0

0
0

文字

分享

0
0
0

社交合作讓智慧演進

Jacky Hsieh
・2012/04/25 ・1298字 ・閱讀時間約 2 分鐘 ・SR值 496 ・六年級

-----廣告,請繼續往下閱讀-----

一般人腦約1.3公斤,有一千億個神經元在裡頭,每次呼吸有五分之一的氧氣由它吸收,比起身體大小類似的動物,人類的大腦的大上許多。根據一個新的電腦模擬資料,人類和相近靈長類動物的腦這麼「大」,是因為我們已經進化成社交性的生物;如果沒有這些社交,我們的腦會比現在的「小」很多。

這個想法源自所謂的「社交力(Social Intelligent)」假說--我們需要許多複雜的計算機在腦袋裡頭不斷推算著人與人之間的關係──誰是朋友,誰是敵人,誰在我心中有較高的社交地位。已經有一些研究指出腦較大的靈長類動物傾向是較大社群的一員,同樣的理論也適用於海豚身上;但這些研究只做了腦大小與群體大小的相關,沒有討論到其演化的過程。

不過要談演化,我們也無法活個百萬年來驗證,於是愛爾蘭的都柏林三一學院博士生Luke McNally用電腦進行演化模擬。電腦從五十個各僅有三到六個神經元的大腦開始模擬,重複讓每個大腦彼此進行兩個會遇上社交困境(social dilemmas)必須進行選擇(decision-making)的遊戲:囚徒困境(prisoner’s dilemma)和雪堆(snowdrift game)。

在囚徒困境遊戲中,兩人會被分別由警方質問,如果兩人都保持緘默,那就會被無罪開釋;如果其中一人出賣對方,那對方就會身陷牢獄之苦,而他則得以獲釋;但如果兩人彼此出賣,則可同時得以緩刑。如果這是個單回合的遊戲,又被分開無法溝通的情況下,那出賣對方似乎是可以獲得最大利益的選擇;但經過反覆的遊戲,玩家開始發現如果保持緘默(兩人都彼此合作)才能夠達到最大利益(都被無罪開釋)。在雪堆遊戲,兩個司機開車時遇上暴風雪,因雪堆而無法前行,兩人都可以選擇待在車裡享受暖氣或是出去開始剷雪,以個人最大利益而言,就是坐在車裡看對方鏟雪,但其實兩人合作鏟雪也不賴,所以這兩個遊戲長遠看來「合作」都是最佳選擇。

-----廣告,請繼續往下閱讀-----

遊戲之後,電腦模擬的大腦開始進行無性生殖,程式設計讓遊戲中表現較佳的模擬大腦較有延續後代的可能,而這些後代的大腦會經歷隨機突變,大腦結構、神經元數量,或神經元之間的連結強度都可能因此改變。這個模擬共在兩個遊戲中跑了十次,每次產生五萬次後代。

研究者觀察模擬的結果,計算大腦與大腦間的合作情況,以及大腦內神經元數作為判定智慧的指標。McNally說:「當轉化成一個更合作的社會,結果會得到更多為了「大」大腦而出現的天擇結果。」當合作增加時,較大的大腦表現更佳;這些較大的大腦較易被繁衍,也因此有更多的較大大腦彼此合作,「當合作增加,也就有更多為了智慧而作的天擇結果,這是一個同時發生的過程。」很明顯的,這些模擬比起我們的大腦簡易許多,而這些模擬大腦的選擇只有合作或者不合作,所以這樣的模擬結果表示:單單是合作就可以讓腦演化變得更複雜(有智慧)!

