0

0
0

文字

分享

0
0
0

當我們同在一起創作,智慧系統與人的互動機制如何設計才能讓人快樂無比?

人機共生你我它_96
・2018/12/28 ・4966字 ・閱讀時間約 10 分鐘 ・SR值 541 ・八年級

-----廣告,請繼續往下閱讀-----

假如在不久的將來,我們有可能與 AI 共同創作,像是共同寫作、編劇、編曲、拍攝影片、繪畫等;那麼在這共創的情境下,假使 AI 系統提供人類不同詳細程度的說明時,人類的共創體驗會如何受影響?而在 AI 與人合作的過程中,誰該當領導者來主導整個合作?人類會想要主動引導嗎?假使 AI 成為發號施令的角色、而人類只能配合時,又會帶來什麼體驗?

  • 註:本文提及的「AI系統」指的是在繪畫這個特定任務上,系統根據輸入的資訊,利用統計方法、深度學習的模型進行辨識和預測,進而輸出相對應資訊的系統。為求方便溝通,在以下的文中以「AI系統」或「AI」簡略稱呼這個具備基礎推理、學習能力的繪畫系統。

Photo by Steinar Engeland on Unsplash

近年來越來越多關於人工智慧是否會取代工作、哪些工作會被取代等主題的討論。當各式各樣的 AI 系統日漸普及在你我生活中,食、衣、住、行、育、樂各層面都有 AI 參與,使用者與 AI 系統的互動該如何設計,是人機互動領域持續探索的主題之一。

AI 除了協助人類完成重複性高的例行事務,也能輔助人類跨越專家與新手之間的門檻。像 Google 推出的AutoDraw,能夠讓非繪畫專家簡單畫出基本物件輪廓後,自動幫使用者補齊畫面上可能適合的要素,讓繪畫新手也能開啟創作的第一步;MIT CSAILab 也推出了以 AI 為基礎,根據圖像意義去背的圖像編輯工具Wix 這個線上網頁建置服務也在網頁設計的功能結合 AI 的服務,幫助使用者在沒有太多網頁設計或程式開發的技術前提下,製作出具有特色的個人網站。

  • AI與你協作圖像編輯。

設計 AI 服務合作時,有哪些潛在問題需要注意?

這些 AI 的應用,讓人類有更多跟 AI 一起合作、甚至是共同創作的機會。那麼,當人跟具有 AI 的服務合作時,有什麼潛在問題需要注意?身為提供AI服務的設計者,該留意哪些事?另一方面,身為與 AI 系統互動的使用者能以什麼角度看待自己與 AI 的關係?本文主要介紹由韓國首爾大學研究團隊在 CHI18 發表的研究,便嘗試了解當人與 AI 一起創作的時候,在這互動過程中可能出現哪些潛在問題?人有什麼體驗?並根據研究發現提出未來人工智慧系統設計上需考量的方向。

為回答這個研究問題,研究團隊們以「繪畫」當作了解「人與 AI 共創」的實驗任務,並設計了一個具備 AI 功能的繪畫軟體(以下簡稱AI),這個系統包含幾個功能:自動補齊使用者畫到一半的內容、自動畫出跟先前類似的物件、根據先前被畫出的物件自動產出相對應的新物件、提醒使用者畫布中太過空白的區塊、根據使用者指定的顏色自動上色。這些 AI 繪圖功能主要來自於 Google Sketch-RNN [2] 以及團隊自行開發的演算法。

-----廣告,請繼續往下閱讀-----

接著,研究者設計了五種不同互動情境:

  1. 人擔任主導者,AI 繪圖軟體提供詳細的系統說明;
  2. 人擔任主導者,但是 AI 繪圖軟體提供簡略的系統說明;
  3. 人擔任輔助者,而 AI 繪圖軟體提供詳細的系統說明;
  4. 人擔任輔助者,而 AI 繪圖軟體提供簡略的系統說明;
  5. 使用者沒有與 AI 互動,獨自完成繪畫任務。

研究團隊邀請了 30 位使用者輪流擔任主導者與輔助者,先後在五個實驗情境中完成指定的繪圖任務,同時他們也利用放聲思考法,亦即在繪畫過程中要把自己腦中所想的內容講出來,以便提供研究分析資料

研究者們根據問卷蒐集了使用者在五種情境下自評的軟體使用性、互動體驗、訪談內容,以及放聲思考的內容,分析、整理出以下幾個發現

  1. 使用者認為跟 AI 共創的過程是有趣且較有效率的;
  2. 使用者偏好 AI 提供詳細的系統說明;
  3. 使用者在合作過程中想擁有主導權。

AI 給予即時創作靈感有效,但人容易缺乏掌控感

當使用者跟 AI 一起創作時,使用者認為有 AI 輔助的情況下使得過程更加有趣與有效率。使用者表示當他們停頓時,AI 會很快建議他們可以畫什麼內容,AI 有時候也會畫出讓使用者意想不到的內容,讓他們感到驚艷;而當 AI 指出畫布上有哪些地方留白太多時,使用者也提到這可以迫使他們去思考應該增加什麼內容來豐富作品;也有人指出和 AI 一起畫畫就像跟另一個人一起畫畫一樣,這讓他畫出自己獨自無法畫出的內容。

