0

0
0

文字

分享

0
0
0

當我們同在一起創作,智慧系統與人的互動機制如何設計才能讓人快樂無比?

人機共生你我它_96
・2018/12/28 ・4966字 ・閱讀時間約 10 分鐘 ・SR值 541 ・八年級

假如在不久的將來,我們有可能與 AI 共同創作,像是共同寫作、編劇、編曲、拍攝影片、繪畫等;那麼在這共創的情境下,假使 AI 系統提供人類不同詳細程度的說明時,人類的共創體驗會如何受影響?而在 AI 與人合作的過程中,誰該當領導者來主導整個合作?人類會想要主動引導嗎?假使 AI 成為發號施令的角色、而人類只能配合時,又會帶來什麼體驗?

  • 註:本文提及的「AI系統」指的是在繪畫這個特定任務上,系統根據輸入的資訊,利用統計方法、深度學習的模型進行辨識和預測,進而輸出相對應資訊的系統。為求方便溝通,在以下的文中以「AI系統」或「AI」簡略稱呼這個具備基礎推理、學習能力的繪畫系統。

Photo by Steinar Engeland on Unsplash

近年來越來越多關於人工智慧是否會取代工作、哪些工作會被取代等主題的討論。當各式各樣的 AI 系統日漸普及在你我生活中,食、衣、住、行、育、樂各層面都有 AI 參與,使用者與 AI 系統的互動該如何設計,是人機互動領域持續探索的主題之一。

AI 除了協助人類完成重複性高的例行事務,也能輔助人類跨越專家與新手之間的門檻。像 Google 推出的AutoDraw,能夠讓非繪畫專家簡單畫出基本物件輪廓後,自動幫使用者補齊畫面上可能適合的要素,讓繪畫新手也能開啟創作的第一步;MIT CSAILab 也推出了以 AI 為基礎,根據圖像意義去背的圖像編輯工具Wix 這個線上網頁建置服務也在網頁設計的功能結合 AI 的服務,幫助使用者在沒有太多網頁設計或程式開發的技術前提下,製作出具有特色的個人網站。

  • AI與你協作圖像編輯。

設計 AI 服務合作時,有哪些潛在問題需要注意?

這些 AI 的應用,讓人類有更多跟 AI 一起合作、甚至是共同創作的機會。那麼,當人跟具有 AI 的服務合作時,有什麼潛在問題需要注意?身為提供AI服務的設計者,該留意哪些事?另一方面,身為與 AI 系統互動的使用者能以什麼角度看待自己與 AI 的關係?本文主要介紹由韓國首爾大學研究團隊在 CHI18 發表的研究,便嘗試了解當人與 AI 一起創作的時候,在這互動過程中可能出現哪些潛在問題?人有什麼體驗?並根據研究發現提出未來人工智慧系統設計上需考量的方向。

為回答這個研究問題,研究團隊們以「繪畫」當作了解「人與 AI 共創」的實驗任務,並設計了一個具備 AI 功能的繪畫軟體(以下簡稱AI),這個系統包含幾個功能:自動補齊使用者畫到一半的內容、自動畫出跟先前類似的物件、根據先前被畫出的物件自動產出相對應的新物件、提醒使用者畫布中太過空白的區塊、根據使用者指定的顏色自動上色。這些 AI 繪圖功能主要來自於 Google Sketch-RNN [2] 以及團隊自行開發的演算法。

-----廣告,請繼續往下閱讀-----

接著,研究者設計了五種不同互動情境:

  1. 人擔任主導者,AI 繪圖軟體提供詳細的系統說明;
  2. 人擔任主導者,但是 AI 繪圖軟體提供簡略的系統說明;
  3. 人擔任輔助者,而 AI 繪圖軟體提供詳細的系統說明;
  4. 人擔任輔助者,而 AI 繪圖軟體提供簡略的系統說明;
  5. 使用者沒有與 AI 互動,獨自完成繪畫任務。

研究團隊邀請了 30 位使用者輪流擔任主導者與輔助者,先後在五個實驗情境中完成指定的繪圖任務,同時他們也利用放聲思考法,亦即在繪畫過程中要把自己腦中所想的內容講出來,以便提供研究分析資料

