀-----
與基因改造不同,精準育種的基因編輯技術,只會剔除、不會新增外來基因到農作物體內。圖/envato

龔紘毅解釋,精準育種中的基因編輯技術,讓科學家能幫助農民和生產者開發出有益處的植物和動物品種,這些也能通過傳統育種和自然過程發生,但基因編輯可以更有效和更精準的大幅縮短選育新品種所需的時間。

台灣科技媒體中心表示,目前英國的精準育種技術仍屬於基因改造生物(GMO)法規的監管下,若此法案通過,將有利於精準育種技術與產業發展,但是,使用精準育種技術的作物是否納入或獨立於「基改作物」的法規規範,仍待持續關注與討論。雖然英國、紐西蘭、澳洲等都有專家長年持續的討論基因改造作物與基因編輯作物的技術,但在臺灣仍十分缺少對此科學議題的專業看法與討論

台灣科技媒體中心總結,透過科學家說明目前的研究與技術,能幫助在科學技術被誤解之前,提供正確的資訊以利討論。雖然這次是在英國提出的精準育種法案,但未來臺灣若有相關發展,也可以做為參考的資料。

所有討論 1
台灣科技媒體中心_96
46 篇文章 ・ 327 位粉絲
台灣科技媒體中心希望架構一個具跨領域溝通性質的科學新聞平台,提供正確的科學新聞素材與科學新聞專題探討。