然而另一方面,使用者認為在沒有 AI 介入的情況下,整個繪畫過程是較能預期、容易理解且能自己掌控,例如當 AI 畫出一個像是電腦剪貼出來的圖形時,如果跟本來手繪的畫風不一致,使用者便覺得畫面不協調;另外,當 AI 畫得比人好的時候,使用者也會覺得自己廢廢的,心想如果整幅畫都由 AI 自己完成說不定畫面會更好看 (。ŏ_ŏ)

-----廣告,請繼續往下閱讀-----
對多數人來說,如果失去掌握感很容易挫折。圖/pixabay

使用者偏好詳細說明建議,粗略說明讓人迷惑

而當 AI 提供詳細說明,告訴使用者為什麼它會提出這些建議、為什麼會有這些系統行為時,相較於提供粗略說明的情況下,使用者認為有詳細說明的互動是較有效率、溝通品質較好、較容易理解、也更在自己掌控之中的。詳細的指示內容讓使用者覺得自己更了解系統如何運作的,並且覺得自己好像是在跟一個有智慧的人互動、溝通。

有使用者提到在接收到詳細說明的情況下,他們喜歡 AI 建議下一步可以怎麼做、AI 的指示會讓他們覺得自己在適當的方向上創作,也進而對當前的創作過程更有信心;然而在接收粗略說明的情況下,使用者表示不明白系統的某些指示到底是希望自己做什麼事;而當使用者看到 AI 很智慧地自動補齊自己畫到一半的內容時,也會想知道系統究竟是根據哪些線索來作畫。另一方面,當 AI 給出的指令是些空洞無意義的話時,使用者會覺得反感,例如有人提到當自己不是很滿意目前的畫作時,這時候 AI 竟自動回覆一句:「畫得可真好!」,這位使用者頓時覺得自己被 AI 嘲諷……(´_ゝ`)

使用者不喜歡成為 AI 的輔助者

分析結果發現,使用者並不喜歡自己成為 AI 的輔助者──人們認為自己才是決定該畫什麼的角色。當使用者擔任輔助者角色與 AI 共同繪畫時,他們表示當被 AI 告知要在某個區塊上色時,當下有種被冒犯的感覺,覺得這種雜事應該是由電腦做而不是人要做的;也不喜歡這種被 AI 當成工具人指使的感覺,這讓他們覺得只是在回應 AI 的指示,根本不算是「共創」;並且也認為 AI 給予指示時應該要有禮貌,而不該只是叫他照著做;而當 AI 提出一個使用者不明白的要求時,他們說不知道系統到底想搞什麼,但自己對這種情況也無能為力,他們沒有任何協商空間來改變系統做出的決定,所以有些人乾脆直接忽略 AI 的指示,或是希望未來如果還有類似情況出現,自己能有和 AI 協商的空間。

Photo by Vidar Nordli-Mathisen on Unsplash

設計智慧系統互動機制的三個訣竅:引發好奇心、保持透明度、讓人維持掌控感

透過讓使用者跟 AI 一起畫畫的研究,我們初步知道了當人和 AI 共同進行創作時,可能需要注意的幾個面向,那麼這些發現對未來 AI 系統設計能有什麼啟發?

-----廣告,請繼續往下閱讀-----

透過與 AI 的互動引起人的好奇心與創造力

在進行需要創造力的活動時,AI 產生讓人出其不意的內容時會讓人感到新奇,因此在創作時若能夠讓創作者在與AI 互動過程中由 AI 提供「適度」的隨機性,也許能幫助創作者進行聯想,進而激發更多創造力;不過有一點需要留意的是,「風格」在創作過程中對創作者與欣賞者而言也是個重要的因素,當未來 AI 跟人共創成為可能時,如何避免 AI  突然拋出風格迥異的內容是其中一個需要考量的設計方向。

讓AI的運作保持適度的透明

當 AI 提供詳細的運作機制讓使用者了解時,例如向使用者解釋系統是根據什麼資訊推薦某個創作素材、說明為什麼系統能判斷人畫到一半的物件等,使用者會感覺自己比較能預測及掌控系統行為、覺得自己比較能夠理解系統運作,這些都會提升人與智慧系統互動時的體驗,特別是在運用創造力的任務上,詳細的系統說明能讓創作者感覺自己是在跟另一個「人」共同創作,而當系統提供適當的回應時,也可能增進創作者的自信;不過接下來要面對的挑戰之一在於讓 AI 能夠「見機行事」,而非隨機給出模板式的回應,才能避免創作者在這共創過程中產生負面體驗。

控制權掌握在人的手中

從實驗的結果可以知道,無論使用者被指定為主導者或輔助者,人都期望自己在跟 AI 互動時,最終決定權在自己身上,而人似乎也預設了自己跟 AI 各自需要扮演什麼角色,像是重複性高的事該由 AI 處理、人則是處理架構的問題等。因此,當我們在設計人與智慧系統的互動時,也可以思考要如何才能夠讓使用者感受到自己對科技物擁有主控權,而非被科技物控制。

