0

0
0

文字

分享

0
0
0

當我們同在一起創作,智慧系統與人的互動機制如何設計才能讓人快樂無比?

人機共生你我它_96
・2018/12/28 ・4966字 ・閱讀時間約 10 分鐘 ・SR值 541 ・八年級

-----廣告,請繼續往下閱讀-----

假如在不久的將來,我們有可能與 AI 共同創作,像是共同寫作、編劇、編曲、拍攝影片、繪畫等;那麼在這共創的情境下,假使 AI 系統提供人類不同詳細程度的說明時,人類的共創體驗會如何受影響?而在 AI 與人合作的過程中,誰該當領導者來主導整個合作?人類會想要主動引導嗎?假使 AI 成為發號施令的角色、而人類只能配合時,又會帶來什麼體驗?

  • 註:本文提及的「AI系統」指的是在繪畫這個特定任務上,系統根據輸入的資訊,利用統計方法、深度學習的模型進行辨識和預測,進而輸出相對應資訊的系統。為求方便溝通,在以下的文中以「AI系統」或「AI」簡略稱呼這個具備基礎推理、學習能力的繪畫系統。

Photo by Steinar Engeland on Unsplash

近年來越來越多關於人工智慧是否會取代工作、哪些工作會被取代等主題的討論。當各式各樣的 AI 系統日漸普及在你我生活中,食、衣、住、行、育、樂各層面都有 AI 參與,使用者與 AI 系統的互動該如何設計,是人機互動領域持續探索的主題之一。

AI 除了協助人類完成重複性高的例行事務,也能輔助人類跨越專家與新手之間的門檻。像 Google 推出的AutoDraw,能夠讓非繪畫專家簡單畫出基本物件輪廓後,自動幫使用者補齊畫面上可能適合的要素,讓繪畫新手也能開啟創作的第一步;MIT CSAILab 也推出了以 AI 為基礎,根據圖像意義去背的圖像編輯工具Wix 這個線上網頁建置服務也在網頁設計的功能結合 AI 的服務,幫助使用者在沒有太多網頁設計或程式開發的技術前提下,製作出具有特色的個人網站。

  • AI與你協作圖像編輯。

設計 AI 服務合作時,有哪些潛在問題需要注意?

這些 AI 的應用,讓人類有更多跟 AI 一起合作、甚至是共同創作的機會。那麼,當人跟具有 AI 的服務合作時,有什麼潛在問題需要注意?身為提供AI服務的設計者,該留意哪些事?另一方面,身為與 AI 系統互動的使用者能以什麼角度看待自己與 AI 的關係?本文主要介紹由韓國首爾大學研究團隊在 CHI18 發表的研究,便嘗試了解當人與 AI 一起創作的時候,在這互動過程中可能出現哪些潛在問題?人有什麼體驗?並根據研究發現提出未來人工智慧系統設計上需考量的方向。

為回答這個研究問題,研究團隊們以「繪畫」當作了解「人與 AI 共創」的實驗任務,並設計了一個具備 AI 功能的繪畫軟體(以下簡稱AI),這個系統包含幾個功能:自動補齊使用者畫到一半的內容、自動畫出跟先前類似的物件、根據先前被畫出的物件自動產出相對應的新物件、提醒使用者畫布中太過空白的區塊、根據使用者指定的顏色自動上色。這些 AI 繪圖功能主要來自於 Google Sketch-RNN [2] 以及團隊自行開發的演算法。

-----廣告,請繼續往下閱讀-----

接著,研究者設計了五種不同互動情境:

  1. 人擔任主導者,AI 繪圖軟體提供詳細的系統說明;
  2. 人擔任主導者,但是 AI 繪圖軟體提供簡略的系統說明;
  3. 人擔任輔助者,而 AI 繪圖軟體提供詳細的系統說明;
  4. 人擔任輔助者,而 AI 繪圖軟體提供簡略的系統說明;
  5. 使用者沒有與 AI 互動,獨自完成繪畫任務。

研究團隊邀請了 30 位使用者輪流擔任主導者與輔助者,先後在五個實驗情境中完成指定的繪圖任務,同時他們也利用放聲思考法,亦即在繪畫過程中要把自己腦中所想的內容講出來,以便提供研究分析資料

