Loading [MathJax]/extensions/tex2jax.js

0

0
0

文字

分享

0
0
0

想領錢只要刷臉就行?銀行人臉辨識可沒這麼簡單

活躍星系核_96
・2019/02/07 ・5110字 ・閱讀時間約 10 分鐘 ・SR值 586 ・九年級

  • 李蘭萱 (Lan-Xuan Li)/政治大學財務管理研究所碩士生,目前於產業分析研究崗位實習。主要專業領域為計量經濟、金融創新服務、ICT 數位化科技應用等。喜歡桌球,並認為必須結合統計、科技,才可以描繪出未來「以人為中心」的商業模式。

靠臉領錢辦得到嗎?其實科幻場景已很近

不知道大家有沒有遇過一種情況呢?急需用錢時站在 ATM 前準備提款,卻發現自己忘記金融卡密碼了,隨著身後排隊的人群愈來愈多,心也逐漸焦躁不安,與此同時,或許你的腦中會惱怒地想著:

如果可以靠臉領錢那該有多好啊!

這敘述乍看之下彷彿是僅存於科幻電影中的想像,但實際上,隨著科技發展,這種操作已非遙不可及。「只要站在鏡頭前刷臉就能提款轉帳」的未來,其實比想像中還要近。

不想要排隊?那就刷臉吧!圖/wikipedia

想成為識別的特點,要既普遍又獨特

隨著電腦運算效能的演進、行動設備普及化,自動化的「生物識別系統」──尤其是指紋和語音識別,早已在近十年被廣泛使用。不過,即使指紋、語音等生物資訊已逐漸普遍,值得留意的是:除了一般性消費服務的應用之外,銀行、金融業者也嘗試將各種生物識別技術,導入銀行服務應用之中。

比如歐洲銀行業管理局 (European Banking Authority),在 2018 年發布的《EBA Report on the Prudential Risks and Opportunities Arising for Institutions from Fintech》報告中,便提到生物識別技術在「身分識別」的功能上,須具備幾個特點:

-----廣告,請繼續往下閱讀-----
  1. 普遍性:確保每個人都有用來識別的特徵。
  2. 獨特性:特徵在個體間有所差異。
  3. 持久性:同個體的該項特徵不會隨時間有太大改變。
  4. 可收集性:與特徵獲取或測量方式的難易度有關;愈難取得則識別效果愈差。
  5. 規避難度:規避難度會影響技術的安全性和可靠性。
  6. 社會接受度:客戶對生物辨識的的接受或抵抗會嚴重影響方法的使用。  

符合這些條件的生物特徵,大致上可以分成指紋、語音、虹膜、臉部等「外部生理特徵」以及「內部生理特徵」,例如靜脈、心跳。其中,又因為指紋辨識具有方便、快速、成本低廉的特性,所以無論是實體銀行和行動銀行都很常見到指紋辨識的應用,或者藉由指紋辨識,來擴大服務情境的內容。

符合身分識別要素的內外部生理特徵。

生物特徵雖然能夠鎖定個人的獨特性,但也並非無所不能。以如今已成熟化的指紋辨識來看,指紋這項生理特徵的應用,也有幾項明顯的侷限性。首先,並非所有人的指紋都能夠被機器識別;其次,指紋的辨識與取得,目前仍必須直接仰賴特定的臨場感應器;再次,感應器上的指紋印痕也具有被有心人士複製的風險。

整體來說,指紋辨識技術仍有可靠性 (reliability) 不足,以及使用臨場設備的限制,因此,除了指紋辨識之外,銀行與金融業者也積極投入其他生物辨識的應用。

遠端身分識別、消費者體驗需求,帶動人臉辨識技術導入服務

衡量生物識別可靠性的指標分為兩類,分別是錯誤接受率 (False Acceptance Rate, FAR) 及錯誤拒絕率 (False Rejection Rate, FRR)

-----廣告,請繼續往下閱讀-----
  • 錯誤接受率非法使用者被機器錯誤接受、通過認證的比率。
  • 錯誤拒絕率:合法使用者被機器錯誤拒絕的比率。

這兩個比率太高都會產生負面影響,前者高意味著安全性不佳,後者高則影響使用意願。

同樣在歐洲銀行業管理局 (EBA) 報告中,比較了不同的生物辨識技術,發現到:在一般的情況之下,人臉辨識與語音識別的錯誤接受率 (FAR) 較高,指紋、虹膜和視網膜識別則較低,但確切數據會隨著不同使用目的而變動。正因如此,現在的人臉辨識技術尚未普遍成為銀行金融服務的主要導入技術。

由於安全性的問題,人臉辨識技術尚未普遍成為銀行金融服務的主要導入技術。圖/pixabay

即使如此,仍可以看到部分銀行金融服務業者,比如匯豐銀行、新加坡華僑銀行等,近年開始嘗試將人臉辨識,導入於相關服務中。人臉辨識技術雖然尚未成熟,卻讓各大銀行願意花費昂貴成本和風險引進,倘若我們彙整這些業者的服務論述,大致可歸納為兩點:

  1. 提升安全防護:只有傳統密碼的情況下,一旦客戶的卡片密碼被不肖人士取得,可能就會造成客戶損失。然而若增加人臉辨識系統在 ATM 等設備上作為防護,不僅會使得盜領難度大增,銀行也能夠「即時」獲得警訊,未來在合理的法律規範下,還可以和警方合作,用來打擊犯罪。即時性防護,對於注重安全性的金融機構而言,人臉辨識提供的保護功能,會是最大的投入誘因。
  2. 增加客戶體驗、吸引客群:在網路銀行普及的同時,由於業務上仍有部分限制,實體據點的存在還是有其必要性。因此,透過人臉辨識提供優良的體驗以吸引客戶,對銀行來說會是一項誘因,例如 Pepper 機器人、Video Teller Machine、迎賓互動牆等等。這也意味著:銀行業者在因應行動服務等需求的同時,會需要非臨場、遠端臨場的身分識別技術。而在智慧型手機的鏡頭效能不斷增進的趨勢下,人臉在裝置上的映照與投射已成消費者最熟悉的使用習慣之一。
人臉辨識技術導入銀行金融服務案例
人臉辨識技術導入銀行金融服務案例
人臉辨識技術導入銀行金融服務案例

倘若我們觀察現有的案例,可以發現銀行業者對於人臉辨識的應用導入,包括手機銀行登入、臨場的身分識別等。而從消費者使用經驗的層面來看,則可進一步分為兩種類型:

-----廣告,請繼續往下閱讀-----
  1. 「主動辨識」:可在辨識目標(消費者)無知覺的情況下運作,常被用來監控特定範圍內的動態目標
  2. 「被動辨識」:需經過辨識目標主動觸發,系統才會開始運作,而由於目標是靜態的,所以受到環境因素干擾的程度會較低,使辨識可靠性提升

但無論何種應用服務(如:登入手機 APP 使用行動銀行,或是在櫃檯協助行員辦理金融服務)對「可靠性」的需求都被視為銀行服務的核心,其中,又以被動辨識中涉及到的線上登入、支付等服務對於系統可靠性的需求最高,因為稍有不慎便可能造成金錢損失,或將個人資料外洩。

  • 註:銀行休息室的主動辨識功能,其需求是截然不同的,休息室使用人臉辨識的目的,是在客戶沒有意識到的情況下提供貼心的接待服務,對銀行來說偶爾辨識錯誤的影響不大,這種情況下主動的人臉辨識反而比較適合。

然而,若就現有的案例來看,目前在銀行服務中,單獨使用人臉辨識作為身份認證的服務仍有限,使用安全性需求高的功能,仍然還是會搭配「密碼」輸入,人臉辨識只作為多重認證的一環。但可以確定的是,未來人臉辨識能否完全取代其他身分認證的方式,甚至成為主流認證方式,辨識的可靠性會是一個很重要的關鍵

人臉辨識導入金融服務的爭議與挑戰

使用人臉辨識革新金融服務的同時,銀行要考量的不僅僅是技術的使用方式、成本等等,還要注意伴隨著創新而來的爭議與挑戰,接下來將分別說明可能遇到的問題。

技術可靠性仍有待提升,且需要有在地特徵的分析模型

人臉辨識錯誤的原因有很多,將影響可靠性。圖/wikimedia

對銀行來說,是否採用人臉辨識技術,或者更進一步決定技術運用的方式及程度,其中最大的關鍵在於可靠性,這些問題包括──究竟人臉辨識系統能不能準確分辨出長相相近的不同用戶?膚色與性別是否會導致辨識錯誤機率提高?

-----廣告,請繼續往下閱讀-----

以目前當紅的 Face ID 為例,Apple 坦言雙胞胎和 13 歲以下的兒童用戶,辨識錯誤機率的確較高,並且建議他們使用密碼驗證,坊間也可看到民眾成功騙過系統的案例。學術研究方面,Buolamwini 與 Gebru 在 2018 所發表的「Gender Shades: Intersectional Accuracy Disparities in Commercial Gender Classification」一文中針對 3 款人臉辨識 API 進行測試,結果發現性別和膚色均會對準確度造成影響,可能原因除了膚色和燈光影響資料擷取外,資料收集時的偏誤也會降低人工智慧模型的判斷能力。假如資料中的白人男性偏多,模型對於白人男性的訓練量足夠,會有較佳的辨識能力,而相對的,其他特徵的使用者就比較容易出現誤判。

如果是用於一般的消費性電子產品,目前的人臉辨識技術對於提供用戶良好的使用體驗或許綽綽有餘,然而金融業對於安全的要求極高,在進一步提升技術可靠性之前,人臉辨識技術仍無法全面取代密碼作為主流驗證方式。