 

-----廣告,請繼續往下閱讀-----

當人與 AI 系統互動時,智慧系統需要提供多少程度的說明讓使用者明白系統背後的運作,一直是人機互動與人工智慧研究領域在意的研究主題之一。AI 演算法對末端使用者來說經常是一個黑盒子,像是當我們在和聊天機器人對話時,經常不清楚系統到底是根據哪些資訊、透過哪些方式回應我們這些話;又或是當我們在瀏覽社群媒體時,不清楚推薦系統到底向我們蒐集了哪些資料、又如何判斷該推薦給我們什麼文章或影片;除了末端使用者需要知道系統的基本運作之外,對開發者而言,AI 演算法成為黑盒子也會使得開發者或設計者無從找尋系統出錯的來源,或是無法控制 AI 為什麼會有意料之外的輸出。

在讀了這篇研究後,身為系統開發者的工程師或設計師們可以一起思考該如何拿捏系統「透明度」的設定;而身為與越來越有智慧的系統互動的我們也可以想想:有哪些事情在 AI 的陪同之下我們可能會做得更好?我們會想跟 AI 在什麼層面進行共同創作?AI 要具備什麼能力才能讓我們覺得跟它合作的體驗是正向的?

備註

  • 本篇是擷取原始論文中部分內容搭配筆者想分享的概念所架構而成,部分研究細節與討論並未完全呈現,鼓勵有興趣的讀者直接參考原文深入了解細節。本篇目的在於讓讀者了解人機互動領域中如何切入人工智慧的主題,並提出未來 AI 系統的設計指引。內文並非逐字翻譯,亦不能取代原文

本文轉載自《人機共生你我它》,原文為《除了讓人工智慧更加智慧,還缺了什麼?》。
「人機共生你我它」由一群致力於人機互動研究(HCI, Human-Computer Interaction)的研究者所創立,我們定期發表人機互動相關文章,讓更多讀者了解這門結合資工、心理、設計等學科的跨領域知識以及它在實務層面的應用。

延伸閱讀:

Reference:

  1. Oh, C., Song, J., Choi, J., Kim, S., Lee, S., & Suh, B. (2018, April). I Lead, You Help but Only with Enough Details: Understanding User Experience of Co-Creation with Artificial Intelligence. In Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems (p. 649). ACM.
  2. David Ha and Douglas Eck. 2017. A Neural Representation of Sketch Drawings. arXiv preprint arXiv:1704.03477 (2017).
-----廣告,請繼續往下閱讀-----
文章難易度
人機共生你我它_96
12 篇文章 ・ 4 位粉絲
由致力於人機互動研究(HCI, Human-Computer Interaction)的研究者與實務工作者所創立,我們定期發表人機互動相關文章,與讀者一起思考科技對社會生活帶來的好處與限制。

0

1
0

文字

分享

0
1
0
數智驅動未來:從信任到執行,AI 為企業創新賦能
鳥苷三磷酸 (PanSci Promo)_96
・2025/01/13 ・4938字 ・閱讀時間約 10 分鐘

-----廣告,請繼續往下閱讀-----

本文由 鼎新數智 與 泛科學 共同規劃與製作

你有沒有想過,當 AI 根據病歷與 X 光片就能幫你診斷病症,或者決定是否批准貸款,甚至從無人機發射飛彈時,它的每一步「決策」是怎麼來的?如果我們不能知道 AI 的每一個想法步驟,對於那些 AI 輔助的診斷和判斷,要我們如何放心呢?

馬斯克與 OpenAI 的奧特曼鬧翻後,創立了新 AI 公司 xAI,並推出名為 Grok 的產品。他宣稱目標是以開源和可解釋性 AI 挑戰其他模型,而 xAI 另一個意思是 Explainable AI 也就是「可解釋性 AI」。

如今,AI 已滲透生活各處,而我們對待它的方式卻像求神問卜,缺乏科學精神。如何讓 AI 具備可解釋性,成為當前關鍵問題?

-----廣告,請繼續往下閱讀-----
AI 已滲透生活各處,而我們對待它的方式卻像求神問卜,缺乏科學精神。如何讓 AI 具備可解釋性,成為當前關鍵問題?圖/pexels

黑盒子模型背後的隱藏秘密

無法解釋的 AI 究竟會帶來多少問題?試想,現在許多銀行和貸款機構已經使用 AI 評估借貸申請者的信用風險,但這些模型往往如同黑箱操作。有人貸款被拒,卻完全不知原因,感覺就像被分手卻不告訴理由。更嚴重的是,AI 可能擅自根據你的住所位置或社會經濟背景給出負面評價,這些與信用風險真的相關嗎?這種不透明性只會讓弱勢群體更難融入金融體系,加劇貧富差距。這種不透明性,會讓原本就已經很難融入金融體系的弱勢群體,更加難以取得貸款,讓貧富差距越來越大,雪上加霜。