研究者們根據問卷蒐集了使用者在五種情境下自評的軟體使用性、互動體驗、訪談內容,以及放聲思考的內容,分析、整理出以下幾個發現

  1. 使用者認為跟 AI 共創的過程是有趣且較有效率的;
  2. 使用者偏好 AI 提供詳細的系統說明;
  3. 使用者在合作過程中想擁有主導權。

AI 給予即時創作靈感有效,但人容易缺乏掌控感

當使用者跟 AI 一起創作時,使用者認為有 AI 輔助的情況下使得過程更加有趣與有效率。使用者表示當他們停頓時,AI 會很快建議他們可以畫什麼內容,AI 有時候也會畫出讓使用者意想不到的內容,讓他們感到驚艷;而當 AI 指出畫布上有哪些地方留白太多時,使用者也提到這可以迫使他們去思考應該增加什麼內容來豐富作品;也有人指出和 AI 一起畫畫就像跟另一個人一起畫畫一樣,這讓他畫出自己獨自無法畫出的內容。

然而另一方面,使用者認為在沒有 AI 介入的情況下,整個繪畫過程是較能預期、容易理解且能自己掌控,例如當 AI 畫出一個像是電腦剪貼出來的圖形時,如果跟本來手繪的畫風不一致,使用者便覺得畫面不協調;另外,當 AI 畫得比人好的時候,使用者也會覺得自己廢廢的,心想如果整幅畫都由 AI 自己完成說不定畫面會更好看 (。ŏ_ŏ)

-----廣告,請繼續往下閱讀-----
對多數人來說,如果失去掌握感很容易挫折。圖/pixabay

使用者偏好詳細說明建議,粗略說明讓人迷惑

而當 AI 提供詳細說明,告訴使用者為什麼它會提出這些建議、為什麼會有這些系統行為時,相較於提供粗略說明的情況下,使用者認為有詳細說明的互動是較有效率、溝通品質較好、較容易理解、也更在自己掌控之中的。詳細的指示內容讓使用者覺得自己更了解系統如何運作的,並且覺得自己好像是在跟一個有智慧的人互動、溝通。

有使用者提到在接收到詳細說明的情況下,他們喜歡 AI 建議下一步可以怎麼做、AI 的指示會讓他們覺得自己在適當的方向上創作,也進而對當前的創作過程更有信心;然而在接收粗略說明的情況下,使用者表示不明白系統的某些指示到底是希望自己做什麼事;而當使用者看到 AI 很智慧地自動補齊自己畫到一半的內容時,也會想知道系統究竟是根據哪些線索來作畫。另一方面,當 AI 給出的指令是些空洞無意義的話時,使用者會覺得反感,例如有人提到當自己不是很滿意目前的畫作時,這時候 AI 竟自動回覆一句:「畫得可真好!」,這位使用者頓時覺得自己被 AI 嘲諷……(´_ゝ`)

使用者不喜歡成為 AI 的輔助者

分析結果發現,使用者並不喜歡自己成為 AI 的輔助者──人們認為自己才是決定該畫什麼的角色。當使用者擔任輔助者角色與 AI 共同繪畫時,他們表示當被 AI 告知要在某個區塊上色時,當下有種被冒犯的感覺,覺得這種雜事應該是由電腦做而不是人要做的;也不喜歡這種被 AI 當成工具人指使的感覺,這讓他們覺得只是在回應 AI 的指示,根本不算是「共創」;並且也認為 AI 給予指示時應該要有禮貌,而不該只是叫他照著做;而當 AI 提出一個使用者不明白的要求時,他們說不知道系統到底想搞什麼,但自己對這種情況也無能為力,他們沒有任何協商空間來改變系統做出的決定,所以有些人乾脆直接忽略 AI 的指示,或是希望未來如果還有類似情況出現,自己能有和 AI 協商的空間。

Photo by Vidar Nordli-Mathisen on Unsplash

設計智慧系統互動機制的三個訣竅:引發好奇心、保持透明度、讓人維持掌控感

透過讓使用者跟 AI 一起畫畫的研究,我們初步知道了當人和 AI 共同進行創作時,可能需要注意的幾個面向,那麼這些發現對未來 AI 系統設計能有什麼啟發?

-----廣告,請繼續往下閱讀-----

透過與 AI 的互動引起人的好奇心與創造力

在進行需要創造力的活動時,AI 產生讓人出其不意的內容時會讓人感到新奇,因此在創作時若能夠讓創作者在與AI 互動過程中由 AI 提供「適度」的隨機性,也許能幫助創作者進行聯想,進而激發更多創造力;不過有一點需要留意的是,「風格」在創作過程中對創作者與欣賞者而言也是個重要的因素,當未來 AI 跟人共創成為可能時,如何避免 AI  突然拋出風格迥異的內容是其中一個需要考量的設計方向。