臉部特徵作為個人資料,如何兼顧資料安全性

用臉當資料會不會帶來很多問題呢?圖/wikipedia

想要將人臉辨識導入金融服務,那麼生物資訊的蒐集是無法避免的,因此,個資法的規範範圍是否影響技術的使用?這是銀行必須審慎評估的。這也意味著:除了技術層面以外,法律規範也是銀行引進服務前需要思考的。

首先,台灣的個人資料保護法中規定,無論公務機關或非公務機關,如要在未取得當事人同意的情況下蒐集資料,則需要基於執行法定職務或義務等必要情況,並且處理與利用資料同樣只能在法律規範的幾種特例下所使用,例如為了公共利益或是學術研究。

-----廣告,請繼續往下閱讀-----

國外的法律規範更嚴謹,歐盟號稱史上最嚴的個資法 GDPR (General Data Protection Regulation) 於 2018 年 5 月 25 日開始實施,適用的範圍相當廣泛,不僅是歐盟境內,只要客戶、員工、供應商、政府機關等和歐盟公民相關就會受到 GDPR 的規範。受保護的資訊囊括了一切個人數據,從基本資料、宗教信仰、政治立場、網路瀏覽紀錄到指紋、虹膜、面部等生物特徵都在範圍內。這些法律上的限制意味著銀行引進人臉辨識前,必須謹慎評估使用情境是否合法,避免在追求便利服務的同時帶來更多額外的風險及成本。

技術不成熟引發的社會爭議

不小心抓錯人了?原來是人臉辨識出了錯。圖/imdb

人臉辨識的運用也引發了敏感的社會爭議。英國倫敦、南威爾斯等幾個地區的警方,自 2017 年開始在一些節慶、比賽或是流量大的十字路口使用人臉辨識系統,系統即時辨認鏡頭前是否出現和警方持有照片一致的面孔,若配對成功則會發出警報。

然而,其結果不盡理想,依據目前的測試結果,警報超過九成都是錯誤的,這讓英國民間的公民自由組織 Big Brother Watch 非常不滿,認為這項不準確又昂貴的系統,對於抓捕真正的罪犯幫助有限,反而會造成無辜人民的自由受到侵害。同樣的問題也可能出現在銀行,如果銀行逕自使用人臉辨識系統分辨客戶,而未經過所有出現在鏡頭前的人同意,不論結果是否準確恐怕都難避免爭議。

整體而言,依據歐洲銀行業管理局 (European Banking Authority) 的觀點來看,人臉辨識的技術仍有相對較高的錯誤接受率 (False Acceptance Rate, FAR),換言之,對於銀行金融此種需要有高度可靠性、安全性的服務場域來說,技術仍然未能滿足,因此在目前,人臉辨識仍屬於多重辨識的一種(如搭配密碼、人臉資訊等)。

-----廣告,請繼續往下閱讀-----

但相對於虹膜、指紋、靜脈等生物辨識技術來說,人臉辨識擁有較高的遠端臨場特性,也就是使用者可以在非臨場情境中使用銀行金融業者所提供的服務,確實在行動服務普及化趨勢之下,是業者願意投入的主要誘因。此外,倘若相關技術可以取得更多的在地化資料模型,並結合深度學習 (Deep Learning) 等技術,在未來仍可以降低錯誤識別的機率。

不過,其實人臉辨識能否成功導入於銀行金融服務,其最核心的問題仍在於:消費者是否信賴?這個問題所包含的個人資料保護,以及生物資訊第三方使用的正當性,才是這個議題最需要解決的課題。

一個只需要刷臉就可以登入的銀行帳戶,你的想法是甚麼呢?

  • Buolamwini, J., & Gebru, T. (2018). Gender Shades: Intersectional Accuracy Disparities in Commercial Gender Classification. Proceedings of Machine Learning Research 81, (pp. 1-15).
  • EU GDPR. GDPR Key Changes. Retrieved 11 23, 2018, from EU GDPR.ORG: https://eugdpr.org/
  • European Banking Authority. (2018). EBA Report on the Prudential Risks and Opportunities Arising for Institutions from Fintech. European Banking Authority.
-----廣告,請繼續往下閱讀-----
文章難易度
活躍星系核_96
778 篇文章 ・ 128 位粉絲
活躍星系核(active galactic nucleus, AGN)是一類中央核區活動性很強的河外星系。這些星系比普通星系活躍,在從無線電波到伽瑪射線的全波段裡都發出很強的電磁輻射。 本帳號發表來自各方的投稿。附有資料出處的科學好文,都歡迎你來投稿喔。 Email: contact@pansci.asia

0

1
0

文字

分享

0
1
0
拆解邊緣AI熱潮:伺服器如何提供穩固的運算基石?
鳥苷三磷酸 (PanSci Promo)_96
・2025/05/21 ・5071字 ・閱讀時間約 10 分鐘

本文與 研華科技 合作,泛科學企劃執行。

每次 NVIDIA 執行長黃仁勳公開發言,總能牽動整個 AI 產業的神經。然而,我們不妨設想一個更深層的問題——如今的 AI 幾乎都倚賴網路連線,那如果哪天「網路斷了」,會發生什麼事?