AI 不僅影響貸款,還可能影響司法公正性。美國部分法院自 2016 年起使用「替代性制裁犯罪矯正管理剖析軟體」 COMPAS 這款 AI 工具來協助量刑,試圖預測嫌犯再犯風險。然而,這些工具被發現對有色人種特別不友好,往往給出偏高的再犯風險評估,導致更重的刑罰和更嚴苛的保釋條件。更令人擔憂的是,這些決策缺乏透明度,AI 做出的決策根本沒法解釋,這讓嫌犯和律師無法查明問題根源,結果司法公正性就這麼被悄悄削弱了。

此外,AI 在醫療、社交媒體、自駕車等領域的應用,也充滿類似挑戰。例如,AI 協助診斷疾病,但若原因報告無法被解釋,醫生和患者又怎能放心?同樣地,社群媒體或是 YouTube 已經大量使用 AI 自動審查,以及智慧家居或工廠中的黑盒子問題,都像是一場越來越複雜的魔術秀——我們只看到結果,卻無法理解過程。這樣的情況下,對 AI 的信任感就成為了一個巨大的挑戰。

為什麼人類設計的 AI 工具,自己卻無法理解?

原因有二。首先,深度學習模型結構複雜,擁有數百萬參數,人類要追蹤每個輸入特徵如何影響最終決策結果,難度極高。例如,ChatGPT 中的 Transformer 模型,利用注意力機制(Attention Mechanism)根據不同詞之間的重要性進行特徵加權計算,因為機制本身涉及大量的矩陣運算和加權計算,這些數學操作使得整個模型更加抽象、不好理解。

-----廣告,請繼續往下閱讀-----

其次,深度學習模型會會從資料中學習某些「特徵」,你可以當作 AI 是用畫重點的方式在學習,人類劃重點目的是幫助我們加速理解。AI 的特徵雖然也能幫助 AI 學習,但這些特徵往往對人類來說過於抽象。例如在影像辨識中,人類習慣用眼睛、嘴巴的相對位置,或是手指數量等特徵來解讀一張圖。深度學習模型卻可能會學習到一些抽象的形狀或紋理特徵,而這些特徵難以用人類語言描述。

深度學習模型通常採用分佈式表示(Distributed Representation)來編碼特徵,意思是將一個特徵表示為一個高維向量,每個維度代表特徵的不同方面。假設你有一個特徵是「顏色」,在傳統的方式下,你可能用一個簡單的詞來表示這個特徵,例如「紅色」或「藍色」。但是在深度學習中,這個「顏色」特徵可能被表示為一個包含許多數字的高維向量,向量中的每個數字表示顏色的不同屬性,比如亮度、色調等多個數值。對 AI 而言,這是理解世界的方式,但對人類來說,卻如同墨跡測驗般難以解讀。

假設你有一個特徵是「顏色」,在傳統的方式下,你可能用一個簡單的詞來表示這個特徵,例如「紅色」或「藍色」。但是在深度學習中,這個「顏色」特徵可能被表示為一個包含許多數字的高維向量,向量中的每個數字表示顏色的不同屬性,比如亮度、色調等多個數值。圖/unsplash

試想,AI 協助診斷疾病時,若理由是基於醫生都無法理解的邏輯,患者即使獲得正確診斷,也會感到不安。畢竟,人們更相信能被理解的東西。

打開黑盒子:可解釋 AI 如何運作?我們要如何教育 AI?

首先,可以利用熱圖(heatmap)或注意力圖這類可視化技術,讓 AI 的「思維」有跡可循。這就像行銷中分析消費者的視線停留在哪裡,來推測他們的興趣一樣。在卷積神經網絡和 Diffusion Models 中 ,當 AI 判斷這張照片裡是「貓」還是「狗」時,我需要它向我們展示在哪些地方「盯得最緊」,像是耳朵的形狀還是毛色的分布。

-----廣告,請繼續往下閱讀-----

其次是局部解釋,LIME 和 SHAP 是兩個用來發展可解釋 AI 的局部解釋技術。

SHAP 的概念來自博弈,它將每個特徵看作「玩家」,而模型的預測結果則像「收益」。SHAP 會計算每個玩家對「收益」的貢獻,讓我們可以了解各個特徵如何影響最終結果。並且,SHAP 不僅能透過「局部解釋」了解單一個結果是怎麼來的,還能透過「全局解釋」理解模型整體的運作中,哪些特徵最重要。

以實際的情景來說,SHAP 可以讓 AI 診斷出你有某種疾病風險時,指出年齡、體重等各個特徵的影響。

LIME 的運作方式則有些不同,會針對單一個案建立一個簡單的模型,來近似原始複雜模型的行為,目的是為了快速了解「局部」範圍內的操作。比如當 AI 拒絕你的貸款申請時,LIME 可以解釋是「收入不穩定」還是「信用紀錄有問題」導致拒絕。這種解釋在 Transformer 和 NLP 應用中廣泛使用,一大優勢是靈活且計算速度快,適合臨時分析不同情境下的 AI 判斷。比方說在醫療場景,LIME 可以幫助醫生理解 AI 為何推薦某種治療方案,並說明幾個主要原因,這樣醫生不僅能更快做出決策,也能增加患者的信任感。

-----廣告,請繼續往下閱讀-----

第三是反事實解釋:如果改變一點點,會怎麼樣?