當然這些模擬比起真實人生差得遠,也不見得適用於各種動物,像新喀鴉(New Caledonian crows)這種不靠合作的鳥類在處理一些很難取得的食物也有很高的智慧,所以也許「需求」對智慧的演進也有很大的影響。

資料來源:『ScienceNOW』:『Teamwork Builds Big Brains』[10 April 2012]

-----廣告,請繼續往下閱讀-----

References:

Cooperation and the evolution of intelligence

文章難易度
Jacky Hsieh
57 篇文章 ・ 0 位粉絲
中大認知所碩士。使用者經驗工程師。喜歡寫東西分享。

0

3
3

文字

分享

0
3
3
圖形處理單元與人工智慧
賴昭正_96
・2024/06/24 ・6944字 ・閱讀時間約 14 分鐘

  • 作者/賴昭正|前清大化學系教授、系主任、所長;合創科學月刊

我擔心人工智慧可能會完全取代人類。如果人們能設計電腦病毒,那麼就會有人設計出能夠自我改進和複製的人工智慧。 這將是一種超越人類的新生命形式。

——史蒂芬.霍金(Stephen Hawking) 英國理論物理學家

大約在八十年前,當第一台數位計算機出現時,一些電腦科學家便一直致力於讓機器具有像人類一樣的智慧;但七十年後,還是沒有機器能夠可靠地提供人類程度的語言或影像辨識功能。誰又想到「人工智慧」(Artificial Intelligent,簡稱 AI)的能力最近十年突然起飛,在許多(所有?)領域的測試中擊敗了人類,正在改變各個領域——包括假新聞的製造與散佈——的生態。

圖形處理單元(graphic process unit,簡稱 GPU)是這場「人工智慧」革命中的最大助手。它的興起使得九年前還是個小公司的 Nvidia(英偉達)股票從每股不到 $5,上升到今天(5 月 24 日)每股超過 $1000(註一)的全世界第三大公司,其創辦人(之一)兼首席執行官、出生於台南的黃仁勳(Jenson Huang)也一躍成為全世界排名 20 內的大富豪、台灣家喻戶曉的名人!可是多少人了解圖形處理單元是什麼嗎?到底是時勢造英雄,還是英雄造時勢?

黃仁勳出席2016年台北國際電腦展
Nvidia 的崛起究竟是時勢造英雄,還是英雄造時勢?圖/wikimedia

在回答這問題之前,筆者得先聲明筆者不是學電腦的,因此在這裡所能談的只是與電腦設計細節無關的基本原理。筆者認為將原理轉成實用工具是專家的事,不是我們外行人需要了解的;但作為一位現在的知識分子或公民,了解基本原理則是必備的條件:例如了解「能量不滅定律」就可以不用仔細分析,即可判斷永動機是騙人的;又如現在可攜帶型冷氣機充斥市面上,它們不用往室外排廢熱氣,就可以提供屋內冷氣,讀者買嗎?

CPU 與 GPU

不管是大型電腦或個人電腦都需具有「中央處理單元」(central process unit,簡稱 CPU)。CPU 是電腦的「腦」,其電子電路負責處理所有軟體正確運作所需的所有任務,如算術、邏輯、控制、輸入和輸出操作等等。雖然早期的設計即可以讓一個指令同時做兩、三件不同的工作;但為了簡單化,我們在這裡所談的工作將只是執行算術和邏輯運算的工作(arithmetic and logic unit,簡稱 ALU),如將兩個數加在一起。在這一簡化的定義下,CPU 在任何一個時刻均只能執行一件工作而已。

-----廣告,請繼續往下閱讀-----

在個人電腦剛出現只能用於一般事物的處理時,CPU 均能非常勝任地完成任務。但電腦圖形和動畫的出現帶來了第一批運算密集型工作負載後,CPU 開始顯示心有餘而力不足:例如電玩動畫需要應用程式處理數以萬計的像素(pixel),每個像素都有自己的顏色、光強度、和運動等, 使得 CPU 根本沒辦法在短時間內完成這些工作。於是出現了主機板上之「顯示插卡」來支援補助 CPU。

1999 年,英偉達將其一「具有集成變換、照明、三角形設定/裁剪、和透過應用程式從模型產生二維或三維影像的單晶片處理器」(註二)定位為「世界上第一款 GPU」,「GPU」這一名詞於焉誕生。不像 CPU,GPU 可以在同一個時刻執行許多算術和邏輯運算的工作,快速地完成圖形和動畫的變化。

依序計算和平行計算

一部電腦 CPU 如何計算 7×5+6/3 呢?因每一時刻只能做一件事,所以其步驟為:

  • 計算 7×5;
  • 計算 6/3;
  • 將結果相加。

總共需要 3 個運算時間。但如果我們有兩個 CPU 呢?很多工作便可以同時(平行)進行:

-----廣告,請繼續往下閱讀-----
  • 同時計算 7×5 及 6/3;
  • 將結果相加。

只需要 2 個運算時間,比單獨的 CPU 減少了一個。這看起來好像沒節省多少時間,但如果我們有 16 對 a×b 要相加呢?單獨的 CPU 需要 31 個運算的時間(16 個 × 的運算時間及 15 個 + 的運算時間),而有 16 個小 CPU 的 GPU 則只需要 5 個運算的時間(1 個 × 的運算時間及 4 個 + 的運算時間)!

現在就讓我們來看看為什麼稱 GPU 為「圖形」處理單元。圖一左圖《我愛科學》一書擺斜了,如何將它擺正成右圖呢? 一句話:「將整個圖逆時針方向旋轉 θ 即可」。但因為左圖是由上百萬個像素點(座標 x, y)組成的,所以這句簡單的話可讓 CPU 忙得不亦樂乎了:每一點的座標都必須做如下的轉換

x’ = x cosθ + y sinθ

y’ = -x sinθ+ y cosθ

-----廣告,請繼續往下閱讀-----

即每一點均需要做四個 × 及兩個 + 的運算!如果每一運算需要 10-6 秒,那麼讓《我愛科學》一書做個簡單的角度旋轉,便需要 6 秒,這豈是電動玩具畫面變化所能接受的?

圖形處理的例子

人類的許多發明都是基於需要的關係,因此電腦硬件設計家便開始思考:這些點轉換都是獨立的,為什麼我們不讓它們同時進行(平行運算,parallel processing)呢?於是專門用來處理「圖形」的處理單元出現了——就是我們現在所知的 GPU。如果一個 GPU 可以同時處理 106 運算,那上圖的轉換只需 10-6 秒鐘!

GPU 的興起

GPU 可分成兩種:

  • 整合式圖形「卡」(integrated graphics)是內建於 CPU 中的 GPU,所以不是插卡,它與 CPU 共享系統記憶體,沒有單獨的記憶體組來儲存圖形/視訊,主要用於大部分的個人電腦及筆記型電腦上;早期英特爾(Intel)因為不讓插卡 GPU 侵蝕主機的地盤,在這方面的研發佔領先的地位,約佔 68% 的市場。
  • 獨立顯示卡(discrete graphics)有不與 CPU 共享的自己專用內存;由於與處理器晶片分離,它會消耗更多電量並產生大量熱量;然而,也正是因為有自己的記憶體來源和電源,它可以比整合式顯示卡提供更高的效能。

2007 年,英偉達發布了可以在獨立 GPU 上進行平行處理的軟體層後,科學家發現獨立 GPU 不但能夠快速處理圖形變化,在需要大量計算才能實現特定結果的任務上也非常有效,因此開啟了為計算密集型的實用題目編寫 GPU 程式的領域。如今獨立 GPU 的應用範圍已遠遠超出當初圖形處理,不但擴大到醫學影像和地震成像等之複雜圖像和影片編輯及視覺化,也應用於駕駛、導航、天氣預報、大資料庫分析、機器學習、人工智慧、加密貨幣挖礦、及分子動力學模擬(註三)等其它領域。獨立 GPU 已成為人工智慧生態系統中不可或缺的一部分,正在改變我們的生活方式及許多行業的遊戲規則。英特爾在這方面發展較遲,遠遠落在英偉達(80%)及超微半導體公司(Advance Micro Devices Inc.,19%,註四)之後,大約只有 1% 的市場。

-----廣告,請繼續往下閱讀-----
典型的CPU與GPU架構

事實上現在的中央處理單元也不再是真正的「單元」,而是如圖二可含有多個可以同時處理運算的核心(core)單元。GPU 犧牲大量快取和控制單元以獲得更多的處理核心,因此其核心功能不如 CPU 核心強大,但它們能同時高速執行大量相同的指令,在平行運算中發揮強大作用。現在電腦通常具有 2 到 64 個核心;GPU 則具有上千、甚至上萬的核心。