想像你正在自駕車打個盹,系統突然警示:「網路連線中斷」,車輛開始偏離路線,而前方竟是萬丈深谷。又或者家庭機器人被駭,開始暴走跳舞,甚至舉起刀具向你走來。

這會是黃仁勳期待的未來嗎?當然不是!也因為如此,「邊緣 AI」成為業界關注重點。不靠雲端,AI 就能在現場即時反應,不只更安全、低延遲,還能讓數據當場變現,不再淪為沉沒成本。

什麼是邊緣 AI ?

邊緣 AI,乍聽之下,好像是「孤單站在角落的人工智慧」,但事實上,它正是我們身邊最可靠、最即時的親密數位夥伴呀。

當前,像是企業、醫院、學校內部的伺服器,個人電腦,甚至手機等裝置,都可以成為「邊緣節點」。當數據在這些邊緣節點進行運算,稱為邊緣運算;而在邊緣節點上運行 AI ,就被稱為邊緣 AI。簡單來說,就是將原本集中在遠端資料中心的運算能力,「搬家」到更靠近數據源頭的地方。

-----廣告,請繼續往下閱讀-----

那麼,為什麼需要這樣做?資料放在雲端,集中管理不是更方便嗎?對,就是不好。

當數據在這些邊緣節點進行運算,稱為邊緣運算;而在邊緣節點上運行 AI ,就被稱為邊緣 AI。/ 圖片來源:MotionArray

第一個不好是物理限制:「延遲」。
即使光速已經非常快,數據從你家旁邊的路口傳到幾千公里外的雲端機房,再把分析結果傳回來,中間還要經過各種網路節點轉來轉去…這樣一來一回,就算只是幾十毫秒的延遲,對於需要「即刻反應」的 AI 應用,比如說工廠裡要精密控制的機械手臂、或者自駕車要判斷路況時,每一毫秒都攸關安全與精度,這點延遲都是無法接受的!這是物理距離與網路架構先天上的限制,無法繞過去。

第二個挑戰,是資訊科學跟工程上的考量:「頻寬」與「成本」。
你可以想像網路頻寬就像水管的粗細。隨著高解析影像與感測器數據不斷來回傳送,湧入的資料數據量就像超級大的水流,一下子就把水管塞爆!要避免流量爆炸,你就要一直擴充水管,也就是擴增頻寬,然而這樣的基礎建設成本是很驚人的。如果能在邊緣就先處理,把重要資訊「濃縮」過後再傳回雲端,是不是就能減輕頻寬負擔,也能節省大量費用呢?

第三個挑戰:系統「可靠性」與「韌性」。
如果所有運算都仰賴遠端的雲端時,一旦網路不穩、甚至斷線,那怎麼辦?很多關鍵應用,像是公共安全監控或是重要設備的預警系統,可不能這樣「看天吃飯」啊!邊緣處理讓系統更獨立,就算暫時斷線,本地的 AI 還是能繼續運作與即時反應,這在工程上是非常重要的考量。

所以你看,邊緣運算不是科學家們沒事找事做,它是順應數據特性和實際應用需求,一個非常合理的科學與工程上的最佳化選擇,是我們想要抓住即時數據價值,非走不可的一條路!

邊緣 AI 的實戰魅力:從工廠到倉儲,再到你的工作桌

知道要把 AI 算力搬到邊緣了,接下來的問題就是─邊緣 AI 究竟強在哪裡呢?它強就強在能夠做到「深度感知(Deep Perception)」!

-----廣告,請繼續往下閱讀-----

所謂深度感知,並非僅僅是對數據進行簡單的加加減減,而是透過如深度神經網路這類複雜的 AI 模型,從原始數據裡面,去「理解」出更高層次、更具意義的資訊。

研華科技為例,旗下已有多項邊緣 AI 的實戰應用。以工業瑕疵檢測為例,利用物件偵測模型,快速將工業產品中的瑕疵挑出來,而且由於 AI 模型可以使用同一套參數去檢測,因此品管上能達到一致性,減少人為疏漏。尤其在高產能工廠中,檢測速度必須快、狠、準。研華這套 AI 系統每分鐘最高可處理 8,000 件產品,替工廠節省大量人力,同時確保品質穩定。這樣的效能來自於一台僅有膠囊咖啡機大小的邊緣設備—IPC-240。

