Loading [MathJax]/extensions/tex2jax.js

0

1
0

文字

分享

0
1
0

語言的學習不嫌早,還在媽媽的肚子裡就開始了?

活躍星系核_96
・2018/12/11 ・2677字 ・閱讀時間約 5 分鐘 ・SR值 462 ・五年級

  • 文/大家的語言學│在科技業闖蕩的語言學人,有感於社會大眾對於語言學的誤解,因此致力於將語言學知識科普化,帶領你發掘生活中無所不在的語言學大小事

最近和幾位準媽媽聊天,她們不約而同的都提到:醫生建議在孕期的後期,可以試著和肚子裡的寶寶說話,因為在這個時期,寶寶的耳朵已經聽得到外面的聲音了。作為辛苦的母親,能夠和肚子裡的寶寶互動,相信一定是非常欣慰的一件事。

然而,令人好奇的是,寶寶和外界隔著一層肚皮,即使聽得到聲音,真的能算是開始接觸語言了嗎?尤其是寶寶還在肚子裡,以目前的科技,無法直接探測到寶寶對語言的反應。儘管如此,學者專家們仍透過其他的實驗方式,試圖探討「嬰幼兒何時開始學習母語」這件事情。

語言學家對於嬰兒何時開始學習母語十分的好奇。圖/pixabay

感知磁吸效應:自動歸納出近似母語的發音

早在 1991 年,知名語言學家 Patricia Kuhl 就已經提出了感知磁吸效應 (perceptual magnet effect)。該效應認為,人們對於母音的感知,會以一個原型(Prototype)為基準。舉例來說,當說到中文的母音 /i/ 時,中文的母語者心中就會有一個標準,認為 /i/ 在感知上就應該是這樣唸、聽起來就應該是這樣。有趣的是,與這個原型音鄰近的音,母語者會自動歸納成同一個範疇,也就是說,每個人發的 /i/ 在聲學物理性上或許略有差異,但人們在感知上會自動忽略這些差異。

語言學家運用電腦合成技術,說明感知磁吸效應的存在。我們舉英語的 /i/ 為例,首先,用電腦合成一個原型的 /i/(Prototype),並創造出 32 個與原型 /i/ 鄰近的音(Variants)。接著,找來英語母語者為這 33 個音評分,聽聽看哪一個 /i/ 是他們認為最符合原型 /i/ 的音,並在一個 7 分量表中給予評分, 7 分代表是最符合原型的音, 1 分代表最不符合原型的音。

-----廣告,請繼續往下閱讀-----

研究結果顯示,越接近原型的音,受試者給予的分數就越高,而離原型越遠的音,給予的分數就越低。因此,原型的音就像是一塊磁鐵(magnet),會把同一個範疇的音吸取過來,人們會將原型音及其範疇的音視為同一個音。原型音在兒童語言習得中,扮演重要的角色,能夠幫助兒童過濾其所聽到的聲音,哪些是原型音,哪些是可以歸納在原型音裡的變體音(variants),哪些是非原型音(也就是不屬於自己母語的音)。

感知磁吸效應 (perceptual magnet effect)概念示意圖

六個月大的嬰兒已能分辨母語和非母語的發音

有了感知磁吸效應為基礎,語言學家 Patricia Kuhl 等人,進一步設計了一項實驗,測試六個月大的寶寶,是否在接觸母語短短六個月的時間,就已經開始能辨別母語和非母語的母音。實驗找來英語母語及瑞典母語寶寶,測試的音為英語原型母音 /i/(對瑞典語來說,/i/不是典型母音)和 32 個變體音,以及瑞典語的母音 /y/(似中文的ㄩ,對英語來說,/y/ 不是原型母音)和 32 個變體音。

實驗結果顯示,這兩個國家六個月大的寶寶,已經反映了顯著的感知磁吸效應。舉英語為例,六個月大的嬰兒會把原型 /i/ 和其變體音,歸納在同一類,但是,對於不屬於英語母語的 /y/ ,則會歸納在另一個類別。瑞典語的嬰兒則是會把原型 /y/ 及其變體音,歸納在同一類,但是不屬於瑞典語原型的 /i/ ,則被歸納在不同的類別。

六個月大的嬰兒,已經能夠區辨母語和非母語的母音。圖/pixabay

有可能比六個月還早嗎?