研究者們根據問卷蒐集了使用者在五種情境下自評的軟體使用性、互動體驗、訪談內容,以及放聲思考的內容,分析、整理出以下幾個發現

  1. 使用者認為跟 AI 共創的過程是有趣且較有效率的;
  2. 使用者偏好 AI 提供詳細的系統說明;
  3. 使用者在合作過程中想擁有主導權。

AI 給予即時創作靈感有效,但人容易缺乏掌控感

當使用者跟 AI 一起創作時,使用者認為有 AI 輔助的情況下使得過程更加有趣與有效率。使用者表示當他們停頓時,AI 會很快建議他們可以畫什麼內容,AI 有時候也會畫出讓使用者意想不到的內容,讓他們感到驚艷;而當 AI 指出畫布上有哪些地方留白太多時,使用者也提到這可以迫使他們去思考應該增加什麼內容來豐富作品;也有人指出和 AI 一起畫畫就像跟另一個人一起畫畫一樣,這讓他畫出自己獨自無法畫出的內容。

然而另一方面,使用者認為在沒有 AI 介入的情況下,整個繪畫過程是較能預期、容易理解且能自己掌控,例如當 AI 畫出一個像是電腦剪貼出來的圖形時,如果跟本來手繪的畫風不一致,使用者便覺得畫面不協調;另外,當 AI 畫得比人好的時候,使用者也會覺得自己廢廢的,心想如果整幅畫都由 AI 自己完成說不定畫面會更好看 (。ŏ_ŏ)

-----廣告,請繼續往下閱讀-----
對多數人來說,如果失去掌握感很容易挫折。圖/pixabay

使用者偏好詳細說明建議,粗略說明讓人迷惑

而當 AI 提供詳細說明,告訴使用者為什麼它會提出這些建議、為什麼會有這些系統行為時,相較於提供粗略說明的情況下,使用者認為有詳細說明的互動是較有效率、溝通品質較好、較容易理解、也更在自己掌控之中的。詳細的指示內容讓使用者覺得自己更了解系統如何運作的,並且覺得自己好像是在跟一個有智慧的人互動、溝通。

有使用者提到在接收到詳細說明的情況下,他們喜歡 AI 建議下一步可以怎麼做、AI 的指示會讓他們覺得自己在適當的方向上創作,也進而對當前的創作過程更有信心;然而在接收粗略說明的情況下,使用者表示不明白系統的某些指示到底是希望自己做什麼事;而當使用者看到 AI 很智慧地自動補齊自己畫到一半的內容時,也會想知道系統究竟是根據哪些線索來作畫。另一方面,當 AI 給出的指令是些空洞無意義的話時,使用者會覺得反感,例如有人提到當自己不是很滿意目前的畫作時,這時候 AI 竟自動回覆一句:「畫得可真好!」,這位使用者頓時覺得自己被 AI 嘲諷……(´_ゝ`)

使用者不喜歡成為 AI 的輔助者

分析結果發現,使用者並不喜歡自己成為 AI 的輔助者──人們認為自己才是決定該畫什麼的角色。當使用者擔任輔助者角色與 AI 共同繪畫時,他們表示當被 AI 告知要在某個區塊上色時,當下有種被冒犯的感覺,覺得這種雜事應該是由電腦做而不是人要做的;也不喜歡這種被 AI 當成工具人指使的感覺,這讓他們覺得只是在回應 AI 的指示,根本不算是「共創」;並且也認為 AI 給予指示時應該要有禮貌,而不該只是叫他照著做;而當 AI 提出一個使用者不明白的要求時,他們說不知道系統到底想搞什麼,但自己對這種情況也無能為力,他們沒有任何協商空間來改變系統做出的決定,所以有些人乾脆直接忽略 AI 的指示,或是希望未來如果還有類似情況出現,自己能有和 AI 協商的空間。

Photo by Vidar Nordli-Mathisen on Unsplash

設計智慧系統互動機制的三個訣竅:引發好奇心、保持透明度、讓人維持掌控感

透過讓使用者跟 AI 一起畫畫的研究,我們初步知道了當人和 AI 共同進行創作時,可能需要注意的幾個面向,那麼這些發現對未來 AI 系統設計能有什麼啟發?