這樣的效能來自於一台僅有膠囊咖啡機大小的邊緣設備—IPC-240。/ 圖片提供:研華科技

此外,在智慧倉儲場域,研華與威剛合作,研華與威剛聯手合作,在 MIC-732AO 伺服器上搭載輝達的 Nova Orin 開發平台,打造倉儲系統的 AMR(Autonomous Mobile Robot) 自走車。這跟過去在倉儲系統中使用的自動導引車 AGV 技術不一樣,AMR 不需要事先規劃好路線,靠著感測器偵測,就能輕鬆避開障礙物,識別路線,並且將貨物載到指定地點存放。

當然,還有語言模型的應用。例如結合檢索增強生成 ( RAG ) 跟上下文學習 ( in-context learning ),除了可以做備忘錄跟排程規劃以外,還能將實務上碰到的問題記錄下來,等到之後碰到類似的問題時,就能詢問 AI 並得到解答。

你或許會問,那為什麼不直接使用 ChatGPT 就好了?其實,對許多企業來說,內部資料往往具有高度機密性與商業價值,有些場域甚至連手機都禁止員工帶入,自然無法將資料上傳雲端。對於重視資安,又希望運用 AI 提升效率的企業與工廠而言,自行部署大型語言模型(self-hosted LLM)才是理想選擇。而這樣的應用,並不需要龐大的設備。研華的 SKY-602E3 塔式 GPU 伺服器,體積僅如後背包大小,卻能輕鬆支援語言模型的運作,實現高效又安全的 AI 解決方案。

但問題也接著浮現:要在這麼小的設備上跑大型 AI 模型,會不會太吃資源?這正是目前 AI 領域最前沿、最火熱的研究方向之一:如何幫 AI 模型進行「科學瘦身」,又不減智慧。接下來,我們就來看看科學家是怎麼幫 AI 減重的。

-----廣告,請繼續往下閱讀-----

語言模型瘦身術之一:量化(Quantization)—用更精簡的數位方式來表示知識

當硬體資源有限,大模型卻越來越龐大,「幫模型減肥」就成了邊緣 AI 的重要課題。這其實跟圖片壓縮有點像:有些畫面細節我們肉眼根本看不出來,刪掉也不影響整體感覺,卻能大幅減少檔案大小。

模型量化的原理也是如此,只不過對象是模型裡面的參數。這些參數原先通常都是以「浮點數」表示,什麼是浮點數?其實就是你我都熟知的小數。舉例來說,圓周率是個無窮不循環小數,唸下去就會是3.141592653…但實際運算時,我們常常用 3.14 或甚至直接用 3,也能得到夠用的結果。降低模型參數中浮點數的精度就是這個意思! 

然而,量化並不是那麼容易的事情。而且實際上,降低精度多少還是會影響到模型表現的。因此在設計時,工程師會精密調整,確保效能在可接受範圍內,達成「瘦身不減智」的目標。

當硬體資源有限,大模型卻越來越龐大,「幫模型減肥」就成了邊緣 AI 的重要課題。/ 圖片來源:MotionArray

模型剪枝(Model Pruning)—基於重要性的結構精簡

建立一個 AI 模型,其實就是在搭建一整套類神經網路系統,並訓練類神經元中彼此關聯的參數。然而,在這麼多參數中,總會有一些參數明明佔了一個位置,卻對整體模型沒有貢獻。既然如此,不如果斷將這些「冗餘」移除。

這就像種植作物的時候,總會雜草叢生,但這些雜草並不是我們想要的作物,這時候我們就會動手清理雜草。在語言模型中也會有這樣的雜草存在,而動手去清理這些不需要的連結參數或神經元的技術,就稱為 AI 模型的模型剪枝(Model Pruning)。

-----廣告,請繼續往下閱讀-----

模型剪枝的效果,大概能把100變成70這樣的程度,說多也不是太多。雖然這樣的縮減對於提升效率已具幫助,但若我們要的是一個更小幾個數量級的模型,僅靠剪枝仍不足以應對。最後還是需要從源頭著手,採取更治本的方法:一開始就打造一個很小的模型,並讓它去學習大模型的知識。這項技術被稱為「知識蒸餾」,是目前 AI 模型壓縮領域中最具潛力的方法之一。

知識蒸餾(Knowledge Distillation)—讓小模型學習大師的「精髓」

想像一下,一位經驗豐富、見多識廣的老師傅,就是那個龐大而強悍的 AI 模型。現在,他要培養一位年輕學徒—小型 AI 模型。與其只是告訴小型模型正確答案,老師傅 (大模型) 會更直接傳授他做判斷時的「思考過程」跟「眉角」,例如「為什麼我會這樣想?」、「其他選項的可能性有多少?」。這樣一來,小小的學徒模型,用它有限的「腦容量」,也能學到老師傅的「智慧精髓」,表現就能大幅提升!這是一種很高級的訓練技巧,跟遷移學習有關。