讓AI的運作保持適度的透明

當 AI 提供詳細的運作機制讓使用者了解時,例如向使用者解釋系統是根據什麼資訊推薦某個創作素材、說明為什麼系統能判斷人畫到一半的物件等,使用者會感覺自己比較能預測及掌控系統行為、覺得自己比較能夠理解系統運作,這些都會提升人與智慧系統互動時的體驗,特別是在運用創造力的任務上,詳細的系統說明能讓創作者感覺自己是在跟另一個「人」共同創作,而當系統提供適當的回應時,也可能增進創作者的自信;不過接下來要面對的挑戰之一在於讓 AI 能夠「見機行事」,而非隨機給出模板式的回應,才能避免創作者在這共創過程中產生負面體驗。

控制權掌握在人的手中

從實驗的結果可以知道,無論使用者被指定為主導者或輔助者,人都期望自己在跟 AI 互動時,最終決定權在自己身上,而人似乎也預設了自己跟 AI 各自需要扮演什麼角色,像是重複性高的事該由 AI 處理、人則是處理架構的問題等。因此,當我們在設計人與智慧系統的互動時,也可以思考要如何才能夠讓使用者感受到自己對科技物擁有主控權,而非被科技物控制。

 

-----廣告,請繼續往下閱讀-----

當人與 AI 系統互動時,智慧系統需要提供多少程度的說明讓使用者明白系統背後的運作,一直是人機互動與人工智慧研究領域在意的研究主題之一。AI 演算法對末端使用者來說經常是一個黑盒子,像是當我們在和聊天機器人對話時,經常不清楚系統到底是根據哪些資訊、透過哪些方式回應我們這些話;又或是當我們在瀏覽社群媒體時,不清楚推薦系統到底向我們蒐集了哪些資料、又如何判斷該推薦給我們什麼文章或影片;除了末端使用者需要知道系統的基本運作之外,對開發者而言,AI 演算法成為黑盒子也會使得開發者或設計者無從找尋系統出錯的來源,或是無法控制 AI 為什麼會有意料之外的輸出。

在讀了這篇研究後,身為系統開發者的工程師或設計師們可以一起思考該如何拿捏系統「透明度」的設定;而身為與越來越有智慧的系統互動的我們也可以想想:有哪些事情在 AI 的陪同之下我們可能會做得更好?我們會想跟 AI 在什麼層面進行共同創作?AI 要具備什麼能力才能讓我們覺得跟它合作的體驗是正向的?

備註

  • 本篇是擷取原始論文中部分內容搭配筆者想分享的概念所架構而成,部分研究細節與討論並未完全呈現,鼓勵有興趣的讀者直接參考原文深入了解細節。本篇目的在於讓讀者了解人機互動領域中如何切入人工智慧的主題,並提出未來 AI 系統的設計指引。內文並非逐字翻譯,亦不能取代原文

本文轉載自《人機共生你我它》,原文為《除了讓人工智慧更加智慧,還缺了什麼?》。
「人機共生你我它」由一群致力於人機互動研究(HCI, Human-Computer Interaction)的研究者所創立,我們定期發表人機互動相關文章,讓更多讀者了解這門結合資工、心理、設計等學科的跨領域知識以及它在實務層面的應用。

延伸閱讀:

Reference:

  1. Oh, C., Song, J., Choi, J., Kim, S., Lee, S., & Suh, B. (2018, April). I Lead, You Help but Only with Enough Details: Understanding User Experience of Co-Creation with Artificial Intelligence. In Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems (p. 649). ACM.
  2. David Ha and Douglas Eck. 2017. A Neural Representation of Sketch Drawings. arXiv preprint arXiv:1704.03477 (2017).
文章難易度
人機共生你我它_96
12 篇文章 ・ 3 位粉絲
由致力於人機互動研究(HCI, Human-Computer Interaction)的研究者與實務工作者所創立,我們定期發表人機互動相關文章,與讀者一起思考科技對社會生活帶來的好處與限制。

0

1
2

文字

分享

0
1
2
圖形處理單元與人工智慧
賴昭正_96
・2024/06/24 ・6944字 ・閱讀時間約 14 分鐘

  • 作者/賴昭正|前清大化學系教授、系主任、所長;合創科學月刊

我擔心人工智慧可能會完全取代人類。如果人們能設計電腦病毒,那麼就會有人設計出能夠自我改進和複製的人工智慧。 這將是一種超越人類的新生命形式。

——史蒂芬.霍金(Stephen Hawking) 英國理論物理學家

大約在八十年前,當第一台數位計算機出現時,一些電腦科學家便一直致力於讓機器具有像人類一樣的智慧;但七十年後,還是沒有機器能夠可靠地提供人類程度的語言或影像辨識功能。誰又想到「人工智慧」(Artificial Intelligent,簡稱 AI)的能力最近十年突然起飛,在許多(所有?)領域的測試中擊敗了人類,正在改變各個領域——包括假新聞的製造與散佈——的生態。