-----廣告,請繼續往下閱讀-----

透過與 AI 的互動引起人的好奇心與創造力

在進行需要創造力的活動時,AI 產生讓人出其不意的內容時會讓人感到新奇,因此在創作時若能夠讓創作者在與AI 互動過程中由 AI 提供「適度」的隨機性,也許能幫助創作者進行聯想,進而激發更多創造力;不過有一點需要留意的是,「風格」在創作過程中對創作者與欣賞者而言也是個重要的因素,當未來 AI 跟人共創成為可能時,如何避免 AI  突然拋出風格迥異的內容是其中一個需要考量的設計方向。

讓AI的運作保持適度的透明

當 AI 提供詳細的運作機制讓使用者了解時,例如向使用者解釋系統是根據什麼資訊推薦某個創作素材、說明為什麼系統能判斷人畫到一半的物件等,使用者會感覺自己比較能預測及掌控系統行為、覺得自己比較能夠理解系統運作,這些都會提升人與智慧系統互動時的體驗,特別是在運用創造力的任務上,詳細的系統說明能讓創作者感覺自己是在跟另一個「人」共同創作,而當系統提供適當的回應時,也可能增進創作者的自信;不過接下來要面對的挑戰之一在於讓 AI 能夠「見機行事」,而非隨機給出模板式的回應,才能避免創作者在這共創過程中產生負面體驗。

控制權掌握在人的手中

從實驗的結果可以知道,無論使用者被指定為主導者或輔助者,人都期望自己在跟 AI 互動時,最終決定權在自己身上,而人似乎也預設了自己跟 AI 各自需要扮演什麼角色,像是重複性高的事該由 AI 處理、人則是處理架構的問題等。因此,當我們在設計人與智慧系統的互動時,也可以思考要如何才能夠讓使用者感受到自己對科技物擁有主控權,而非被科技物控制。

 

-----廣告,請繼續往下閱讀-----

當人與 AI 系統互動時,智慧系統需要提供多少程度的說明讓使用者明白系統背後的運作,一直是人機互動與人工智慧研究領域在意的研究主題之一。AI 演算法對末端使用者來說經常是一個黑盒子,像是當我們在和聊天機器人對話時,經常不清楚系統到底是根據哪些資訊、透過哪些方式回應我們這些話;又或是當我們在瀏覽社群媒體時,不清楚推薦系統到底向我們蒐集了哪些資料、又如何判斷該推薦給我們什麼文章或影片;除了末端使用者需要知道系統的基本運作之外,對開發者而言,AI 演算法成為黑盒子也會使得開發者或設計者無從找尋系統出錯的來源,或是無法控制 AI 為什麼會有意料之外的輸出。

在讀了這篇研究後,身為系統開發者的工程師或設計師們可以一起思考該如何拿捏系統「透明度」的設定;而身為與越來越有智慧的系統互動的我們也可以想想:有哪些事情在 AI 的陪同之下我們可能會做得更好?我們會想跟 AI 在什麼層面進行共同創作?AI 要具備什麼能力才能讓我們覺得跟它合作的體驗是正向的?

備註

  • 本篇是擷取原始論文中部分內容搭配筆者想分享的概念所架構而成,部分研究細節與討論並未完全呈現,鼓勵有興趣的讀者直接參考原文深入了解細節。本篇目的在於讓讀者了解人機互動領域中如何切入人工智慧的主題,並提出未來 AI 系統的設計指引。內文並非逐字翻譯,亦不能取代原文

本文轉載自《人機共生你我它》,原文為《除了讓人工智慧更加智慧,還缺了什麼?》。
「人機共生你我它」由一群致力於人機互動研究(HCI, Human-Computer Interaction)的研究者所創立,我們定期發表人機互動相關文章,讓更多讀者了解這門結合資工、心理、設計等學科的跨領域知識以及它在實務層面的應用。

延伸閱讀:

Reference:

  1. Oh, C., Song, J., Choi, J., Kim, S., Lee, S., & Suh, B. (2018, April). I Lead, You Help but Only with Enough Details: Understanding User Experience of Co-Creation with Artificial Intelligence. In Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems (p. 649). ACM.
  2. David Ha and Douglas Eck. 2017. A Neural Representation of Sketch Drawings. arXiv preprint arXiv:1704.03477 (2017).
-----廣告,請繼續往下閱讀-----
文章難易度
人機共生你我它_96
12 篇文章 ・ 3 位粉絲
由致力於人機互動研究(HCI, Human-Computer Interaction)的研究者與實務工作者所創立,我們定期發表人機互動相關文章,與讀者一起思考科技對社會生活帶來的好處與限制。

0

1
0

文字

分享

0
1
0
從認證到實踐:以智慧綠建築三大標章邁向淨零
鳥苷三磷酸 (PanSci Promo)_96
・2024/11/15 ・4487字 ・閱讀時間約 9 分鐘