舉個例子,當大型語言模型在收到「晚餐:鳳梨」這組輸入時,它下一個會接的詞語跟機率分別為「炒飯:50%,蝦球:30%,披薩:15%,汁:5%」。在知識蒸餾的過程中,它可以把這套機率表一起教給小語言模型,讓小語言模型不必透過自己訓練,也能輕鬆得到這個推理過程。如今,許多高效的小型語言模型正是透過這項技術訓練而成,讓我們得以在資源有限的邊緣設備上,也能部署愈來愈強大的小模型 AI。

但是!即使模型經過了這些科學方法的優化,變得比較「苗條」了,要真正在邊緣環境中處理如潮水般湧現的資料,並且高速、即時、穩定地運作,仍然需要一個夠強的「引擎」來驅動它們。也就是說,要把這些經過科學千錘百鍊、但依然需要大量計算的 AI 模型,真正放到邊緣的現場去發揮作用,就需要一個強大的「硬體平台」來承載。

-----廣告,請繼續往下閱讀-----

邊緣 AI 的強心臟:SKY-602E3 的三大關鍵

像研華的 SKY-602E3 塔式 GPU 伺服器,就是扮演「邊緣 AI 引擎」的關鍵角色!那麼,它到底厲害在哪?

一、核心算力
它最多可安裝 4 張雙寬度 GPU 顯示卡。為什麼 GPU 這麼重要?因為 GPU 的設計,天生就擅長做「平行計算」,這正好就是 AI 模型裡面那種海量數學運算最需要的!

你想想看,那麼多數據要同時處理,就像要請一大堆人同時算數學一樣,GPU 就是那個最有效率的工具人!而且,有多張 GPU,代表可以同時跑更多不同的 AI 任務,或者處理更大流量的數據。這是確保那些科學研究成果,在邊緣能真正「跑起來」、「跑得快」、而且「能同時做更多事」的物理基礎!

二、工程適應性——塔式設計。
邊緣環境通常不是那種恆溫恆濕的標準機房,有時是在工廠角落、辦公室一隅、或某個研究實驗室。這種塔式的機箱設計,體積相對緊湊,散熱空間也比較好(這對高功耗的 GPU 很重要!),部署起來比傳統機架式伺服器更有彈性。這就是把高性能計算,進行「工程化」,讓它能適應台灣多樣化的邊緣應用場景。

三、可靠性
SKY-602E3 用的是伺服器等級的主機板、ECC 糾錯記憶體、還有備援電源供應器等等。這些聽起來很硬的規格,背後代表的是嚴謹的工程可靠性設計。畢竟在邊緣現場,系統穩定壓倒一切!你總不希望 AI 分析跑到一半就掛掉吧?這些設計確保了部署在現場的 AI 系統,能夠長時間、穩定地運作,把實驗室裡的科學成果,可靠地轉化成實際的應用價值。

-----廣告,請繼續往下閱讀-----
研華的 SKY-602E3 塔式 GPU 伺服器,體積僅如後背包大小,卻能輕鬆支援語言模型的運作,實現高效又安全的 AI 解決方案。/ 圖片提供:研華科技

台灣製造 × 在地智慧:打造專屬的邊緣 AI 解決方案

研華科技攜手八維智能,能幫助企業或機構提供客製化的AI解決方案。他們的技術能力涵蓋了自然語言處理、電腦視覺、預測性大數據分析、全端軟體開發與部署,及AI軟硬體整合。

無論是大小型語言模型的微調、工業瑕疵檢測的模型訓練、大數據分析,還是其他 AI 相關的服務,都能交給研華與八維智能來協助完成。他們甚至提供 GPU 與伺服器的租借服務,讓企業在啟動 AI 專案前,大幅降低前期投入門檻,靈活又實用。

台灣有著獨特的產業結構,從精密製造、城市交通管理,到因應高齡化社會的智慧醫療與公共安全,都是邊緣 AI 的理想應用場域。更重要的是,這些情境中許多關鍵資訊都具有高度的「時效性」。像是產線上的一處異常、道路上的突發狀況、醫療設備的即刻警示,這些都需要分秒必爭的即時回應。

如果我們還需要將數據送上雲端分析、再等待回傳結果,往往已經錯失最佳反應時機。這也是為什麼邊緣 AI,不只是一項技術創新,更是一條把尖端 AI 科學落地、真正發揮產業生產力與社會價值的關鍵路徑。讓數據在生成的那一刻、在事件發生的現場,就能被有效的「理解」與「利用」,是將數據垃圾變成數據黃金的賢者之石!