圖形處理單元(graphic process unit,簡稱 GPU)是這場「人工智慧」革命中的最大助手。它的興起使得九年前還是個小公司的 Nvidia(英偉達)股票從每股不到 $5,上升到今天(5 月 24 日)每股超過 $1000(註一)的全世界第三大公司,其創辦人(之一)兼首席執行官、出生於台南的黃仁勳(Jenson Huang)也一躍成為全世界排名 20 內的大富豪、台灣家喻戶曉的名人!可是多少人了解圖形處理單元是什麼嗎?到底是時勢造英雄,還是英雄造時勢?

黃仁勳出席2016年台北國際電腦展
Nvidia 的崛起究竟是時勢造英雄,還是英雄造時勢?圖/wikimedia

在回答這問題之前,筆者得先聲明筆者不是學電腦的,因此在這裡所能談的只是與電腦設計細節無關的基本原理。筆者認為將原理轉成實用工具是專家的事,不是我們外行人需要了解的;但作為一位現在的知識分子或公民,了解基本原理則是必備的條件:例如了解「能量不滅定律」就可以不用仔細分析,即可判斷永動機是騙人的;又如現在可攜帶型冷氣機充斥市面上,它們不用往室外排廢熱氣,就可以提供屋內冷氣,讀者買嗎?

CPU 與 GPU

不管是大型電腦或個人電腦都需具有「中央處理單元」(central process unit,簡稱 CPU)。CPU 是電腦的「腦」,其電子電路負責處理所有軟體正確運作所需的所有任務,如算術、邏輯、控制、輸入和輸出操作等等。雖然早期的設計即可以讓一個指令同時做兩、三件不同的工作;但為了簡單化,我們在這裡所談的工作將只是執行算術和邏輯運算的工作(arithmetic and logic unit,簡稱 ALU),如將兩個數加在一起。在這一簡化的定義下,CPU 在任何一個時刻均只能執行一件工作而已。

-----廣告,請繼續往下閱讀-----

在個人電腦剛出現只能用於一般事物的處理時,CPU 均能非常勝任地完成任務。但電腦圖形和動畫的出現帶來了第一批運算密集型工作負載後,CPU 開始顯示心有餘而力不足:例如電玩動畫需要應用程式處理數以萬計的像素(pixel),每個像素都有自己的顏色、光強度、和運動等, 使得 CPU 根本沒辦法在短時間內完成這些工作。於是出現了主機板上之「顯示插卡」來支援補助 CPU。

1999 年,英偉達將其一「具有集成變換、照明、三角形設定/裁剪、和透過應用程式從模型產生二維或三維影像的單晶片處理器」(註二)定位為「世界上第一款 GPU」,「GPU」這一名詞於焉誕生。不像 CPU,GPU 可以在同一個時刻執行許多算術和邏輯運算的工作,快速地完成圖形和動畫的變化。

依序計算和平行計算

一部電腦 CPU 如何計算 7×5+6/3 呢?因每一時刻只能做一件事,所以其步驟為:

  • 計算 7×5;
  • 計算 6/3;
  • 將結果相加。

總共需要 3 個運算時間。但如果我們有兩個 CPU 呢?很多工作便可以同時(平行)進行:

-----廣告,請繼續往下閱讀-----
  • 同時計算 7×5 及 6/3;
  • 將結果相加。

只需要 2 個運算時間,比單獨的 CPU 減少了一個。這看起來好像沒節省多少時間,但如果我們有 16 對 a×b 要相加呢?單獨的 CPU 需要 31 個運算的時間(16 個 × 的運算時間及 15 個 + 的運算時間),而有 16 個小 CPU 的 GPU 則只需要 5 個運算的時間(1 個 × 的運算時間及 4 個 + 的運算時間)!

現在就讓我們來看看為什麼稱 GPU 為「圖形」處理單元。圖一左圖《我愛科學》一書擺斜了,如何將它擺正成右圖呢? 一句話:「將整個圖逆時針方向旋轉 θ 即可」。但因為左圖是由上百萬個像素點(座標 x, y)組成的,所以這句簡單的話可讓 CPU 忙得不亦樂乎了:每一點的座標都必須做如下的轉換

x’ = x cosθ + y sinθ

y’ = -x sinθ+ y cosθ

-----廣告,請繼續往下閱讀-----

即每一點均需要做四個 × 及兩個 + 的運算!如果每一運算需要 10-6 秒,那麼讓《我愛科學》一書做個簡單的角度旋轉,便需要 6 秒,這豈是電動玩具畫面變化所能接受的?