結論

我們一看到《我愛科學》這本書,不需要一點一點地從左上到右下慢慢掃描,即可瞬間知道它上面有書名、出版社等,也知道它擺斜了。這種「平行運作」的能力不僅限於視覺,它也延伸到其它感官和認知功能。例如筆者在清華大學授課時常犯的一個毛病是:嘴巴在講,腦筋思考已經不知往前跑了多少公里,常常為了追趕而越講越快,將不少學生拋到腦後!這不表示筆者聰明,因為研究人員發現我們的大腦具有同時處理和解釋大量感官輸入的能力。

人工智慧是一種讓電腦或機器能夠模擬人類智慧和解決問題能力的科技,因此必須如人腦一樣能同時並行地處理許多資料。學過矩陣(matrix)的讀者應該知道,如果用矩陣和向量(vector)表達,上面所談到之座標轉換將是非常簡潔的(註五)。而矩陣和向量計算正是機器學習(machine learning)演算法的基礎!也正是獨立圖形處理單元最強大的功能所在!因此我們可以了解為什麼 GPU 會成為人工智慧開發的基石:它們的架構就是充分利用並行處理,來快速執行多個操作,進行訓練電腦或機器以人腦之思考與學習的方式處理資料——稱為「深度學習」(deep learning)。

黃仁勳在 5 月 22 日的發布業績新聞上謂:「下一次工業革命已經開始了:企業界和各國正與英偉達合作,將價值數萬億美元的傳統資料中心轉變為加速運算及新型資料中心——人工智慧工廠——以生產新商品『人工智慧』。人工智慧將為每個產業帶來顯著的生產力提升,幫助企業降低成本和提高能源效率,同時擴大收入機會。」

附錄

人工智慧的實用例子:下面一段是微軟的「copilot」代書、谷歌的「translate」代譯之「one paragraph summary of GPU and AI」。讀完後,讀者是不是認為筆者該退休了?

-----廣告,請繼續往下閱讀-----

GPU(圖形處理單元)和 AI(人工智慧)之間的協同作用徹底改變了高效能運算領域。GPU 具有平行處理能力,特別適合人工智慧和機器學習所需的複雜資料密集運算。這導致了影像和視訊處理等領域的重大進步,使自動駕駛和臉部辨識等技術變得更加高效和可靠。NVIDIA 開發的平行運算平台 CUDA 進一步提高了 GPU 的效率,使開發人員能夠透過將人工智慧問題分解為更小的、可管理的、可同時處理的任務來解決這些問題。這不僅加快了人工智慧研究的步伐,而且使其更具成本效益,因為 GPU 可以在很短的時間內執行與多個 CPU 相同的任務。隨著人工智慧的不斷發展,GPU 的角色可能會變得更加不可或缺,推動各產業的創新和新的可能性。大腦透過神經元網路實現這一目標,這些神經元網路可以獨立但有凝聚力地工作,使我們能夠執行複雜的任務,例如駕駛、導航、觀察交通信號、聽音樂並同時規劃我們的路線。此外,研究表明,與非人類動物相比,人類大腦具有更多平行通路,這表明我們的神經處理具有更高的複雜性。這個複雜的系統證明了我們認知功能的卓越適應性和效率。我們可以一邊和朋友聊天一邊走在街上,一邊聽音樂一邊做飯,或一邊聽講座一邊做筆記。人工智慧是模擬人類腦神經網路的科技,因此必須能同時並行地來處理許多資料。研究人員發現了人腦通訊網路具有一個在獼猴或小鼠中未觀察獨特特徵:透過多個並行路徑傳輸訊息,因此具有令人難以置信的多任務處理能力。

註解

(註一)當讀者看到此篇文章時,其股票已一股換十股,現在每一股約在 $100 左右。

(註二)組裝或升級過個人電腦的讀者或許還記得「英偉達精視 256」(GeForce 256)插卡吧?