本文由 建研所 委託,泛科學企劃執行。 


當你走進一棟建築,是否能感受到它對環境的友善?或許不是每個人都意識到,但現今建築不只提供我們居住和工作的空間,更是肩負著重要的永續節能責任。

綠建築標準的誕生,正是為了應對全球氣候變遷與資源匱乏問題,確保建築設計能夠減少資源浪費、降低污染,同時提升我們的生活品質。然而,要成為綠建築並非易事,每一棟建築都需要通過層層關卡,才能獲得標章認證。

為推動環保永續的建築環境,政府自 1999 年起便陸續著手推動「綠建築標章」、「智慧建築標章」以及「綠建材標章」的相關政策。這些標章的設立,旨在透過標準化的建築評估系統,鼓勵建築設計融入生態友善、能源高效及健康安全的原則。並且政府在政策推動時,為鼓勵業界在規劃設計階段即導入綠建築手法,自 2003 年特別辦理優良綠建築作品評選活動。截至 2024 年為止,已有 130 件優良綠建築、31 件優良智慧建築得獎作品,涵蓋學校、醫療機構、公共住宅等各類型建築,不僅提升建築物的整體性能,也彰顯了政府對綠色、智慧建築的重視。

-----廣告,請繼續往下閱讀-----

說這麼多,你可能還不明白建築要變「綠」、變「聰明」的過程,要經歷哪些標準與挑戰?

綠建築標章智慧建築標章綠建材標章
來源:內政部建築研究所

第一招:依循 EEWH 標準,打造綠建築典範

環境友善和高效率運用資源,是綠建築(green building)的核心理念,但這樣的概念不僅限於外觀或用材這麼簡單,而是涵蓋建築物的整個生命週期,也就是包括規劃、設計、施工、營運和維護階段在內,都要貼合綠建築的價值。

關於綠建築的標準,讓我們先回到 1990 年,當時英國建築研究機構(BRE)首次發布有關「建築研究發展環境評估工具(Building Research Establishment Environmental Assessment Method,BREEAM®)」,是世界上第一個建築永續評估方法。美國則在綠建築委員會成立後,於 1998 年推出「能源與環境設計領導認證」(Leadership in Energy and Environmental Design, LEED)這套評估系統,加速推動了全球綠建築行動。

臺灣在綠建築的制訂上不落人後。由於臺灣地處亞熱帶,氣溫高,濕度也高,得要有一套我們自己的評分規則——臺灣綠建築評估系統「EEWH」應運而生,四個英文字母分別為 Ecology(生態)、Energy saving(節能)、Waste reduction(減廢)以及 Health(健康),分成「合格、銅、銀、黃金和鑽石」共五個等級,設有九大評估指標。

-----廣告,請繼續往下閱讀-----

我們就以「台江國家公園」為例,看它如何躍過一道道指標,成為「鑽石級」綠建築的國家公園!

位於臺南市四草大橋旁的「台江國家公園」是臺灣第8座國家公園,也是臺灣唯一的濕地型的國家公園。同時,還是南部行政機關第一座鑽石級的綠建築,其外觀採白色系列,從高空俯瞰,就像在一座小島上座落了許多白色建築群的聚落;從地面看則有臺南鹽山的意象。

因其地形與地理位置的特殊,生物多樣性的保護則成了台江國家公園的首要考量。園區利用既有的魚塭結構,設計自然護岸,保留基地既有的雜木林和灌木草原,並種植原生與誘鳥誘蟲等多樣性植物,採用複層雜生混種綠化。以石籠作為擋土護坡與卵石回填增加了多孔隙,不僅強化了環境的保護力,也提供多樣的生物棲息環境,使這裡成為動植物共生的美好棲地。

台江國家公園是南部行政機關第一座鑽石級的綠建築。圖/內政部建築研究所

第二招:想成綠建築,必用綠建材

要成為一幢優秀好棒棒的綠建築,使用在原料取得、產品製造、應用過程和使用後的再生利用循環中,對地球環境負荷最小、對人類身體健康無害的「綠建材」非常重要。

-----廣告,請繼續往下閱讀-----

這種建材最早是在 1988 年國際材料科學研究會上被提出,一路到今日,國際間對此一概念的共識主要包括再使用(reuse)、再循環(recycle)、廢棄物減量(reduce)和低污染(low emission materials)等特性,從而減少化學合成材料產生的生態負荷和能源消耗。同時,使用自然材料與低 VOC(Volatile Organic Compounds,揮發性有機化合物)建材,亦可避免對人體產生危害。