延續上述的實驗結果,語言學家們心想:六個月已經是最早的嗎?有沒有可能在六個月之前就出現感知磁吸效應?因此,包含語言學家 Patricia Kuhl 及其他心理學家的團隊,設計了一個特別的實驗,實驗的假設是,如果剛出生的寶寶就有感知磁吸效應,換句話說,已經能區分母語和非母語的母音,我們或許就能推測,寶寶早在媽媽的肚子裡時,就開始學習語言了。

實驗找來了二組受試者,其中一組是英語母語的新生兒,另一組則是瑞典語母語的新生兒,兩組分別都有 40 位受試者。新生兒平均出生 32.8 小時(分布從 7~75 小時);實驗所測試的音,延續上述的實驗,包含英語原型母音 /i/ 和 16 個變體音,以及瑞典語的母音 /y/ 和 16 個變體音。

-----廣告,請繼續往下閱讀-----

實驗過程中讓受試的新生兒帶上耳機,播放上述英語及瑞典語的母音音檔,並讓新生兒吸吮奶嘴;奶嘴上安裝感應器,並連接電腦,記錄新生兒吸吮奶嘴的次數。下圖為實際的實驗照片:

透過嬰兒吸吮奶嘴的次數,研究者能夠測量新生兒對於母音的區辨程度。圖片取自原論文

實驗人員根據所記錄下來的新生兒吸吮奶嘴的次數,經統計發現,當英語為母語的新生兒聽到瑞典語的 /y/ ,吸吮奶嘴的次數會多於聽到英語的 /i/ ;當瑞典語母語的新生兒聽到英語的 /i/ ,吸吮奶嘴的次數則明顯多於聽到自己母語 /y/ 。

嬰兒在媽媽的肚子裡,就已開始習得語言

根據實驗結果,學者提出幾個值得討論的重點:

  1. 新生兒吸吮奶嘴的次數,反應了他們對於外在刺激是否感到新奇。若是對於外在刺激感到習以為常,反應會比較平淡;若是對於外在刺激感到新奇,反應會較為明顯,吸吮奶嘴的次數會比較多。
  2. 新生兒對於自己的母語,不論是原型母音或是其變體音,沒有明顯的反應起伏,但對於不是自己的母語,不論是原型母音或其變體音,吸吮奶嘴的次數增多,反應較為明顯。有趣的是,這項結果也說明感知磁吸效應可能早在新生兒階段就已存在。
  3. 實驗中的新生兒平均剛出生30幾個小時,因此,對於實驗所呈現出來的結果,我們推判寶寶在母親的肚子裡,就已經開始接收到聲音,並開始對聲音做歸納分類。當還在媽媽肚子裡的時候,就知道哪些母音是屬於自己的母語,因此一出生,即便只有30幾個小時,已經能區分母語和非母語的母音了。

當然,實驗只測試了兩個語言,未來還可持續的擴充研究範圍。但無論如何,已經讓我們知道,語言習得可能比我們想像的還要早很多,早在還沒有呱呱墜地之前,寶寶就已經做好了準備,開始為語言發展之路熱身。

  1. Kuhl, Patricia K. Human adults and human infants show a “perceptual magnet effect” for the prototypes of speech categories, monkeys do not. Perception & Psychophysics, 1991; 50: 93-107.
  2. Kuhl PK, Williams KA, Lacerda F, Stevens KN, Lindblom B. Linguistic experience alters phonetic perception in infants by 6 months of age. Science. 1992;255:606–608.
  3. Moon, C., Lagercrantz, H., & Kuhl, P. K. Language Experienced in Utero Affects Vowel Perception after Birth: A Two-Country Study. Acta Paediatrica, 2013; 102: 156-160.