圖形處理的例子

人類的許多發明都是基於需要的關係,因此電腦硬件設計家便開始思考:這些點轉換都是獨立的,為什麼我們不讓它們同時進行(平行運算,parallel processing)呢?於是專門用來處理「圖形」的處理單元出現了——就是我們現在所知的 GPU。如果一個 GPU 可以同時處理 106 運算,那上圖的轉換只需 10-6 秒鐘!

GPU 的興起

GPU 可分成兩種:

  • 整合式圖形「卡」(integrated graphics)是內建於 CPU 中的 GPU,所以不是插卡,它與 CPU 共享系統記憶體,沒有單獨的記憶體組來儲存圖形/視訊,主要用於大部分的個人電腦及筆記型電腦上;早期英特爾(Intel)因為不讓插卡 GPU 侵蝕主機的地盤,在這方面的研發佔領先的地位,約佔 68% 的市場。
  • 獨立顯示卡(discrete graphics)有不與 CPU 共享的自己專用內存;由於與處理器晶片分離,它會消耗更多電量並產生大量熱量;然而,也正是因為有自己的記憶體來源和電源,它可以比整合式顯示卡提供更高的效能。

2007 年,英偉達發布了可以在獨立 GPU 上進行平行處理的軟體層後,科學家發現獨立 GPU 不但能夠快速處理圖形變化,在需要大量計算才能實現特定結果的任務上也非常有效,因此開啟了為計算密集型的實用題目編寫 GPU 程式的領域。如今獨立 GPU 的應用範圍已遠遠超出當初圖形處理,不但擴大到醫學影像和地震成像等之複雜圖像和影片編輯及視覺化,也應用於駕駛、導航、天氣預報、大資料庫分析、機器學習、人工智慧、加密貨幣挖礦、及分子動力學模擬(註三)等其它領域。獨立 GPU 已成為人工智慧生態系統中不可或缺的一部分,正在改變我們的生活方式及許多行業的遊戲規則。英特爾在這方面發展較遲,遠遠落在英偉達(80%)及超微半導體公司(Advance Micro Devices Inc.,19%,註四)之後,大約只有 1% 的市場。

-----廣告,請繼續往下閱讀-----
典型的CPU與GPU架構

事實上現在的中央處理單元也不再是真正的「單元」,而是如圖二可含有多個可以同時處理運算的核心(core)單元。GPU 犧牲大量快取和控制單元以獲得更多的處理核心,因此其核心功能不如 CPU 核心強大,但它們能同時高速執行大量相同的指令,在平行運算中發揮強大作用。現在電腦通常具有 2 到 64 個核心;GPU 則具有上千、甚至上萬的核心。

結論

我們一看到《我愛科學》這本書,不需要一點一點地從左上到右下慢慢掃描,即可瞬間知道它上面有書名、出版社等,也知道它擺斜了。這種「平行運作」的能力不僅限於視覺,它也延伸到其它感官和認知功能。例如筆者在清華大學授課時常犯的一個毛病是:嘴巴在講,腦筋思考已經不知往前跑了多少公里,常常為了追趕而越講越快,將不少學生拋到腦後!這不表示筆者聰明,因為研究人員發現我們的大腦具有同時處理和解釋大量感官輸入的能力。

人工智慧是一種讓電腦或機器能夠模擬人類智慧和解決問題能力的科技,因此必須如人腦一樣能同時並行地處理許多資料。學過矩陣(matrix)的讀者應該知道,如果用矩陣和向量(vector)表達,上面所談到之座標轉換將是非常簡潔的(註五)。而矩陣和向量計算正是機器學習(machine learning)演算法的基礎!也正是獨立圖形處理單元最強大的功能所在!因此我們可以了解為什麼 GPU 會成為人工智慧開發的基石:它們的架構就是充分利用並行處理,來快速執行多個操作,進行訓練電腦或機器以人腦之思考與學習的方式處理資料——稱為「深度學習」(deep learning)。

黃仁勳在 5 月 22 日的發布業績新聞上謂:「下一次工業革命已經開始了:企業界和各國正與英偉達合作,將價值數萬億美元的傳統資料中心轉變為加速運算及新型資料中心——人工智慧工廠——以生產新商品『人工智慧』。人工智慧將為每個產業帶來顯著的生產力提升,幫助企業降低成本和提高能源效率,同時擴大收入機會。」

附錄

人工智慧的實用例子:下面一段是微軟的「copilot」代書、谷歌的「translate」代譯之「one paragraph summary of GPU and AI」。讀完後,讀者是不是認為筆者該退休了?