在綠建築標章後,內政部建築研究所也於 2004 年 7 月正式推行綠建材標章制度,以建材生命週期為主軸,提出「健康、生態、高性能、再生」四大方向。舉例來說,為確保室內環境品質,建材必須符合低逸散、低污染、低臭氣等條件;為了防溫室效應的影響,須使用本土材料以節省資源和能源;使用高性能與再生建材,不僅要經久耐用、具高度隔熱和防音等特性,也強調材料本身的再利用性。


在台江國家公園內,綠建材的應用是其獲得 EEWH 認證的重要部分。其不僅在設計結構上體現了生態理念,更在材料選擇上延續了對環境的關懷。園區步道以當地的蚵殼磚鋪設,並利用蚵殼作為建築格柵的填充材料,為鳥類和小生物營造棲息空間,讓「蚵殼磚」不再只是建材,而是與自然共生的橋樑。園區的內部裝修選用礦纖維天花板、矽酸鈣板、企口鋁板等符合綠建材標準的系統天花。牆面則粉刷乳膠漆,整體綠建材使用率為 52.8%。

被建築實體圍塑出的中庭廣場,牆面設計有蚵殼格柵。圖/內政部建築研究所

在日常節能方面,台江國家公園也做了相當細緻的設計。例如,引入樓板下的水面蒸散低溫外氣,屋頂下設置通風空氣層,高處設置排風窗讓熱空氣迅速排出,廊道還配備自動控制的微噴霧系統來降溫。屋頂採用蚵殼與漂流木創造生態棲地,創造空氣層及通風窗引入水面低溫外企,如此一來就能改善事內外氣溫及熱空氣的通風對流,不僅提升了隔熱效果,減少空調需求,讓建築如同「與海共舞」,在減廢與健康方面皆表現優異,展示出綠建築在地化的無限可能。

-----廣告,請繼續往下閱讀-----
島式建築群分割後所形成的巷道與水道。圖/內政部建築研究所

在綠建材的部分,另外補充獲選為 2023 年優良綠建築的臺南市立九份子國民中小學新建工程,其採用生產過程中二氧化碳排放量較低的建材,比方提高高爐水泥(具高強度、耐久、緻密等特性,重點是發熱量低)的量,並使用能提高混凝土晚期抗壓性、降低混凝土成本與建物碳足跡的「爐石粉」,還用再生透水磚做人行道鋪面。

2023 年優良綠建築的臺南市立九份子國民中小學。圖/內政部建築研究所
2023 年優良綠建築的臺南市立九份子國民中小學。圖/內政部建築研究所

同樣入選 2023 年綠建築的還有雲林豐泰文教基金會的綠園區,首先,他們捨棄金屬建材,讓高爐水泥使用率達 100%。別具心意的是,他們也將施工開挖的土方做回填,將有高地差的荒地恢復成平坦綠地,本來還有點「工業風」的房舍告別荒蕪,無痛轉綠。

雲林豐泰文教基金會的綠園區。圖/內政部建築研究所

等等,這樣看來建築夠不夠綠的命運,似乎在建材選擇跟設計環節就決定了,是這樣嗎?當然不是,建築是活的,需要持續管理–有智慧的管理。

第三招:智慧管理與科技應用

我們對生態的友善性與資源運用的效率,除了從建築設計與建材的使用等角度介入,也須適度融入「智慧建築」(intelligent buildings)的概念,即運用資通訊科技來提升建築物效能、舒適度與安全性,使空間更人性化。像是透過建築物佈建感測器,用於蒐集環境資料和使用行為,並作為空調、照明等設備、設施運轉操作之重要參考。

-----廣告,請繼續往下閱讀-----

為了推動建築與資通訊產業的整合,內政部建築研究所於 2004 年建立了「智慧建築標章」制度,為消費者提供判斷建築物是否善用資通訊感知技術的標準。評估指標經多次修訂,目前是以「基礎設施、維運管理、安全防災、節能管理、健康舒適、智慧創新」等六大項指標作為評估基準。
以節能管理指標為例,為了掌握建築物生命週期中的能耗,需透過系統設備和技術的主動控制來達成低耗與節能的目標,評估重點包含設備效率、節能技術和能源管理三大面向。在健康舒適方面,則在空間整體環境、光環境、溫熱環境、空氣品質、水資源等物理環境,以及健康管理系統和便利服務上進行評估。