如果 AI 告訴你:「這家銀行不會貸款給你」,這時你可能會想知道:是收入不夠,還是年齡因素?這時你就可以問 AI:「如果我年輕五歲,或者多一份工作,結果會怎樣?」反事實解釋會模擬這些變化對結果的影響,讓我們可以了解模型究竟是如何「權衡利弊」。

最後則是模型內部特徵的重要性排序。這種方法能顯示哪些輸入特徵對最終結果影響最大,就像揭示一道菜中,哪些調味料是味道的關鍵。例如在金融風險預測中,模型可能指出「收入」影響了 40%,「消費習慣」占了 30%,「年齡」占了 20%。不過如果要應用在像是 Transformer 模型等複雜結構時,還需要搭配前面提到的 SHAP 或 LIME 以及可視化技術,才能達到更完整的解釋效果。

講到這裡,你可能會問:我們距離能完全信任 AI 還有多遠?又或者,我們真的應該完全相信它嗎?

-----廣告,請繼續往下閱讀-----

我們終究是想解決人與 AI 的信任問題

當未來你和 AI 同事深度共事,你自然希望它的決策與行動能讓你認可,幫你省心省力。因此,AI 既要「可解釋」,也要「能代理」。

當未來你和 AI 同事深度共事,你自然希望它的決策與行動能讓你認可,幫你省心省力。圖/unsplash

舉例來說,當一家公司要做一個看似「簡單」的決策時,背後的過程其實可能極為複雜。例如,快時尚品牌決定是否推出新一季服裝,不僅需要考慮過去的銷售數據,還得追蹤熱門設計趨勢、天氣預測,甚至觀察社群媒體上的流行話題。像是暖冬來臨,厚外套可能賣不動;或消費者是否因某位明星愛上一種顏色,這些細節都可能影響決策。

這些數據來自不同部門和來源,龐大的資料量與錯綜關聯使企業判斷變得困難。於是,企業常希望有個像經營大師的 AI 代理人,能吸收數據、快速分析,並在做決定時不僅給出答案,還能告訴你「為什麼要這麼做」。

傳統 AI 像個黑盒子,而可解釋 AI (XAI)則清楚解釋其判斷依據。例如,為什麼不建議推出厚外套?可能理由是:「根據天氣預測,今年暖冬概率 80%,過去三年數據顯示暖冬時厚外套銷量下降 20%。」這種透明解釋讓企業更信任 AI 的決策。

-----廣告,請繼續往下閱讀-----

但會解釋還不夠,AI 還需能真正執行。這時,就需要另一位「 AI 代理人」上場。想像這位 AI 代理人是一位「智慧產品經理」,大腦裝滿公司規則、條件與行動邏輯。當客戶要求變更產品設計時,這位產品經理不會手忙腳亂,而是按以下步驟行動:

  1. 檢查倉庫物料:庫存夠不夠?有沒有替代料可用?
  2. 評估交期影響:如果需要新物料,供應商多快能送到?
  3. 計算成本變化:用新料會不會超出成本預算?
  4. 做出最優判斷,並自動生成變更單、工單和採購單,通知各部門配合執行。

這位 AI 代理人不僅能自動處理每個環節,還會記錄每次決策結果,學習如何變得更高效。隨時間推移,這位「智慧產品經理」的判斷將更聰明、決策速度更快,幾乎不需人工干預。更重要的是,這些判斷是基於「以終為始」的原則,為企業成長目標(如 Q4 業績增長 10%)進行連續且動態地自我回饋,而非傳統系統僅月度檢核。

這兩位 AI 代理人的合作,讓企業決策流程不僅透明,還能自動執行。這正是數智驅動的核心,不僅依靠數據驅動決策,還要能解釋每一個選擇,並自動行動。這個過程可簡化為 SUPA,即「感知(Sensing)→ 理解(Understanding)→ 規劃(Planning)→ 行動(Acting)」的閉環流程,隨著數據的變化不斷進化。

偉勝乾燥工業為例,他們面臨高度客製化與訂單頻繁變更的挑戰。導入鼎新 METIS 平台後,偉勝成功將數智驅動融入業務與產品開發,專案準時率因此提升至 80%。他們更將烤箱技術與搬運機器人結合,開發出新形態智慧化設備,成功打入半導體產業,帶動業績大幅成長,創造下一個企業的增長曲線。

-----廣告,請繼續往下閱讀-----

值得一提的是,數智驅動不僅帶動業務增長,還讓員工擺脫繁瑣工作,讓工作更輕鬆高效。

數智驅動的成功不僅依賴技術,還要與企業的商業策略緊密結合。為了讓數智驅動真正發揮作用,企業首先要確保它服務於具體的業務需求,而不是為了技術而技術。

這種轉型需要有策略、文化和具體應用場景的支撐,才能讓數智驅動真正成為企業持續增長的動力。

還在猶豫數智驅動的威力?免費上手企業 AI 助理!👉 企業 AI 體驗
現在使用專屬邀請碼《 KP05 》註冊就享知:https://lihi.cc/EDUk4
訂閱泛科學獨家知識頻道,深入科技趨勢與議題內容。

👉立即免費加入

-----廣告,請繼續往下閱讀-----
鳥苷三磷酸 (PanSci Promo)_96
222 篇文章 ・ 313 位粉絲
充滿能量的泛科學品牌合作帳號!相關行銷合作請洽:contact@pansci.asia

0

1
0

文字

分享

0
1
0
從遊戲到量子計算:NVIDIA 憑什麼在 AI 世代一騎絕塵?
PanSci_96
・2025/01/09 ・2941字 ・閱讀時間約 6 分鐘

-----廣告,請繼續往下閱讀-----

AI 與 GPU 的連結:為什麼 NVIDIA 股價一路飆?