-----廣告,請繼續往下閱讀-----

GPU(圖形處理單元)和 AI(人工智慧)之間的協同作用徹底改變了高效能運算領域。GPU 具有平行處理能力,特別適合人工智慧和機器學習所需的複雜資料密集運算。這導致了影像和視訊處理等領域的重大進步,使自動駕駛和臉部辨識等技術變得更加高效和可靠。NVIDIA 開發的平行運算平台 CUDA 進一步提高了 GPU 的效率,使開發人員能夠透過將人工智慧問題分解為更小的、可管理的、可同時處理的任務來解決這些問題。這不僅加快了人工智慧研究的步伐,而且使其更具成本效益,因為 GPU 可以在很短的時間內執行與多個 CPU 相同的任務。隨著人工智慧的不斷發展,GPU 的角色可能會變得更加不可或缺,推動各產業的創新和新的可能性。大腦透過神經元網路實現這一目標,這些神經元網路可以獨立但有凝聚力地工作,使我們能夠執行複雜的任務,例如駕駛、導航、觀察交通信號、聽音樂並同時規劃我們的路線。此外,研究表明,與非人類動物相比,人類大腦具有更多平行通路,這表明我們的神經處理具有更高的複雜性。這個複雜的系統證明了我們認知功能的卓越適應性和效率。我們可以一邊和朋友聊天一邊走在街上,一邊聽音樂一邊做飯,或一邊聽講座一邊做筆記。人工智慧是模擬人類腦神經網路的科技,因此必須能同時並行地來處理許多資料。研究人員發現了人腦通訊網路具有一個在獼猴或小鼠中未觀察獨特特徵:透過多個並行路徑傳輸訊息,因此具有令人難以置信的多任務處理能力。

註解

(註一)當讀者看到此篇文章時,其股票已一股換十股,現在每一股約在 $100 左右。

(註二)組裝或升級過個人電腦的讀者或許還記得「英偉達精視 256」(GeForce 256)插卡吧?

(註三)筆者於 1984 年離開清華大學到 IBM 時,就是參加了被認為全世界使用電腦時間最多的量子化學家、IBM「院士(fellow)」Enrico Clementi 的團隊:因為當時英偉達還未有可以在 GPU 上進行平行處理的軟體層,我們只能自己寫軟體將 8 台中型電腦(非 IBM 品牌!)與一大型電腦連接來做平行運算,進行分子動力學模擬等的科學研究。如果晚生 30 年或許就不會那麼辛苦了?

-----廣告,請繼續往下閱讀-----

(註四)補助個人電腦用的 GPU 品牌到 2000 年時只剩下兩大主導廠商:英偉達及 ATI(Array Technology Inc.)。後者是出生於香港之四位中國人於 1985 年在加拿大安大略省成立,2006 年被超微半導體公司收購,品牌於 2010 年被淘汰。超微半導體公司於 2014 年 10 月提升台南出生之蘇姿豐(Lisa Tzwu-Fang Su)博士為執行長後,股票從每股 $4 左右,上升到今天每股超過 $160,其市值已經是英特爾的兩倍,完全擺脫了在後者陰影下求生存的小眾玩家角色,正在挑戰英偉達的 GPU 市場。順便一題:超微半導體公司現任總裁(兼 AI 策略負責人)為出生於台北的彭明博(Victor Peng);與黃仁勳及蘇姿豐一樣,也是小時候就隨父母親移居到美國。

(註五)

延伸閱讀

  • 熱力學與能源利用」,《科學月刊》,1982 年 3 月號;收集於《我愛科學》(華騰文化有限公司,2017 年 12 月出版),轉載於「嘉義市政府全球資訊網」。
  • 網路安全技術與比特幣」,《科學月刊》,2020 年 11 月號;轉載於「善科教育基金會」的《科技大補帖》專欄。
文章難易度

討論功能關閉中。

賴昭正_96
43 篇文章 ・ 54 位粉絲
成功大學化學工程系學士,芝加哥大學化學物理博士。在芝大時與一群留學生合創「科學月刊」。一直想回國貢獻所學,因此畢業後不久即回清大化學系任教。自認平易近人,但教學嚴謹,因此穫有「賴大刀」之惡名!於1982年時當選爲 清大化學系新一代的年青首任系主任兼所長;但壯志難酬,兩年後即辭職到美留浪。晚期曾回台蓋工廠及創業,均應「水土不服」而鎩羽而歸。正式退休後,除了開始又爲科學月刊寫文章外,全職帶小孫女(半歲起);現已成七歲之小孫女的BFF(2015)。首先接觸到泛科學是因爲科學月刊將我的一篇文章「愛因斯坦的最大的錯誤一宇宙論常數」推薦到泛科學重登。