樹林藝文綜合大樓在設計與施工過程中,充分展現智慧建築應用綜合佈線、資訊通信、系統整合、設施管理、安全防災、節能管理、健康舒適及智慧創新 8 大指標先進技術,來達成兼顧環保和永續發展的理念,也是利用建築資訊模型(BIM)技術打造的指標性建築,受到國際矚目。

樹林藝文綜合大樓。圖/內政部建築研究所「111年優良智慧建築專輯」(新北市政府提供)

在興建階段,為了保留基地內 4 棵原有老樹,團隊透過測量儀器對老樹外觀進行精細掃描,並將大小等比例匯入 BIM 模型中,讓建築師能清晰掌握樹木與建築物之間的距離,確保施工過程不影響樹木健康。此外,在大樓啟用後,BIM 技術被運用於「電子維護管理系統」,透過 3D 建築資訊模型,提供大樓內設備位置及履歷資料的即時讀取。系統可進行設備的監測和維護,包括保養計畫、異常修繕及耗材管理,讓整棟大樓的全生命週期狀況都能得到妥善管理。

智慧建築導入 BIM 技術的應用,從建造設計擴展至施工和日常管理,使建築生命周期的管理更加智慧化。以 FM 系統 ( Facility Management,簡稱 FM ) 為例,該系統可在雲端進行遠端控制,根據會議室的使用時段靈活調節空調風門,會議期間開啟通往會議室的風門以加強換氣,而非使用時段則可根據二氧化碳濃度調整外氣空調箱的運轉頻率,保持低頻運作,實現節能效果。透過智慧管理提升了節能效益、建築物的維護效率和公共安全管理。

-----廣告,請繼續往下閱讀-----

總結

綠建築、綠建材與智慧建築這三大標章共同構建了邁向淨零碳排、居住健康和環境永續的基礎。綠建築標章強調設計與施工的生態友善與節能表現,從源頭減少碳足跡;綠建材標章則確保建材從生產到廢棄的全生命週期中對環境影響最小,並保障居民的健康;智慧建築標章運用科技應用,實現能源的高效管理和室內環境的精準調控,增強了居住的舒適性與安全性。這些標章的綜合應用,讓建築不僅是滿足基本居住需求,更成為實現淨零、促進健康和支持永續的具體實踐。

建築物於魚塭之上,採高腳屋的構造形式,尊重自然地貌。圖/內政部建築研究所

-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

鳥苷三磷酸 (PanSci Promo)_96
211 篇文章 ・ 312 位粉絲
充滿能量的泛科學品牌合作帳號!相關行銷合作請洽:contact@pansci.asia

0

0
0

文字

分享

0
0
0
AI 能像人類一樣思考?諾貝爾物理學獎研究助力人工智慧模擬人類大腦
PanSci_96
・2024/11/14 ・2117字 ・閱讀時間約 4 分鐘

即使再怎麼模仿,AI 終究無法以與生物相同的方式思考吧?畢竟電腦的電子元件和我們大腦中的神經細胞結構截然不同。再怎麼模仿,AI 終究無法以與生物相同的方式思考吧?

錯,可以。

2024 年諾貝爾物理學獎跌破所有專家的眼鏡,頒給了兩位研究機器學習的科學家——約翰·霍普菲爾德(John Hopfield)和傑佛瑞·辛頓(Geoffrey Hinton)。他們以「人工」的方法打造了類神經網路,最終模擬出生物的「智慧」,奠定了當代深度學習的基礎。

為什麼解決人工智慧發展瓶頸的,竟然會是物理學?物理要怎麼讓 AI 更像人類?

-----廣告,請繼續往下閱讀-----
歡迎訂閱 Pansci Youtube 頻道 獲取更多深入淺出的科學知識!

從巴甫洛夫的狗到赫布理論:理解學習的基礎

為了解答這個疑問,我們需要一些背景知識。

20 世紀初,俄羅斯心理學家巴甫洛夫發現,狗在食物還沒入口前,就會開始分泌唾液。他進行了一系列實驗,改變食物出現前的環境,比如讓狗習慣在聽到鈴聲後馬上得到食物。久而久之,狗只要聽到鈴聲,就會開始分泌唾液。

大約 50 年後,神經科學家赫布(Donald Hebb)提出了一個假說:大腦中相近的神經元,因為經常同時放電,會產生更強的連結。這種解釋稱為「赫布理論」,不僅奠定了神經心理學的發展,更成為現代深度學習的基礎。