(註三)筆者於 1984 年離開清華大學到 IBM 時,就是參加了被認為全世界使用電腦時間最多的量子化學家、IBM「院士(fellow)」Enrico Clementi 的團隊:因為當時英偉達還未有可以在 GPU 上進行平行處理的軟體層,我們只能自己寫軟體將 8 台中型電腦(非 IBM 品牌!)與一大型電腦連接來做平行運算,進行分子動力學模擬等的科學研究。如果晚生 30 年或許就不會那麼辛苦了?

-----廣告,請繼續往下閱讀-----

(註四)補助個人電腦用的 GPU 品牌到 2000 年時只剩下兩大主導廠商:英偉達及 ATI(Array Technology Inc.)。後者是出生於香港之四位中國人於 1985 年在加拿大安大略省成立,2006 年被超微半導體公司收購,品牌於 2010 年被淘汰。超微半導體公司於 2014 年 10 月提升台南出生之蘇姿豐(Lisa Tzwu-Fang Su)博士為執行長後,股票從每股 $4 左右,上升到今天每股超過 $160,其市值已經是英特爾的兩倍,完全擺脫了在後者陰影下求生存的小眾玩家角色,正在挑戰英偉達的 GPU 市場。順便一題:超微半導體公司現任總裁(兼 AI 策略負責人)為出生於台北的彭明博(Victor Peng);與黃仁勳及蘇姿豐一樣,也是小時候就隨父母親移居到美國。

(註五)

延伸閱讀

  • 熱力學與能源利用」,《科學月刊》,1982 年 3 月號;收集於《我愛科學》(華騰文化有限公司,2017 年 12 月出版),轉載於「嘉義市政府全球資訊網」。
  • 網路安全技術與比特幣」,《科學月刊》,2020 年 11 月號;轉載於「善科教育基金會」的《科技大補帖》專欄。
文章難易度

討論功能關閉中。

賴昭正_96
43 篇文章 ・ 56 位粉絲
成功大學化學工程系學士,芝加哥大學化學物理博士。在芝大時與一群留學生合創「科學月刊」。一直想回國貢獻所學,因此畢業後不久即回清大化學系任教。自認平易近人,但教學嚴謹,因此穫有「賴大刀」之惡名!於1982年時當選爲 清大化學系新一代的年青首任系主任兼所長;但壯志難酬,兩年後即辭職到美留浪。晚期曾回台蓋工廠及創業,均應「水土不服」而鎩羽而歸。正式退休後,除了開始又爲科學月刊寫文章外,全職帶小孫女(半歲起);現已成七歲之小孫女的BFF(2015)。首先接觸到泛科學是因爲科學月刊將我的一篇文章「愛因斯坦的最大的錯誤一宇宙論常數」推薦到泛科學重登。

0

2
1

文字

分享

0
2
1
聊八卦可以防止我們被朋友搭便車、詐騙?——《人類文明》
天下文化_96
・2024/06/17 ・1337字 ・閱讀時間約 2 分鐘

間接互惠的要件之一:聊八卦

間接互惠(indirect reciprocity)的概念認為,受益者並不是直接回報給同一位利他的施恩者,而是會把恩惠轉給其他人。A 幫助 B,B 再幫助 C,C 再幫助 D,依此類推。於是,恩惠就能在社群裡傳出去,遲早也能回到 A 身上。種下的因,總有一天能得到最後的果。

而且這還能談到下一個層次:如果有個 Z,在 A 幫助 B 時,親眼見證了這件事,發現 A 是個慷慨的好人,他也會因為想和 A 建立關係,所以願意幫助 A。於是,就算這兩個人無法符合直接互惠所需要的「後會有期」條件,也能因為整個群體的利他行為而受益。樂於助人,自己就更可能得到幫助,至於那些不想幫助別人、只想貪小便宜的人,則是可能遭到懲罰或受到排擠。像這樣的間接互惠,是人類一種格外複雜的合作形式,需要兩項其他動物都辦不到的條件。