2023 年至今,人工智慧(AI)熱潮引爆全球科技圈的競爭與創新,但最受矚目的企業,莫過於 NVIDIA。它不僅長期深耕遊戲顯示卡市場,在近年來卻因為 AI 應用需求的飆升,一舉躍居市值龍頭。原因何在?大家可能會直覺認為:「顯示卡性能強,剛好給 AI 訓練用!」事實上,真正的關鍵並非只有強悍的硬體,而是 NVIDIA 打造的軟硬體整合技術──CUDA

接下來將為你剖析 CUDA 與通用圖形處理(GPGPU)的誕生始末,以及未來 NVIDIA 持續看好的量子計算與生醫應用,一窺這家企業如何從「遊戲顯示卡大廠」蛻變為「AI 世代的領航者」。

歡迎訂閱 Pansci Youtube 頻道 獲取更多深入淺出的科學知識!

CPU vs. GPU:為何顯示卡能成為 AI 領跑者?

在電腦運作中,CPU(中央處理器)向來是整個系統的「大腦」,負責執行指令、邏輯判斷與多樣化的運算。但是,AI 模型訓練需要面對的是龐大的數據量與繁複的矩陣或張量運算。這些運算雖然單一步驟並不複雜,但需要進行「海量且重複性極高」的計算,CPU 難以在短時間內完成。

反觀 GPU(圖形處理器),原先是用來處理遊戲畫面渲染,內部具有 大量且相對簡單的算術邏輯單元。GPU 可以同時在多個核心中進行平行化運算,就像一座「高度自動化、流水線式」的工廠,可一次處理大量像素、頂點或是 AI 訓練所需的運算。這讓 GPU 在大量數值計算上遠遠超越了 CPU 的處理速度,也讓「顯示卡算 AI」成了新時代的主流。

-----廣告,請繼續往下閱讀-----

顯示卡不只渲染:GPGPU 與 CUDA 的誕生

早期,GPU 只被視為遊戲繪圖的利器,但 NVIDIA 的創辦人黃仁勳很快察覺到:這種多核心平行化的結構,除了渲染,也能用來處理科學運算。於是,NVIDIA 在 2007 年正式推出了名為 CUDA(Compute Unified Device Architecture) 的平台。這是一套讓開發者能以熟悉的程式語言(如 C、C++、Python)來調用 GPU 資源的軟體開發工具套件,解決了「人類要如何對 GPU 下指令」的問題。

在 CUDA 出現之前,若要把 GPU 用於渲染以外的用途,往往必須透過「著色器語言」或 OpenGL、DirectX 等繪圖 API 進行繁瑣的間接操作。對想用 GPU 加速數學或科學研究的人來說,門檻極高。然而,有了 CUDA,開發者不需理解圖像著色流程,也能輕鬆呼叫 GPU 的平行運算能力。這代表 GPU 從遊戲卡一躍成為「通用圖形處理單元」(GPGPU),徹底拓展了它在科學研究、AI、影像處理等領域的應用版圖。

AI 崛起的臨門一腳:ImageNet 大賽的關鍵一擊

如果說 CUDA 是 NVIDIA 邁向 AI 領域的踏腳石,那麼真正讓 GPU 與 AI 完美結合的轉捩點,發生在 2012 年的 ImageNet 大規模視覺辨識挑戰賽(ILSVRC)。這場由李飛飛教授創辦的影像辨識競賽中,參賽團隊需要對龐大的影像數據進行訓練、分類及辨識。就在那一年,名為「AlexNet」的深度學習模型橫空出世,利用 GPU 進行平行運算,大幅減少了訓練時間,甚至比第二名的辨識率高出將近 10 個百分點,震撼了全球 AI 研究者。

AlexNet 的成功,讓整個學界與業界都注意到 GPU 在深度學習中的強大潛力。CUDA 在此時被奉為「不二之選」,再加上後來發展的 cuDNN 等深度學習函式庫,讓開發者不必再自行編寫底層 GPU 程式碼,建立 AI 模型的難度與成本大幅降低,NVIDIA 的股價也因此搭上了 AI 波浪,一飛沖天。

-----廣告,請繼續往下閱讀-----
AlexNet 的成功凸顯 GPU 在深度學習中的潛力。圖/unsplash

為什麼只有 NVIDIA 股價衝?對手 AMD、Intel 在做什麼?