👉 更多研華Edge AI解決方案
👉 立即申請Server租借

-----廣告,請繼續往下閱讀-----
-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

0

8
2

文字

分享

0
8
2
「恐懼」如何影響經濟?金融危機十年之後——《故事經濟學》
天下雜誌出版_96
・2020/12/26 ・2271字 ・閱讀時間約 4 分鐘 ・SR值 576 ・九年級

-----廣告,請繼續往下閱讀-----

人們對引起恐懼的故事有何反應

長期以來,新聞媒體和公眾討論一直將金融危機說成是人們在經濟風險控管方面過度自滿一段時間之後,一連串的經濟失靈驟然發生所造成的恐慌。使用具強烈感情色彩的字詞如「恐慌」和「自滿」,可能顯得像媒體炒作:恐慌令人想起失序的民眾試圖避開突然出現的人身危險,自滿則暗示一種洋洋自得的昏沉狀態。

但是,在這種金融事件中,人們多數似乎完全理性;這些事件發生在人們大致正常生活的幾個月或幾年裡,而人們期間往往表現得像是在梳理事實。即使在金融「恐慌」期間,多數人看來很正常和放鬆,不時說笑。

圖/Pexels

但是,使用恐慌和自滿這兩個詞真的離譜嗎?這兩個詞都描述必須靠神經結構支持的精神狀態。我們必須研究這些結構,以確定金融恐慌與其他恐慌、金融自滿與其他類型的自滿在神經學上是否有共同之處。

金融危機十年之後,銀行該怎麼辦?

我們來看本書撰寫期間出現的一個例子:在 2007~2009 年全球金融危機十週年將至之際,銀行業者承擔愈來愈多風險。2017 年,美國聯邦存款保險公司 (FDIC) 發表報告指出,美國銀行業者為了取得較高的資產收益,藉由延長投資期限承擔了過高的風險,情況令人擔憂。在金融危機爆發後近十年裡,利率一直非常低,雖然較長期的利率高一些。

-----廣告,請繼續往下閱讀-----

藉由延長投資期限取得較高的收益,對銀行來說風險相當高,因為如果利率突然上升,它們必須提高存款利率以留住存戶,因此多付的利息可能超過較長期限投資帶來的額外收益,進而造成銀行極大的麻煩。

在金融危機爆發後近十年裡,利率一直非常低。圖/Pixabay

銀行最終決定承擔風險,但它們如何形成對未來利率的預期?

世上沒有任何一名專家已證實能夠可靠地預測未來幾年的利率。沒有人能告訴銀行業者眼下的低利率時期多久之後結束,也沒有人能保證低利率將永遠持續下去。

銀行業者掌握的只是對某些敘事逐漸淡化的記憶,它們是關於發生在其他歷史時期的事:利率大幅上升,導致大量存戶跑到銀行提走存款。在利率已處於低位十年之久的情況下,這些故事看來比較不相關,但我們沒有辦法量化相關程度降低了多少。

-----廣告,請繼續往下閱讀-----

銀行業者在這種情況下的行為,或許最好視為受原始的神經系統模式驅動,也就是經歷數百萬年的達爾文式演化、流傳至今的那些大腦結構模式。

這也許與「恐懼」的演化有關

現今的狗和齧齒動物擁有一些相同的負責管理恐懼的大腦結構,此一事實是它們具有共同的中生代1起源的證據。恐懼是所有哺乳動物和較高等動物的一種正常情緒,由大腦結構支援。恐懼的消除是一個必須隨著時間的推移發生的過程,以便在危險過去之後解除恐懼。

科學家最初是間接觀察到這些大腦結構的活動。1927 年,俄羅斯生理學家巴夫洛夫 (Ivan P. Pavlov) 報告了他對狗的研究。如果在節拍器滴答作響的情況下在狗的舌頭上給它一劑酸液,重複很多次之後,只要有節拍器的聲音,不加酸液也能引起與加酸液一樣的不由自主反應。

巴夫洛夫的實驗在心理學上十分著名。圖/Wikimedia common

在實驗的隨後階段,巴夫洛夫反復打開節拍器,但不使用酸液,狗的厭惡反應逐漸消失。後來研究者發現了這些反應涉及的大腦結構。

在老鼠中,側杏仁核2的神經元在恐懼產生階段和恐懼消退階段都發揮重要作用:神經元在恐懼產生階段增加發射訊號,在恐懼消退階段減少發射訊號。並不是所有神經元都減少發射訊號,恐懼因此仍有殘留。神經學家得出以下結論:

-----廣告,請繼續往下閱讀-----

總而言之,有很多證據顯示,杏仁核、腹內側前額葉和海馬體之間的互動形成了一種獨特的神經迴路;該迴路是消除恐懼的能力之基礎,在演化過程中留傳了下來。

老鼠的這種神經迴路,以及不由自主的恐懼觸發表現,與人類十分相似。就人類而言,腹內側前額葉皮質的厚度與消除恐懼的成效有關。

人類不由自主地觸發表現,與老鼠的神經迴路相似。圖/Pexels

人類的某些神經障礙,例如創傷後壓力症候群 (PTSD),代表恐懼無法消除,研究這些神經障礙可以揭露恐懼管理的基本結構。我們似乎可以合理地假定,人類管理恐懼的神經迴路尚未演化至理想的狀態,因為人類文明只有數千年的歷史。