第一項條件是,不管互動雙方的行為是慷慨是自私,除了需要有目擊者親眼看到,還必須能把這項寶貴的資訊,分享到整個群體共有的資料池。也就是說,社群成員得愛聊八卦才行。如果大家都能知道某個人不值得信任、總是只接受別人幫助卻都不回報,等到下次這個人又碰上麻煩,社群成員就不會再伸出援手。

英文有句諺語說「騙子發不了財」(cheats never prosper),但不能說完全正確:騙子常常在短時間內還是能得逞,特別是在那些規模比較大、大家彼此比較不認識的社群;只是遲早仍然會東窗事發,讓自己名聲掃地。所以,想讓間接互惠的機制不被那些只想貪小便宜的人搞垮,聊八卦就是一個關鍵的必備條件,而且無論是營火旁、或是茶水間,人類實在是哪裡都能聊。事實上,相較於其他靈長類動物是用理毛之類的活動來建立關係,人類是以閒嗑牙、聊八卦取代了這些活動。

-----廣告,請繼續往下閱讀-----
想讓間接互惠的機制不被那些只想貪小便宜的人搞垮,聊八卦就是一個關鍵的必備條件!圖/envato

像這樣把個別成員的行為,拿來在社群裡大談特談(就像是一個由閒聊建立起的社群網路),就會打造出一套名聲系統,可用來判斷適不適合試著和某個人合作。某人對待他人慷慨大方,就能建立良好的名聲;老愛占別人便宜,也就會惡名遠揚,讓人知道以後可得敬而遠之。行為友善的人,其他人在未來幫助他們的機率也會比較高,於是在天擇的機制裡就能占點上風。所以說到頭來,仍是演化塑造了人類的心理,讓我們在意自己的名聲,聊八卦就成了確保大家別心存僥倖的機制。

在一個會聊八卦的社會裡,生活的第一守則就是要小心自己做的事;或者更重要的是,要小心自己做的事給別人的觀感。於是,人類社會也就成了一個人人都在猜測別人想法的社會——須推斷別人的動機與態度,評估自己的行為在他人眼中的樣貌,好維護自己在外的名聲。我們所謂的「良心」就是這樣的產物之一:內在的這股聲音,警告我們可能有人在看,要我們想想別人可能的觀感,好讓自己免受社會的制裁。

——本文摘自《人類文明:生物機制如何塑造世界史》,2024 年 05 月,天下文化出版,未經同意請勿轉載。

討論功能關閉中。

天下文化_96
139 篇文章 ・ 621 位粉絲
天下文化成立於1982年。一直堅持「傳播進步觀念,豐富閱讀世界」,已出版超過2,500種書籍,涵括財經企管、心理勵志、社會人文、科學文化、文學人生、健康生活、親子教養等領域。每一本書都帶給讀者知識、啟發、創意、以及實用的多重收穫,也持續引領台灣社會與國際重要管理潮流同步接軌。

0

11
4

文字

分享

0
11
4
宇宙文明演化史(上):能量觀點下的先進文明
Castaly Fan (范欽淨)_96
・2023/06/26 ・3182字 ・閱讀時間約 6 分鐘

編按:說到星際文明的發展程度,科幻愛好者必定會提到「卡爾達肖夫指數」,以使用的能源多寡,來區分文明發達程度。然而,除了從能源來評斷文明進程,其實還有其他的評判方式。

「宇宙文明演化史」系列,將在上篇回顧「卡爾達肖夫指數」,下篇介紹較少討論的「資訊量」與「微觀尺度」的評斷觀點。

地球數以萬億計的物種中,人類算得上是最具高等智慧的生物。

但假設——遙遠的某顆行星上也有「智慧生命」的存在,那麼,對方是否有可能比我們先進?他們能透過量子力學的應用而發明電子產品嗎?他們能掌握陽光、電磁等能源嗎?他們是否有完善的醫療、教育、經濟、社會結構?又或者,他們是否已然可以達成人類難以觸及的瞬時旅行?