本文轉載自〈大家的語言學〉,原文標題〈我們是從什麼時候開始學習母語?

-----廣告,請繼續往下閱讀-----
-----廣告,請繼續往下閱讀-----
文章難易度
活躍星系核_96
778 篇文章 ・ 128 位粉絲
活躍星系核(active galactic nucleus, AGN)是一類中央核區活動性很強的河外星系。這些星系比普通星系活躍,在從無線電波到伽瑪射線的全波段裡都發出很強的電磁輻射。 本帳號發表來自各方的投稿。附有資料出處的科學好文,都歡迎你來投稿喔。 Email: contact@pansci.asia

0

1
0

文字

分享

0
1
0
拆解邊緣AI熱潮:伺服器如何提供穩固的運算基石?
鳥苷三磷酸 (PanSci Promo)_96
・2025/05/21 ・5071字 ・閱讀時間約 10 分鐘

本文與 研華科技 合作,泛科學企劃執行。

每次 NVIDIA 執行長黃仁勳公開發言,總能牽動整個 AI 產業的神經。然而,我們不妨設想一個更深層的問題——如今的 AI 幾乎都倚賴網路連線,那如果哪天「網路斷了」,會發生什麼事?

想像你正在自駕車打個盹,系統突然警示:「網路連線中斷」,車輛開始偏離路線,而前方竟是萬丈深谷。又或者家庭機器人被駭,開始暴走跳舞,甚至舉起刀具向你走來。

這會是黃仁勳期待的未來嗎?當然不是!也因為如此,「邊緣 AI」成為業界關注重點。不靠雲端,AI 就能在現場即時反應,不只更安全、低延遲,還能讓數據當場變現,不再淪為沉沒成本。

什麼是邊緣 AI ?

邊緣 AI,乍聽之下,好像是「孤單站在角落的人工智慧」,但事實上,它正是我們身邊最可靠、最即時的親密數位夥伴呀。

當前,像是企業、醫院、學校內部的伺服器,個人電腦,甚至手機等裝置,都可以成為「邊緣節點」。當數據在這些邊緣節點進行運算,稱為邊緣運算;而在邊緣節點上運行 AI ,就被稱為邊緣 AI。簡單來說,就是將原本集中在遠端資料中心的運算能力,「搬家」到更靠近數據源頭的地方。

-----廣告,請繼續往下閱讀-----

那麼,為什麼需要這樣做?資料放在雲端,集中管理不是更方便嗎?對,就是不好。

當數據在這些邊緣節點進行運算,稱為邊緣運算;而在邊緣節點上運行 AI ,就被稱為邊緣 AI。/ 圖片來源:MotionArray

第一個不好是物理限制:「延遲」。
即使光速已經非常快,數據從你家旁邊的路口傳到幾千公里外的雲端機房,再把分析結果傳回來,中間還要經過各種網路節點轉來轉去…這樣一來一回,就算只是幾十毫秒的延遲,對於需要「即刻反應」的 AI 應用,比如說工廠裡要精密控制的機械手臂、或者自駕車要判斷路況時,每一毫秒都攸關安全與精度,這點延遲都是無法接受的!這是物理距離與網路架構先天上的限制,無法繞過去。

第二個挑戰,是資訊科學跟工程上的考量:「頻寬」與「成本」。
你可以想像網路頻寬就像水管的粗細。隨著高解析影像與感測器數據不斷來回傳送,湧入的資料數據量就像超級大的水流,一下子就把水管塞爆!要避免流量爆炸,你就要一直擴充水管,也就是擴增頻寬,然而這樣的基礎建設成本是很驚人的。如果能在邊緣就先處理,把重要資訊「濃縮」過後再傳回雲端,是不是就能減輕頻寬負擔,也能節省大量費用呢?