0

0
0

文字

分享

0
0
0
免費字幕君!怎麼用 AI 語音辨識幫你自動生成字幕?
泛科學院_96
・2024/07/08 ・2458字 ・閱讀時間約 5 分鐘

下載 Youtube 影片、自動生成影片逐字稿、AI 智慧翻譯、匯出雙語 SRT 字幕、字幕內嵌 MP4 影片,甚至是把你的電腦當成 AI 運算伺服器、使用多模態 AI 模型來做圖片辨識……這一切的一切通通都免費,敢有可能 (Kám ū khó-lîng)?

今天的影片要來跟你分享開源 AI 套件 Ollama,這個開源套件AJ 最近上課演講工作坊逢人必教。

今天的影片,我們要手把手教你使用 Ollama 在你的電腦裡執行各種免費開源 AI 模型,希望你能跟我一樣成為 AI 暈船仔……Ollama 真香……啊扯遠了,我們沒有點數可以送。

今天的影片會分成三個部分:

-----廣告,請繼續往下閱讀-----
  1. Ollama 安裝與模型下載
  2. 結合 Memo 翻譯影片字幕
  3. 用多模態模型做圖片辨識

Ollama 安裝與模型下載

首先我們要先安裝 Ollama:

來到 ollama.com 點選 Download,下載適合自己的版本後進行安裝,安裝完畢之後,啟動 Ollama。以我的電腦來說右上角就會出現一個小小的 Ollama 圖示,這樣就成功安裝囉!

接著我們需要下載 AI 模型到你的電腦:

回到 Ollama 首頁,點選右上角 Models,這邊就會列出所有官方支援的模型,比如最近很流行的 Meta LLAMA 3、微軟的 Phi3、法國 Mistral AI 公司的 Mistral、Google Gemini 模型的開源版 Gemma 都有,你可以挑選喜歡的來測試。

-----廣告,請繼續往下閱讀-----

比如我點選 LLAMA 3 的連結,模型頁面有兩個地方要注意:一是模型大小,LLAMA3 是 4.7G,一般而言要玩大模型,電腦記憶體至少 16G,預算夠就 24G 不嫌多;如果你是使用一般文書電腦,記憶體 8G 的話,建議你現在馬上停止你的任何動作。我有測試過電腦會直接當機……不要說我沒有提醒你。

點開 Latest 選單可以依照需求選擇不同版本的模型:

不過我們直接點選最右邊複製執行指令,打開電腦的終端機程式,或著命令提示字元,貼上,這樣電腦就會開始下載並且自動安裝囉。

你可以用 ollama list 指令查看現在電腦內有哪些模型,如果硬碟容量有限,用 ollama rm 後面加上模型名稱可以刪除模型。比如:ollama rm llama3。我們這邊另外安裝 llava 模型:ollama run llava,這樣準備工作就完成囉。

-----廣告,請繼續往下閱讀-----

Ollama + memo

最近只要演講上課,我一定會分享 Memo 這套好用的軟體,我們之前也有一支影片分享他的用法。

最近 Memo 更新之後,我們就可以直接使用 Ollama 結合特定的模型來進行字幕的翻譯。舉例來說,我們打開 memo,複製 Youtube 網址;我們用這支 楊立昆 的演講,貼上網址,開始下載,下載完畢後使用電腦進行語音辨識,接著我們就可以使用 Ollama 搭配剛剛準備好的 LLama3 模型來做翻譯!


翻譯完畢之後就可以匯出 SRT 字幕


如果你本身是影片創作者,這招就可以輕鬆製作你的 SRT 字幕,再也不用花時間對字幕時間軸了。

-----廣告,請繼續往下閱讀-----

或者你要把影片字幕直接內嵌在做簡報的時候播放影片:


匯出 MP4 格式,語言選雙語。如果你還沒用過這招處理影片,我強烈建議你一定要試試看!

Ollama + Enchanted

接下來我們要分享另一套非常實用的工具——Enchanted。他也是開源,可以讓原本是文字介面的 Ollama
提供類似 ChatGPT 的對話視窗,甚至支援圖片辨識的多模態模型 llava,Mac 用戶可以直接去 App Store 免費安裝。


同時開啟 Ollama 跟 Enchanted LLM:

-----廣告,請繼續往下閱讀-----


就擁有一個漂亮的視窗介面,可以優雅的啟用各種想要測試的 AI 模型,他甚至有手機版 APP!用手機連線自己的蘋果電腦跑 AI 模型?這……這,真的可以免費用嗎?