然而,赫布理論雖然描述了鄰近神經元的關係,卻無法解釋大腦如何建構出如此複雜的聯想網路。

-----廣告,請繼續往下閱讀-----

霍普菲爾德網路:物理學家對神經網路的貢獻

然而,赫布理論雖能描述神經元之間的關係,卻缺乏數學模型。物理學家約翰·霍普菲爾德從數學家約翰·康威(John Conway)的「生命遊戲」(Game of Life)中獲得靈感,試圖建立一個可以在電腦上運行的記憶系統。

霍普菲爾德受「生命遊戲」啟發,嘗試建立電腦記憶系統。圖/envato

「生命遊戲」由數學家康威(John Conway)發明,玩家開始時有一個棋盤,每個格子代表一個細胞,細胞可以是「活」或「死」的狀態。根據特定規則,細胞會根據鄰居的狀態決定下一次的生存狀態。康威的目的是展示複雜的系統不一定需要複雜的規則。

霍普菲爾德發現,這個遊戲與赫布理論有強大的關聯性。大腦中的大量神經元,在出生時處於初始狀態,經過刺激後,神經元間的連結會產生或斷裂,形成強大的記憶系統。他希望利用這些理論,創造一個能在電腦上運行的記憶系統。

然而,他面臨一個難題:赫布理論沒有明確的數學模型來決定神經元連結的規則。而在電腦上運行,必須要有明確的數學規則。

-----廣告,請繼續往下閱讀-----

物理學的啟發:易辛模型

霍普菲爾德從物理學的研究中找到了類似的模型:易辛模型(Ising Model)。這個模型用於解釋鐵磁性物質的磁性特性。

在鐵磁性物質中,電子具有「自旋」,自旋產生磁矩。電子的自旋方向只有「向上」或「向下」,這就像生命遊戲中細胞的「生」或「死」。鄰近的電子會影響彼此的自旋方向,類似於細胞之間的互動。

易辛模型能用數學描述電子間的相互影響,並通過計算系統能量,得出自旋狀態的分佈。霍普菲爾德借用了這個概念,將神經元的互動視為電子自旋的互動。

他結合了康威生命遊戲的時間演化概念、易辛模型的能量計算,以及赫布理論的動態連結,創造了「霍普菲爾德網路」。這讓電腦能夠模擬生物大腦的學習過程。

-----廣告,請繼續往下閱讀-----

突破瓶頸:辛頓與波茲曼機

約翰·霍普菲爾德於1982年發明聯想神經網路,即「霍普菲爾網路」。圖/wikimedia

然而,霍普菲爾德網路並非完美。它容易陷入「局部最小值」的問題,無法找到系統的全局最優解。為了解決這個問題,加拿大計算機科學家傑佛瑞·辛頓(Geoffrey Hinton)提出了「波茲曼機」(Boltzmann Machine)。

辛頓將「模擬退火」的概念引入神經網路,允許系統以一定的機率跳出局部最小值,尋找全局最優解。他還引入了「隱藏層」的概念,將神經元分為「可見層」和「隱藏層」,提高了網路的學習能力。

受限波茲曼機(Restricted Boltzmann Machine)進一步簡化了模型,成為深度學習的基礎結構之一。這些創新使得 AI 能夠更有效地模擬人類的思維和學習過程。

AI 的未來:跨學科的融合

霍普菲爾德和辛頓的工作,將物理學的概念成功應用於人工智慧。他們的研究不僅解決了 AI 發展的瓶頸,還奠定了深度學習的基礎,對現代 AI 技術產生了深遠的影響。因此,2024 年諾貝爾物理學獎頒給他們,並非意外,而是對他們在跨學科領域的重大貢獻的肯定。

-----廣告,請繼續往下閱讀-----

AI 的發展,離不開物理學、生物學、數學等多學科的融合。霍普菲爾德和辛頓的工作,正是這種融合的典範。未來,隨著科學技術的進步,我們有理由相信,AI 將越來越接近人類的思維方式,甚至可能超越我們的想像。

-----廣告,請繼續往下閱讀-----

討論功能關閉中。

PanSci_96
1259 篇文章 ・ 2383 位粉絲
PanSci的編輯部帳號,會發自產內容跟各種消息喔。

0

3
0

文字

分享

0
3
0
AI 破解生命密碼!AlphaFold 3 揭開蛋白質折疊的終極謎團
PanSci_96
・2024/10/07 ・1619字 ・閱讀時間約 3 分鐘