第三個挑戰:系統「可靠性」與「韌性」。
如果所有運算都仰賴遠端的雲端時,一旦網路不穩、甚至斷線,那怎麼辦?很多關鍵應用,像是公共安全監控或是重要設備的預警系統,可不能這樣「看天吃飯」啊!邊緣處理讓系統更獨立,就算暫時斷線,本地的 AI 還是能繼續運作與即時反應,這在工程上是非常重要的考量。

所以你看,邊緣運算不是科學家們沒事找事做,它是順應數據特性和實際應用需求,一個非常合理的科學與工程上的最佳化選擇,是我們想要抓住即時數據價值,非走不可的一條路!

邊緣 AI 的實戰魅力:從工廠到倉儲,再到你的工作桌

知道要把 AI 算力搬到邊緣了,接下來的問題就是─邊緣 AI 究竟強在哪裡呢?它強就強在能夠做到「深度感知(Deep Perception)」!

-----廣告,請繼續往下閱讀-----

所謂深度感知,並非僅僅是對數據進行簡單的加加減減,而是透過如深度神經網路這類複雜的 AI 模型,從原始數據裡面,去「理解」出更高層次、更具意義的資訊。

研華科技為例,旗下已有多項邊緣 AI 的實戰應用。以工業瑕疵檢測為例,利用物件偵測模型,快速將工業產品中的瑕疵挑出來,而且由於 AI 模型可以使用同一套參數去檢測,因此品管上能達到一致性,減少人為疏漏。尤其在高產能工廠中,檢測速度必須快、狠、準。研華這套 AI 系統每分鐘最高可處理 8,000 件產品,替工廠節省大量人力,同時確保品質穩定。這樣的效能來自於一台僅有膠囊咖啡機大小的邊緣設備—IPC-240。

這樣的效能來自於一台僅有膠囊咖啡機大小的邊緣設備—IPC-240。/ 圖片提供:研華科技

此外,在智慧倉儲場域,研華與威剛合作,研華與威剛聯手合作,在 MIC-732AO 伺服器上搭載輝達的 Nova Orin 開發平台,打造倉儲系統的 AMR(Autonomous Mobile Robot) 自走車。這跟過去在倉儲系統中使用的自動導引車 AGV 技術不一樣,AMR 不需要事先規劃好路線,靠著感測器偵測,就能輕鬆避開障礙物,識別路線,並且將貨物載到指定地點存放。

當然,還有語言模型的應用。例如結合檢索增強生成 ( RAG ) 跟上下文學習 ( in-context learning ),除了可以做備忘錄跟排程規劃以外,還能將實務上碰到的問題記錄下來,等到之後碰到類似的問題時,就能詢問 AI 並得到解答。

你或許會問,那為什麼不直接使用 ChatGPT 就好了?其實,對許多企業來說,內部資料往往具有高度機密性與商業價值,有些場域甚至連手機都禁止員工帶入,自然無法將資料上傳雲端。對於重視資安,又希望運用 AI 提升效率的企業與工廠而言,自行部署大型語言模型(self-hosted LLM)才是理想選擇。而這樣的應用,並不需要龐大的設備。研華的 SKY-602E3 塔式 GPU 伺服器,體積僅如後背包大小,卻能輕鬆支援語言模型的運作,實現高效又安全的 AI 解決方案。

但問題也接著浮現:要在這麼小的設備上跑大型 AI 模型,會不會太吃資源?這正是目前 AI 領域最前沿、最火熱的研究方向之一:如何幫 AI 模型進行「科學瘦身」,又不減智慧。接下來,我們就來看看科學家是怎麼幫 AI 減重的。

-----廣告,請繼續往下閱讀-----

語言模型瘦身術之一:量化(Quantization)—用更精簡的數位方式來表示知識

當硬體資源有限,大模型卻越來越龐大,「幫模型減肥」就成了邊緣 AI 的重要課題。這其實跟圖片壓縮有點像:有些畫面細節我們肉眼根本看不出來,刪掉也不影響整體感覺,卻能大幅減少檔案大小。

模型量化的原理也是如此,只不過對象是模型裡面的參數。這些參數原先通常都是以「浮點數」表示,什麼是浮點數?其實就是你我都熟知的小數。舉例來說,圓周率是個無窮不循環小數,唸下去就會是3.141592653…但實際運算時,我們常常用 3.14 或甚至直接用 3,也能得到夠用的結果。降低模型參數中浮點數的精度就是這個意思! 