智慧生命的演進

誠如在這篇文章所提過的,碳基生命自發形成的機率極為渺小,從有機分子組合成蛋白質、基因序列、細胞、再到個體的行程,這個機率相當於「一陣龍捲風掃過垃圾場、從中隨機拼湊出一架波音 747」那樣渺茫,更何況是演化成像人類這樣的「智慧生命」。

我們不僅僅具有生物體的基本特徵,還具有思考能力、邏輯、記憶力、甚至是預測與規劃未來的能力,這些可以說是人類與其他生命體最與眾不同之所在。人類之所以成為「智慧生命」,便是因為擁有了自己的語言、文字,使資訊得以保留並傳承。回溯到百萬年前,從演化論的角度來看,當時人類與其他靈長類動物差異並不大;然而,我們的老祖先發現了「火」,並且懂得如何生成並且控制「火」,使得我們不再像其他動物那樣直接生食獵物;另一方面,我們開始懂得用遮羞布、乃至於之後縫製衣服。

-----廣告,請繼續往下閱讀-----

此外,我們能表達自己的情緒,能輕易地展現喜怒哀樂溝通,進行交際活動——這些都是人類得以成為智慧生命的原理。

順帶一提,根據物理學家加來道雄(Michio Kaku)所提出的「穴居人原理」(caveman principle),我們人類依然存有百萬年前老祖宗們「原始慾望」的影子——換句話說,數十萬年來人類雖然不斷演化,然而我們的人格依然保有原始穴居人的基因本質。舉例而言:即使有先進的電腦把文件處理完善,我們仍習慣把文件影印成紙本,之所以如此,係因原始人類捕獵動物時要求「獵殺證明」,習慣取信於親眼所見的事實。

同理,我們傾向於參與音樂會或去電影院體驗現場氛圍,而非一味觀賞電子螢幕前的動態;我們習慣社交與打扮,因此多數重要聚會並不容易被虛擬會議所取代;而在古代社會,小道消息的流通會幫助某些人們知悉高層的行動,因而扮演著一定程度重要性——而這也呼應了我們周遭充斥著娛樂與八卦的報刊,畢竟這些事物總會激起人性深處的好奇心。另一方面,穴居人法則似乎也意味著藝術、娛樂並不會因為科技發展而消失,因為這些事物能滿足人類的需求與愉悅,而這並非科技所能取而代之的。

根據穴居人原理,我們依然保有原始人類的慾望。圖/Mrs J’s science

回歸根本,可以發現,身為智慧生命,必然要有「視力」的存在、而非像螞蟻那樣透過觸角溝通,包含情緒的表達、語言的交流,這方面可以歸功於「大腦」的演化;再者,人類的「腳趾」的演化也是關鍵,這使得人類得以直立行走、改變對世界的視角與行動;此外,「前肢可握物」也扮演著重要角色,亦即靈活的手指——這使得人類可以精準地操作物件、製造工具。

-----廣告,請繼續往下閱讀-----

先進文明的分級

因此,我們假定這些智慧生命都擁有這些生理構造與功能,他們可以溝通、可以發明器物。那麼,有沒有一個指標能告訴我們一個「文明」究竟能多發達?

1964 年,蘇聯科學家卡爾達肖夫(Nikolai Kardashev)提出了一個度量文明先進程度的指標——「卡爾達肖夫指數」(Kardashev Scale)。經由天文學家卡爾.薩根(Carl Sagan)修正過後,可以歸結為下列公式:

其中 K 代表卡爾達肖夫指數,P 代表文明所消耗的總能量。基本上,我們可以將文明依據「駕馭能量」的量級區分成三大類型:

  1. I 型文明(K=1)
    該文明能駕馭 10¹⁶ W 的能量,相當於掌握所處行星的能量,因此又稱「行星文明」。這類型的文明可以控制天氣、調節海洋、並且到地底深處採礦,徹底運用星球資源;並且,這一類文明將能任意造訪附近行星,並在後期發展出接近光速的太空旅行。
  2. II 型文明(K=2)
    該文明能駕馭 10²⁶ W 的能量,相當於掌握所處恆星系統的能量,因此又稱「恆星文明」或「星際文明」。這類型的文明能夠透過戴森球(參見下文)或相關科技、徹底利用恆星系統的能量;他們可在各個行星、恆星之間任意穿梭,並且相繼朝往其他恆星系統殖民。
  3. III 型文明(K=3)
    該文明能駕馭 10³⁶ W 的能量,相當於掌握所處星系的能量,因此又稱「星系文明」。這類型的文明不再受限於附近的恆星系統,他們將能夠隨心所欲駕馭整個星系、甚至宇宙尺度級別的能量,並可以在星系之間來去自如;他們甚至已熟悉時空物理、得以透過蟲洞或先進技術穿越時空。
卡爾達肖夫指數示意圖,由左而右分別是:行星文明(I 型)、恆星文明(II 型)、星系文明(III 型)。圖/http://www.maximusveritas.com/wp-content/uploads/2016/06/