讓我來試試看!

首先要先安裝 ngrok 這套程式,選擇自己的作業系統然後下載。Windows 用戶應該直接安裝就可以了,Mac 的用戶在終端機執行這行 Sudo 指令把程式解壓縮到 user local bin 資料夾,接著註冊一個免費的 ngrok 帳號。

複製 ngrok config 指令,貼回自己電腦的終端機,把連線金鑰寫入自己的電腦。

-----廣告,請繼續往下閱讀-----

最後一步,啟動連線,指令是:ngrok http 11434 –host-header=”localhost:11434″

一切順利的話就會看到類似這個畫面。

然後把 forwarding 的網址複製,打開 iPhone 或 iPad 的 Enchanted app,在設定 Setting 裡面把 Ollama 網址貼上,這樣就可以遠端調用電腦的 Ollama 來使用 AI 模型,比如選用稍早下載的 LLava 多模態模型。

傳一張照片,問它這是什麼?

-----廣告,請繼續往下閱讀-----


是不是非常神奇呢?
快練習把 ollama、ngrok 跟 Enchanted 串起來跟朋友炫耀吧!

總結

今天的影片跟各位分享了基於 Ollama 這個開源 AI 套件的各種有趣應用,你是否有成功在 iphone 上打造自己的 AI 服務呢?

  1. 太複雜了我決定躺平
  2. 笑話,我可是尊榮的 GPT Plus 用戶
  3. 沒有 Mac 電腦不能玩……嗚嗚嗚
  4. 你怎麼不介紹那個 ooxx Ollama 套件

如果有其他想看的 AI 工具測試或相關問題,也可以留言告訴我們~

更多、更完整的內容,歡迎上泛科學院的 youtube 頻道觀看完整影片,並開啟訂閱獲得

討論功能關閉中。

泛科學院_96
44 篇文章 ・ 49 位粉絲
我是泛科學院的AJ,有15年的軟體測試與電腦教育經驗,善於協助偏鄉NPO提升資訊能力,以Maker角度用發明解決身邊大小問題。與你分享人工智慧相關應用,每週更新兩集,讓我們帶你進入科技與創新的奇妙世界,為未來開啟無限可能!

0

0
0

文字

分享

0
0
0
Claude、ChatGPT 提示詞優化!4 個技巧讓 AI 更懂你的需求!
泛科學院_96
・2024/07/06 ・713字 ・閱讀時間約 1 分鐘

-----廣告,請繼續往下閱讀-----

聽說 Office 365 Copilot 終於支援中文了!

我還不馬上拿出魔術小卡——加入會員,訂閱,開啟小鈴鐺,啊不是我是說,訂閱 Copilot……

嗯?20 美金?嗯?這沒有 Office 365 Copilot 啊?我找找……

靠,現在訂閱 Office 365 Copilot,最便宜要用商務標準版才能加購,而且加購只能一次買一年,要一萬一……我們本來都準備好各種有趣的測試了,但這錢我真的花不下去阿……那今天準備好的測試該怎麼辦呢?

-----廣告,請繼續往下閱讀-----

別擔心,今天的影片,我來回答三個問題:

  1. 如果 copilot 真的開放,我想像中會遇到什麼問題
    抱歉了,一萬一真的刷不下去……
  2. 用 GPT4 示範大語言模型的進階提示技巧,應用於文稿撰寫的方法
    畢竟 copilot 也是借鑑 GPT4,性能應該差不多啦!(屁啦)
  3. 這些技巧在其他語言模型也可以用嗎?

本集的「進階 AI 提示語」有沒有打開你的 AI 使用靈感呢?

  1. 太複雜了我決定躺平
  2. 炫技,等 GPT-5 出來這些都不再重要
  3. 我決定仿效泛科學院精神鑽研出神級提示語跟大家分享
  4. 其他也可以留言分享喔

欸嘿,前面提到的 QR code 在這邊 ^.< 不要告訴別人喔(噓)


如果有其他想看的 AI 工具測試或相關問題,也可以留言告訴我們~

-----廣告,請繼續往下閱讀-----

更多、更完整的內容,歡迎上泛科學院的 youtube 頻道觀看完整影片,並開啟訂閱獲得更多有趣的資訊!

討論功能關閉中。

泛科學院_96
44 篇文章 ・ 49 位粉絲
我是泛科學院的AJ,有15年的軟體測試與電腦教育經驗,善於協助偏鄉NPO提升資訊能力,以Maker角度用發明解決身邊大小問題。與你分享人工智慧相關應用,每週更新兩集,讓我們帶你進入科技與創新的奇妙世界,為未來開啟無限可能!