然而,量化並不是那麼容易的事情。而且實際上,降低精度多少還是會影響到模型表現的。因此在設計時,工程師會精密調整,確保效能在可接受範圍內,達成「瘦身不減智」的目標。

當硬體資源有限,大模型卻越來越龐大,「幫模型減肥」就成了邊緣 AI 的重要課題。/ 圖片來源:MotionArray

模型剪枝(Model Pruning)—基於重要性的結構精簡

建立一個 AI 模型,其實就是在搭建一整套類神經網路系統,並訓練類神經元中彼此關聯的參數。然而,在這麼多參數中,總會有一些參數明明佔了一個位置,卻對整體模型沒有貢獻。既然如此,不如果斷將這些「冗餘」移除。

這就像種植作物的時候,總會雜草叢生,但這些雜草並不是我們想要的作物,這時候我們就會動手清理雜草。在語言模型中也會有這樣的雜草存在,而動手去清理這些不需要的連結參數或神經元的技術,就稱為 AI 模型的模型剪枝(Model Pruning)。

-----廣告,請繼續往下閱讀-----

模型剪枝的效果,大概能把100變成70這樣的程度,說多也不是太多。雖然這樣的縮減對於提升效率已具幫助,但若我們要的是一個更小幾個數量級的模型,僅靠剪枝仍不足以應對。最後還是需要從源頭著手,採取更治本的方法:一開始就打造一個很小的模型,並讓它去學習大模型的知識。這項技術被稱為「知識蒸餾」,是目前 AI 模型壓縮領域中最具潛力的方法之一。

知識蒸餾(Knowledge Distillation)—讓小模型學習大師的「精髓」

想像一下,一位經驗豐富、見多識廣的老師傅,就是那個龐大而強悍的 AI 模型。現在,他要培養一位年輕學徒—小型 AI 模型。與其只是告訴小型模型正確答案,老師傅 (大模型) 會更直接傳授他做判斷時的「思考過程」跟「眉角」,例如「為什麼我會這樣想?」、「其他選項的可能性有多少?」。這樣一來,小小的學徒模型,用它有限的「腦容量」,也能學到老師傅的「智慧精髓」,表現就能大幅提升!這是一種很高級的訓練技巧,跟遷移學習有關。

舉個例子,當大型語言模型在收到「晚餐:鳳梨」這組輸入時,它下一個會接的詞語跟機率分別為「炒飯:50%,蝦球:30%,披薩:15%,汁:5%」。在知識蒸餾的過程中,它可以把這套機率表一起教給小語言模型,讓小語言模型不必透過自己訓練,也能輕鬆得到這個推理過程。如今,許多高效的小型語言模型正是透過這項技術訓練而成,讓我們得以在資源有限的邊緣設備上,也能部署愈來愈強大的小模型 AI。

但是!即使模型經過了這些科學方法的優化,變得比較「苗條」了,要真正在邊緣環境中處理如潮水般湧現的資料,並且高速、即時、穩定地運作,仍然需要一個夠強的「引擎」來驅動它們。也就是說,要把這些經過科學千錘百鍊、但依然需要大量計算的 AI 模型,真正放到邊緣的現場去發揮作用,就需要一個強大的「硬體平台」來承載。

-----廣告,請繼續往下閱讀-----

邊緣 AI 的強心臟:SKY-602E3 的三大關鍵

像研華的 SKY-602E3 塔式 GPU 伺服器,就是扮演「邊緣 AI 引擎」的關鍵角色!那麼,它到底厲害在哪?