註解

  1. 約 2.52 億年前~6,600 萬年前的地質年代
  2. 一個杏仁狀的大腦區域
-----廣告,請繼續往下閱讀-----
天下雜誌出版_96
24 篇文章 ・ 17 位粉絲
天下雜誌出版持續製作與出版國內外好書,引進新趨勢、新做法,期盼能透過閱讀與活動實做,分享創新觀點、開拓視野、促進管理、領導、職場能力、教養教育、同時促進身心靈的美好生活。

2

14
2

文字

分享

2
14
2
目前超夯的 AI 前瞻技術「深度學習」,用手機就可以跟數位替身對話——《 AI 大局》
PanSci_96
・2020/12/24 ・1577字 ・閱讀時間約 3 分鐘 ・SR值 565 ・九年級

-----廣告,請繼續往下閱讀-----

編按:深度學習是目前AI發展的核心技術,特別是在影像辨識和自然語言的處理,最能發揮優勢,本篇文章將介紹最具代表性的深度學習技術和最新的應用案例。

CNN(卷積神經網路)的架構

CNN 原本的設計是用來模仿人類視覺功能,因此影像辨識是其主要的應用,
最近已經逐漸擴大應用範圍,訊號和自然語言處理也開始使用 CNN 了。

卷積神經網路 (Convolutional Neural Network,CNN) 是一種神經
網路模型,常用來處理規則排列的影像資料。CNN 這個名稱是從處理時使
用名為卷積 (convolution) 的數學運算而來。
下圖是 CNN 神經網路的基本架構,從圖中可以看到在輸入層和輸出層
之間,多了卷積層和池化層,兩者可以視為是一種過濾器。

CNN(卷積神經網路)的基本架構。圖/旗標

RNN(循環神經網路)的架構

RNN 與 CNN 都是最具代表性的深度學習模型。RNN 很擅長自然語言處理這類時間序列的資料,近來也常用於物聯網與機器異常檢測的應用。

RNN(Recurrent Neural Network,循環神經網路)是可以處理不定長度資料的神經網路。下圖說明了 RNN 的基礎結構。從圖中可以看出 RNN與 CNN 最大的不同在於,RNN 具有回饋 (Feedback) 機制,也就是在隱藏層中輸入前一次的輸出值 h。

-----廣告,請繼續往下閱讀-----
RNN 的架構。圖/旗標

生成模型與 GAN(對抗式生成網路)——生成影像資料的技術

深度學習不僅可以辨識影像和聲音,也可以用來產生新資料。近年來,用神經
網路來生成文章、影像等技術不斷提升,相關的商業應用正不斷擴大發展中。

機器學習的分類模型有識別模型 (Discriminative Model) 和生成模型 (Generative Model) 兩種。常見的識別模型能預測輸入資料屬於各類別的機率,例如用 CNN 識別影像,並得到像狗 80 %、貓 20 %的機率輸出。

生成模型也會輸出屬於各類別的機率,但會先從大量的訓練資料中,推導出各類別適合的機率分佈,然後在預測新資料時,即可依新資料的分佈結果計算其機率。這裡所謂的機率分佈就如下圖所示,假設資料有 ○ 和 × 兩個類別,依照各類別樣本分佈的情形,就可推測出其機率分佈的範圍,也就是圖中橢圓的部份,而越靠近橢圓中心的資料,有較高的機率屬於該類別。

生成模型與機率分佈。圖/旗標

結合數位替身與 AI 生物辨識的行動銀行

美國的軟體公司 Sensory 多年來持續開發有關語音辨識的嵌入式裝置技術,該公司是使用名為 Virtual Teller 的 AI,開發了適用在行動銀行的解決方案。透過 Virtual Teller,使用者可以如同在櫃檯與服務人員溝通一般,虛擬人員對話同時進行交易。身份認證方面,則使用了語音辨識和人臉辨識的 AI 生物辨識技術以提高安全性。

此外,進行認證的 AI 內建於智慧型手機的應用程式中,因此取得的生物資訊不會上傳到網路。為了與智慧型手機的「數位替身」順暢對話,也搭載了語音辨識和語音合成功能,以提高互動效果。Sensory 透過將 AI 建置於手機軟體中,實現了高安全性且易於使用的使用者介面。

-----廣告,請繼續往下閱讀-----
AI內建於手機,可讓用戶與「數位替身」對話。圖/FINOVATE
-----廣告,請繼續往下閱讀-----
所有討論 2
PanSci_96
1262 篇文章 ・ 2411 位粉絲
PanSci的編輯部帳號,會發自產內容跟各種消息喔。