作為宇宙文明的分級,文明所駕馭的總能量可以視為一個標竿。宇宙中的能量是無所不在、甚至可以說是取之不盡用之不竭的。因此,能妥善利用這些能量到什麼程度,便可以視為文明「先進與否」的標準。當然,還有一些人把這列表往下延伸,諸如宇宙文明(IV 型)、多重宇宙文明(V 型)、神靈文明(VI 型)、未知文明(VII 型)等等——不過這些級別距離目前人類還算是遙不可及,我們甚至無法保證在宇宙 137 億這年齡下是否已有這麼先進的文明誕生。

-----廣告,請繼續往下閱讀-----

就目前而言,顯然,人類縱使歷經工業革命、資訊革命,也開發出原子能、得以進行太空探索——但似乎尚未能被列入其中之一——我們尚未有能力操控天氣、就連地底結構也都是透過震波才得以探知的。那麼,人類目前究竟處在哪一階段?讓我們簡單計算一下:根據世界能源消耗量的統計,截至 2021 年底,人類所消耗的能量約為 176,431 TWh(百萬兆瓦時),相當於 20.14 TW(百萬兆瓦),代入卡爾達肖夫指數公式:

可以直接得出卡爾達肖夫指數 K≈0.73 ——因此,人類目前約是落在「0.73 型文明」,依然位在「第零型文明」的階段。

目前人類的能量來源主要仍是石油、煤炭、天然氣;除此之外還有傳統生質能、水力發電、以及核能。在數十年內,風力發電、太陽能、生質能會慢慢取代化石燃料,而核融合技術很可能帶領人類走向 I 型文明。

當人類開始進行太空殖民、並且能妥善運用母恆星(太陽)所供應的能量後,才會慢慢朝向 II 型文明發展;而在 I 型或者 II 型文明階段,另一個能催動科技進展的很可能就是反物質(antimatter)的製造與普及。加來道雄認為,我們有機會在本世紀末或是兩百年內躍升成為 I 型文明;到達 II 型文明需要數千年;至於到達可以隨心所欲駕馭時空的 III 型文明,可能還需要數十萬至百萬年。

-----廣告,請繼續往下閱讀-----
1800 年代至 2021 年的世界能源消耗總量:目前人類消耗能源仍以化石燃料為多數。圖/our world in data

參考文獻 / 延伸閱讀

  1. Kardashev, N.S. (1964). Transmission of information by extraterrestrial civilizations. articles.adsabs.harvard.edu.
  2. 加來道雄,《穿梭超時空》,台北:商周出版,2013
  3. 加來道雄,《平行宇宙》,台北:商周出版,2015
  4. 卡爾.薩根,《宇宙・宇宙》,台北:遠流出版事業股份有限公司,2010
  5. 史蒂芬.霍金,《胡桃裡的宇宙》,台北:大塊文化,2001
Castaly Fan (范欽淨)_96
6 篇文章 ・ 4 位粉絲
科學研究者,1999年生於台北,目前於美國佛羅里達大學(University of Florida)攻讀物理學博士,並於費米國家實驗室(Fermilab)從事高能物理相關研究。2022年於美國羅格斯大學(Rutgers University)取得物理學學士學位,當前則致力於學術研究、以及科學知識的傳播發展。 同時也是網路作家、《隨筆天下》網誌創辦人,筆名辰風,業餘發表網誌文章,從事詩詞、小說、以及音樂創作。