AlphaFold的誕生:人工智慧的奇蹟

2018 年,Google 旗下的 DeepMind 團隊推出了第一代 AlphaFold,這是一款基於深度學習的 AI 模型,專門用於預測蛋白質的三維結構。AlphaFold 的命名取自「fold」一詞,意為折疊,指的是蛋白質在胺基酸鏈構成後迅速摺疊成其功能所需的三維結構。

AlphaFold 的突破在於其能夠預測出蛋白質折疊的可能性,這是一個傳統計算方法無法達到的領域。第一代 AlphaFold 在國際 CASP 比賽中取得了一定的成功,雖然其預測準確度尚未達到實驗室標準,但其潛力讓科學家們充滿期待。

歡迎訂閱 Pansci Youtube 頻道 獲取更多深入淺出的科學知識!

為什麼蛋白質結構預測如此重要?

蛋白質是生命的基石,它們的功能取決於其複雜的三維結構。然而,僅靠實驗技術來解析蛋白質的結構既昂貴又耗時。過去科學家依賴於如 X 光晶體繞射等技術來解析蛋白質的結構,然而這種方法雖然精確,但往往需要數年時間來得出一個結論。

到目前為止,人類已知的蛋白質數據庫中,全球僅解析了大約 22 萬種蛋白質的結構,這遠遠不足以滿足生物學和醫學研究的需求。尤其是人類的許多蛋白質結構仍然未知,這成為阻礙醫學進步的一個主要瓶頸,特別是在藥物開發和疾病治療上,因此如何加速對蛋白質的結構的解析至關重要。

-----廣告,請繼續往下閱讀-----

AlphaFold 2:技術飛躍

2020 年,AlphaFold 2 橫空出世,改進了多項技術,預測準確度大幅,幾乎達到了與實驗結果相媲美的程度。這一成就震驚了全球生物學界,許多科學家開始將 AlphaFold 2 應用於實際研究中。

AlphaFold 2 的成功源自於其三大技術革新:

  • 注意力機制:模仿人類的思維模式,從大局出發,關注蛋白質結構中的每一個細節,進而提高預測的準確性。
  • 多序列比對功能:通過搜尋類似的胺基酸序列,推斷新的蛋白質結構。
  • 端到端預測模式:利用深度學習神經網路,不斷反饋預測結果,持續優化模型。
AlphaFold 2 預測準確度大幅提升。 圖/envato

AlphaFold 3:下一代 AI 的力量

隨著 AlphaFold 2 的成功,DeepMind 並未停止其腳步。2024 年 5 月,AlphaFold 3 正式推出,這標誌著 AI 技術在生物學領域的又一個里程碑。AlphaFold 3 的改進再次吸引了科學界的目光,它強化了注意力機制,並引入了擴散模型,這使其能夠更快且更準確地預測複合蛋白質的結構。

擴散模型是一項關鍵技術,它能夠生成大量的可能蛋白質結構,並快速篩選出最可能的解答。與此同時,AlphaFold 3 還內建了「減幻覺」功能,這讓其在產生結果時能夠避免過多不切實際的預測,提升了結果的可信度。

-----廣告,請繼續往下閱讀-----

AlphaFold 的實際應用:醫學與藥物開發

AlphaFold 3 的誕生,不僅是一個技術突破,還為醫學和藥物開發帶來了巨大的希望。過去,癌症治療中的標靶藥物需要經過漫長的實驗才能確定其作用原理,然而現在,通過 AlphaFold 的預測,科學家可以更加精確地針對癌細胞中的錯誤蛋白質,設計出更有效的藥物。

除此之外,AlphaFold 3 還在抗病毒藥物、抗生素以及阿茲海默症等領域展現了潛力。其能夠預測蛋白質與其他分子(如DNA、RNA)的交互作用,這使得研發新藥的過程大大加速。

AlphaFold 3 的挑戰與未來

儘管 AlphaFold 3 取得了驚人的進展,但其仍然面臨一些挑戰。首先,目前 AlphaFold 3 的模型尚未完全開源,這限制了研究人員對其內部運作的了解。為此,一些科學家已聯名要求 DeepMind 開放其程式碼,以便進行更深入的研究和應用。

不過,隨著 AlphaFold 3的逐步推廣,生物學家相信它將繼續改變生物學研究的方式。未來,這項技術有望在解決更多未解難題中發揮關鍵作用,並為醫學領域帶來更大的突破。

-----廣告,請繼續往下閱讀-----
-----廣告,請繼續往下閱讀-----

討論功能關閉中。