市面上有多家廠商生產 CPU 和 GPU,例如 AMD 與 Intel,但為什麼只有 NVIDIA 深受 AI 市場青睞?綜觀原因,硬體只是其一,真正不可或缺的,是 「軟硬體整合」與「龐大的開發者生態系」

硬體部分 NVIDIA 長年深耕 GPU 技術,產品線完整,且數據中心級的顯示卡在能耗與性能上具領先優勢。軟體部分 CUDA 及其相關函式庫生態,涵蓋了影像處理、科學模擬、深度學習(cuDNN)等多方面,讓開發者易於上手且高度依賴。

相比之下,雖然 AMD 也推行了 ROCm 平台、Intel 有自家解決方案,但在市場普及度與生態支持度上,依舊與 NVIDIA 有相當差距。

聰明的管理者

GPU 的優勢在於同時有成百上千個平行運算核心。當一個深度學習模型需要把數據切分成無數個小任務時,CUDA 負責將這些任務合理地排班與分配,並且在記憶體讀寫方面做出最佳化。

-----廣告,請繼續往下閱讀-----
  • 任務分類:同性質的任務集中處理,以減少切換或等待。
  • 記憶體管理:避免資料在 CPU 與 GPU 之間頻繁搬移,能大幅提升效率。
  • 函式庫支援:如 cuDNN,針對常見的神經網路操作(卷積、池化等)做進一步加速,使用者不必從零開始撰寫平行運算程式。

結果就是,研究者、工程師甚至學生,都能輕鬆把 GPU 能力用在各式各樣的 AI 模型上,訓練速度自然飛漲。

從 AI 到量子計算:NVIDIA 對未來的佈局

當 AI 波浪帶來了股價與市值的激增,NVIDIA 並沒有停下腳步。實際上,黃仁勳與團隊還在積極耕耘下一個可能顛覆性的領域──量子計算

2023 年,NVIDIA 推出 CUDA Quantum 平台,嘗試將量子處理器(QPU)與傳統 GPU / CPU 整合,以混合式演算法解決量子電腦無法單獨加速的部分。就像為 AI 量身打造的 cuDNN 一樣,NVIDIA 也對量子計算推出了相對應的開發工具,讓研究者能在 GPU 上模擬量子電路,或與量子處理器協同運算。

NVIDIA 推出 CUDA Quantum 平台,整合 GPU 與 QPU,助力混合量子運算。圖/unsplash

這項新布局,或許還需要時間觀察是否能孕育出市場級應用,但顯示 NVIDIA 對「通用運算」的野心不只停留於 AI,也想成為「量子時代」的主要推手。

-----廣告,請繼續往下閱讀-----

AI 熱潮下,NVIDIA 凭什麼坐穩王座?

回到一開始的疑問:「為什麼 AI 熱,NVIDIA 股價就一定飛?」 答案可簡化為兩點:

  1. 硬體領先 + 軟體生態:顯示卡性能強固然重要,但 CUDA 建立的開發者生態系才是關鍵。
  2. 持續布局未來:當 GPU 為 AI 提供高效能運算平台,NVIDIA 亦不斷將資源投入到量子計算、生醫領域等新興應用,為下一波浪潮預先卡位。

或許,正因為不斷探索新技術與堅持軟硬整合策略,NVIDIA 能在遊戲市場外再創一個又一個高峰。雖然 AMD、Intel 等競爭者也全力追趕,但短期內想撼動 NVIDIA 的領先地位,仍相當不易。

未來,隨著 AI 技術持續突破,晶片性能與通用運算需求只會節節攀升。「AI + CUDA + GPU」 的組合,短時間內看不出能被取代的理由。至於 NVIDIA 是否能繼續攀向更驚人的市值高峰,甚至在量子計算跑道上再拿下一座「王者寶座」,讓我們拭目以待。

歡迎訂閱 Pansci Youtube 頻道 鎖定每一個科學大事件!

-----廣告,請繼續往下閱讀-----

討論功能關閉中。

PanSci_96
1262 篇文章 ・ 2408 位粉絲
PanSci的編輯部帳號,會發自產內容跟各種消息喔。

0

1
0

文字

分享

0
1
0
AI 能像人類一樣思考?諾貝爾物理學獎研究助力人工智慧模擬人類大腦
PanSci_96
・2024/11/14 ・2117字 ・閱讀時間約 4 分鐘

-----廣告,請繼續往下閱讀-----

即使再怎麼模仿,AI 終究無法以與生物相同的方式思考吧?畢竟電腦的電子元件和我們大腦中的神經細胞結構截然不同。再怎麼模仿,AI 終究無法以與生物相同的方式思考吧?

錯,可以。

2024 年諾貝爾物理學獎跌破所有專家的眼鏡,頒給了兩位研究機器學習的科學家——約翰·霍普菲爾德(John Hopfield)和傑佛瑞·辛頓(Geoffrey Hinton)。他們以「人工」的方法打造了類神經網路,最終模擬出生物的「智慧」,奠定了當代深度學習的基礎。

為什麼解決人工智慧發展瓶頸的,竟然會是物理學?物理要怎麼讓 AI 更像人類?