一、核心算力
它最多可安裝 4 張雙寬度 GPU 顯示卡。為什麼 GPU 這麼重要?因為 GPU 的設計,天生就擅長做「平行計算」,這正好就是 AI 模型裡面那種海量數學運算最需要的!

你想想看,那麼多數據要同時處理,就像要請一大堆人同時算數學一樣,GPU 就是那個最有效率的工具人!而且,有多張 GPU,代表可以同時跑更多不同的 AI 任務,或者處理更大流量的數據。這是確保那些科學研究成果,在邊緣能真正「跑起來」、「跑得快」、而且「能同時做更多事」的物理基礎!

二、工程適應性——塔式設計。
邊緣環境通常不是那種恆溫恆濕的標準機房,有時是在工廠角落、辦公室一隅、或某個研究實驗室。這種塔式的機箱設計,體積相對緊湊,散熱空間也比較好(這對高功耗的 GPU 很重要!),部署起來比傳統機架式伺服器更有彈性。這就是把高性能計算,進行「工程化」,讓它能適應台灣多樣化的邊緣應用場景。

三、可靠性
SKY-602E3 用的是伺服器等級的主機板、ECC 糾錯記憶體、還有備援電源供應器等等。這些聽起來很硬的規格,背後代表的是嚴謹的工程可靠性設計。畢竟在邊緣現場,系統穩定壓倒一切!你總不希望 AI 分析跑到一半就掛掉吧?這些設計確保了部署在現場的 AI 系統,能夠長時間、穩定地運作,把實驗室裡的科學成果,可靠地轉化成實際的應用價值。

-----廣告,請繼續往下閱讀-----
研華的 SKY-602E3 塔式 GPU 伺服器,體積僅如後背包大小,卻能輕鬆支援語言模型的運作,實現高效又安全的 AI 解決方案。/ 圖片提供:研華科技

台灣製造 × 在地智慧:打造專屬的邊緣 AI 解決方案

研華科技攜手八維智能,能幫助企業或機構提供客製化的AI解決方案。他們的技術能力涵蓋了自然語言處理、電腦視覺、預測性大數據分析、全端軟體開發與部署,及AI軟硬體整合。

無論是大小型語言模型的微調、工業瑕疵檢測的模型訓練、大數據分析,還是其他 AI 相關的服務,都能交給研華與八維智能來協助完成。他們甚至提供 GPU 與伺服器的租借服務,讓企業在啟動 AI 專案前,大幅降低前期投入門檻,靈活又實用。

台灣有著獨特的產業結構,從精密製造、城市交通管理,到因應高齡化社會的智慧醫療與公共安全,都是邊緣 AI 的理想應用場域。更重要的是,這些情境中許多關鍵資訊都具有高度的「時效性」。像是產線上的一處異常、道路上的突發狀況、醫療設備的即刻警示,這些都需要分秒必爭的即時回應。

如果我們還需要將數據送上雲端分析、再等待回傳結果,往往已經錯失最佳反應時機。這也是為什麼邊緣 AI,不只是一項技術創新,更是一條把尖端 AI 科學落地、真正發揮產業生產力與社會價值的關鍵路徑。讓數據在生成的那一刻、在事件發生的現場,就能被有效的「理解」與「利用」,是將數據垃圾變成數據黃金的賢者之石!

👉 更多研華Edge AI解決方案
👉 立即申請Server租借

-----廣告,請繼續往下閱讀-----
-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

0

7
0

文字

分享

0
7
0
家中養貓狗,寶寶可能更健康?研究證實毛小孩有助於提升新生兒免疫力
PanSci_96
・2024/08/25 ・1454字 ・閱讀時間約 3 分鐘

  • 文/林芸寬、張愷丰、張庭瑀、郭亮均、林詠真 

最新研究:寵物與新生兒健康的密切關聯

現代家庭飼養寵物的比例逐年上升,貓狗已成為人類最親密的夥伴。農業部最新(2023)的資料發現,臺灣飼養貓狗的比例上升,家犬較上一期(2021)增加 19%;家貓較上一期增加 50%。然而,許多新手父母常擔心,飼養貓狗可能會影響新生兒的健康,像是引發呼吸道過敏等疾病,但近期的科學研究提供了相對令人安心的解答。 

最新研究指出,飼養貓狗,可能更能減少新生兒感染呼吸道疾病的機率。 圖/envato

科學家發現,飼養貓狗也許有益家庭中新生兒的健康。最新研究證實,家中貓狗不僅能增添樂趣,更能減少新生兒感染呼吸道疾病的機率。早在 2012 年,就有芬蘭研究團隊追蹤鄉村地區 397 名新生兒,自出生到一歲的健康狀況,發現有飼養貓狗家庭中的新生兒,較少感染呼吸道疾病。研究詳實記錄貓狗與新生兒的互動頻率,及其對新生兒健康的影響。

腸道菌相的力量:微生物如何提升寶寶免疫力

今(2024)年聖路易華盛頓大學兒科團隊發表在《Pediatrics》的最新研究,分析新生兒的就醫紀錄,並透過對父母的訪談,探討「親餵母乳」、「家中飼養貓狗」、「新生兒醫療需求」三者間的關係。研究發現,親餵母乳且家中有飼養貓狗的新生兒,出生六個月內對醫療服務的需求相對較低。華盛頓大學團隊推測,這可能是貓狗身上的微生物 ,增加了環境中微生物多樣性,並影響新生兒的免疫力。 

環境中微生物多樣性,與新生兒免疫力的關係為何?至今仍是未解的問題,但根據現有的研究,這很可能與新生兒體內「腸道菌相」的差異有關。「腸道菌相」是胃腸道中的微生物群落,由細菌、病毒和真菌組成,它們在我們的免疫系統發展中扮演了重要角色,特別是在生命的早期階段,對腸道的健康和功能有著深遠的影響。

-----廣告,請繼續往下閱讀-----

為何養狗的新生兒感染率更低?

2023 年的一項研究,進一步探討環境中微生物多樣性與新生兒免疫力之間的關係,揭示腸道菌相的多樣性在在影響了新生兒的健康。研究顯示,家中飼養狗的新生兒,其腸道中的梭桿菌、科林氏菌和瘤胃球菌等菌群明顯較多,這些菌種的豐富性有助於免疫系統的發育,也可能有助於減少新生兒過敏與氣喘的風險。

有趣的是,這份研究也提到,對於喝配方奶的新生兒而言,其腸道菌相的組成與養狗有關,「與狗接觸」可能成為他們獲取環境微生物的替代途徑,補充因缺乏母乳餵養而缺少的微生物,從而幫助免疫系統的發展。

小孩與狗的接觸,反而可能成為獲取環境微生物的途徑。 圖/envato

目前研究雖無法直接證實接觸貓狗可以增強免疫力,但可以確定的是,接觸貓狗的小孩,腸道內的微生物多樣性高,也比較不容易生病,新手父母可以不用太擔心養狗對小孩發育的影響。同時,與狗接觸還能改變嬰兒腸道中的微生物組成,這或許有助於減少呼吸道疾病的發生風險。

資料來源: 

  1. https://www.moa.gov.tw/theme_data.php?theme=news&sub_theme=agri&id=9418
  2. https://publications.aap.org/pediatrics/article/130/2/211/29895/Respiratory-Tra ct-Illnesses-During-the-First-Year
  3. https://www.nature.com/articles/s41390-024-03200-9
  4. https://onlinelibrary.wiley.com/doi/epdf/10.1111/cea.14303
-----廣告,請繼續往下閱讀-----