-----廣告,請繼續往下閱讀-----
歡迎訂閱 Pansci Youtube 頻道 獲取更多深入淺出的科學知識!

從巴甫洛夫的狗到赫布理論:理解學習的基礎

為了解答這個疑問,我們需要一些背景知識。

20 世紀初,俄羅斯心理學家巴甫洛夫發現,狗在食物還沒入口前,就會開始分泌唾液。他進行了一系列實驗,改變食物出現前的環境,比如讓狗習慣在聽到鈴聲後馬上得到食物。久而久之,狗只要聽到鈴聲,就會開始分泌唾液。

大約 50 年後,神經科學家赫布(Donald Hebb)提出了一個假說:大腦中相近的神經元,因為經常同時放電,會產生更強的連結。這種解釋稱為「赫布理論」,不僅奠定了神經心理學的發展,更成為現代深度學習的基礎。

然而,赫布理論雖然描述了鄰近神經元的關係,卻無法解釋大腦如何建構出如此複雜的聯想網路。

-----廣告,請繼續往下閱讀-----

霍普菲爾德網路:物理學家對神經網路的貢獻

然而,赫布理論雖能描述神經元之間的關係,卻缺乏數學模型。物理學家約翰·霍普菲爾德從數學家約翰·康威(John Conway)的「生命遊戲」(Game of Life)中獲得靈感,試圖建立一個可以在電腦上運行的記憶系統。

霍普菲爾德受「生命遊戲」啟發,嘗試建立電腦記憶系統。圖/envato

「生命遊戲」由數學家康威(John Conway)發明,玩家開始時有一個棋盤,每個格子代表一個細胞,細胞可以是「活」或「死」的狀態。根據特定規則,細胞會根據鄰居的狀態決定下一次的生存狀態。康威的目的是展示複雜的系統不一定需要複雜的規則。

霍普菲爾德發現,這個遊戲與赫布理論有強大的關聯性。大腦中的大量神經元,在出生時處於初始狀態,經過刺激後,神經元間的連結會產生或斷裂,形成強大的記憶系統。他希望利用這些理論,創造一個能在電腦上運行的記憶系統。

然而,他面臨一個難題:赫布理論沒有明確的數學模型來決定神經元連結的規則。而在電腦上運行,必須要有明確的數學規則。

-----廣告,請繼續往下閱讀-----

物理學的啟發:易辛模型

霍普菲爾德從物理學的研究中找到了類似的模型:易辛模型(Ising Model)。這個模型用於解釋鐵磁性物質的磁性特性。

在鐵磁性物質中,電子具有「自旋」,自旋產生磁矩。電子的自旋方向只有「向上」或「向下」,這就像生命遊戲中細胞的「生」或「死」。鄰近的電子會影響彼此的自旋方向,類似於細胞之間的互動。

易辛模型能用數學描述電子間的相互影響,並通過計算系統能量,得出自旋狀態的分佈。霍普菲爾德借用了這個概念,將神經元的互動視為電子自旋的互動。

他結合了康威生命遊戲的時間演化概念、易辛模型的能量計算,以及赫布理論的動態連結,創造了「霍普菲爾德網路」。這讓電腦能夠模擬生物大腦的學習過程。

-----廣告,請繼續往下閱讀-----

突破瓶頸:辛頓與波茲曼機

約翰·霍普菲爾德於1982年發明聯想神經網路,即「霍普菲爾網路」。圖/wikimedia

然而,霍普菲爾德網路並非完美。它容易陷入「局部最小值」的問題,無法找到系統的全局最優解。為了解決這個問題,加拿大計算機科學家傑佛瑞·辛頓(Geoffrey Hinton)提出了「波茲曼機」(Boltzmann Machine)。

辛頓將「模擬退火」的概念引入神經網路,允許系統以一定的機率跳出局部最小值,尋找全局最優解。他還引入了「隱藏層」的概念,將神經元分為「可見層」和「隱藏層」,提高了網路的學習能力。

受限波茲曼機(Restricted Boltzmann Machine)進一步簡化了模型,成為深度學習的基礎結構之一。這些創新使得 AI 能夠更有效地模擬人類的思維和學習過程。

AI 的未來:跨學科的融合

霍普菲爾德和辛頓的工作,將物理學的概念成功應用於人工智慧。他們的研究不僅解決了 AI 發展的瓶頸,還奠定了深度學習的基礎,對現代 AI 技術產生了深遠的影響。因此,2024 年諾貝爾物理學獎頒給他們,並非意外,而是對他們在跨學科領域的重大貢獻的肯定。

-----廣告,請繼續往下閱讀-----

AI 的發展,離不開物理學、生物學、數學等多學科的融合。霍普菲爾德和辛頓的工作,正是這種融合的典範。未來,隨著科學技術的進步,我們有理由相信,AI 將越來越接近人類的思維方式,甚至可能超越我們的想像。

-----廣告,請繼續往下閱讀-----

討論功能關閉中。

PanSci_96
1262 篇文章 ・ 2408 位粉絲
PanSci的編輯部帳號,會發自產內容跟各種消息喔。