討論功能關閉中。

0

1
1

文字

分享

0
1
1
比起文字,人類更傾向透過聲音來理解並記憶語言——《大腦這樣「聽」》
天下文化_96
・2023/02/12 ・1436字 ・閱讀時間約 2 分鐘

我們正在逐步瞭解語言學習策略如何改善腦中的聲音處理過程。

語言學習策略與大腦處理聲音的過程息息相關。圖/Envato Elements

以聲音來強化語言能力

如果,我們能在孩子蹣跚學步時,就藉由瞭解他們的聽覺神經系統來預測他們七歲時的閱讀能力,那麼我們就能預先採取行動,避免負面結果發生。

海德公園日校所使用的輔助性聽覺裝置是其中一種方法,普羅維登斯採用的穿戴式計字科技產品是另一種,默澤尼克和塔拉爾開發的聽覺訓練遊戲,以及貝納西奇研發的寶寶玩具則是提供了額外的有效途徑。

對聲音和語言之間的關係有更多瞭解之後,我們就能找出更好的方法幫助孩子發展語言能力,幫助我們可以聽得更好的科技正在蓬勃發展。

了解更多聲音和語言之間的關係,就能找出幫助孩子發展語言能力更好的方法。圖/Envato Elements

我希望看見它們成為主流,而非僅限於像海德公園日校這樣的少數地方。我有位學生是語言障礙人士,我在教學時會戴上有如項鍊的麥克風,而她所戴的輔助性聽覺裝置可以接收來自麥克風的訊號。

-----廣告,請繼續往下閱讀-----

某天下課後,我跟她交換裝置,結果令我印象深刻:她站在演講廳的另一頭說話時,我可以清楚聽見她的聲音。我能想像,在嘈雜的環境中每個人都能因這項科技而受惠,如果可以發展出更強的語言能力對每個人都有幫助。

聽覺、閱讀、有聲書

身為一個對聲音有著各種琢磨的人,我想知道體驗聲音的新方式會對我們的聽覺神經系統產生什麼影響。我之前曾提過,我結束一天的方式大部分是由我先生唸書給我聽;但我沒有提到的是,我也會聽有聲書。這對我的聲音意識會有什麼影響?我的閱讀、說話和思考方式會有什麼變化?就理解和記憶的層面而言,聽文本和讀文本的效果似乎相差不遠。

有時候,用聽的效果可能更好。

我就發現莎士比亞筆下那些古文,比起閱讀,用聽的更能讓我理解;演員在聲音中加入諷刺、幽默或其他線索,可以幫助我們對所聽到的內容有更全面的理解。

莎士比亞浪漫喜劇〈仲夏夜之夢〉(A Midsummer Night’s Dream)。圖/GIPHY

大聲朗讀也可以提升你對所讀內容的記憶程度,我認為人類的天性更傾向於透過聲音來理解並記憶語言,而不是透過文本;因為在我們開始讀跟寫之前,聽覺是幾百萬年就演化出來的能力。

-----廣告,請繼續往下閱讀-----

有聲書擴大了我們可以閱讀的環境,聽有聲書時我會戴上耳塞式耳機,一方面聆聽內容,一方面同時隔絕了我在烹飪(滋滋作響的洋蔥)、健身或搭火車時的背景噪音。

我期待進一步探究聽文本和讀文本的生物學基礎,以及個體之間的差異;我想要知道聆聽有聲書會對聲音意識的演化產生何種影響。

——本文摘自《大腦這樣「聽」:大腦如何處理聲音,並影響你對世界的認識》,2022 年 12 月,天下文化出版,未經同意請勿轉載。

-----廣告,請繼續往下閱讀-----
天下文化_96
142 篇文章 ・ 624 位粉絲
天下文化成立於1982年。一直堅持「傳播進步觀念,豐富閱讀世界」,已出版超過2,500種書籍,涵括財經企管、心理勵志、社會人文、科學文化、文學人生、健康生活、親子教養等領域。每一本書都帶給讀者知識、啟發、創意、以及實用的多重收穫,也持續引領台灣社會與國際重要管理潮流同步接軌。