0

0
1

文字

分享

0
0
1

日本籍科學家近年屢獲諾貝爾醫學獎,是怎麼辦到的?──《科學月刊》

科學月刊_96
・2018/12/26 ・2877字 ・閱讀時間約 5 分鐘 ・SR值 616 ・十年級

  • 林翰佐/銘傳大學生物科技學系副教授,科學月刊總編輯。

近年在科學獎項上表現傑出的日本,是如何辦到的?

每年10月份起,伴隨著一絲秋意,年度科學盛事諾貝爾獎的得獎名單陸續揭曉。每年的此時是《科學月刊》編輯部最忙的時候,為了讓讀者對年度諾貝爾獎得獎者及其研究有更深入淺出的瞭解,在得獎名單公佈之際,科月編輯部便會邀請國內相關領域專家撰文,匯集於 12 月號的「諾貝爾獎」專輯,以饗大眾。

這是一個需要與時間賽跑的工作。同樣地,今(2018)年這項專輯的籌劃工作也正緊鑼密鼓地執行當中,請大家拭目以待。

近年來,日本籍科學家在諾貝爾生理學或醫學獎(簡稱醫學獎)有相當的斬獲。在 2012 年以前,原本只有 1 次醫學獎獲獎紀錄的日本,近 7 年來卻有高達 4 次的獲獎紀錄,分別是 2012 年的山中伸彌(iPSCs幹細胞)、2015 年的大村智(蛔蟲的治療)、2016 年的大隅良典(細胞的自噬機制)以及 2018 年的本庶佑(發現免疫細胞的負回饋機制併用於癌症的治療),彌補了原先日本在生醫獎項上得獎數偏低的遺憾。

2018年日籍諾貝爾生理學或醫學獎得主:本庶佑。圖/wikipedia

直至目前為止,日本籍科學家總共獲得了 23 次諾貝爾獎科學類獎項的殊榮,包括 11 次的物理獎項、7 次的化學獎項與 5 次的醫學獎項。從世界的角度來看,日本籍科學家的整體表現也相當亮眼,除卻美國(333次)、英國(104次)、德國(90次)及法國(37次),目前暫居排行榜的第 5 名。

日本人是怎樣辦到的?傳統上我們會認為,東西方教育理念的不同造就日後在科學表現上的差異;西方的教育講究順勢而為,鼓勵孩子探索自己喜歡的事物,東方式的教育則以集體式管理為主,強調規矩以及潛移默化的形塑個人未來應有的社會規範,在此筆者並無意評論 2 種制度的孰優孰劣。

只不過,東方式教育發展極致的日本,其實在科學上的表現也能同樣的傑出,令筆者想要瞭解一下其中的道理。臺灣的教育體制其實受日式教育影響極深,早年筆者於國、高中階段經歷的髮禁及聯考制度,均為日式教育的翻版。在日籍科學家發光發熱之時,臺灣能否也能有相對的優異表現?這是筆者想要探討的主題。

筆者雖未親身經歷日式體制,但周邊不乏有於日本進行科學研究工作經驗的朋友,一陣閒聊之下歸納些許關鍵,在此野人獻曝,跟各位讀者分享。

科學學習氛圍,帶來基礎研究的能量

相較於臺灣,日本人對科學學習是比較熱衷的。這點可以從臺灣的科學啟蒙書籍大多從日文書籍翻譯而來,可以見微知著。學術獎項的取得其實有點類似於參加國際上的體育競賽,雖說最終榮耀歸於一人,事實上背後還涉及許多無名英雄的付出。

以生物醫學相關的研究為例,實驗室研究人員的研究素質、誠信與對研究計畫的執行效率,攸關最後學術成果發表的品質及其對科學社群的影響力。實驗計畫主持人即便有著無與倫比的聰慧智力,缺乏強而有力的專業團隊,透過實驗驗證理論基礎也是枉然。

團隊人力的培養有賴社會氛圍的支持,有如日本職棒市場的雄厚能量來自於全民棒球運動的基礎。如果說大家對於基礎科學研究興趣缺缺,自然缺乏這種推升的動能引領科學研究超凡入聖。

閱讀習慣,鍛鍊獨立思考的能力

想要針對某一個議題上有別於前人之開創性的見解,需要大量而廣泛的閱讀,然後透過獨立思考來獲得。圖/wikipieda

相較於臺灣,日本人的閱讀習慣是好很多的。這點可從兩地出版業的榮枯略知一二。閱讀習慣為什麼會跟科學能力有關聯呢?科學研究注重研究上的新穎性(novelty),想要針對某一個議題上有別於前人之開創性的見解,需要大量而廣泛的閱讀,然後透過獨立思考來獲得。

基於日人的閱讀能量,出版界有著合理的利潤,將大量的國外書籍翻譯成日文,形成一股正回饋(positive feedback),滋養著國民獨立思考的基礎,這使得日人在相關創造性產業的開發均較亞洲各國有長足的領先。這種「全面翻譯」的方式當然也有它的缺陷,其中一項問題便在於日本國人普遍性外語能力的薄弱,反映在托福等國際性英語測驗的平均成績上。英文化的不足也反映在日本在國際期刊上投稿數與投入經費不成比例的問題。

有關於教育上「國際化」,「英文化」一直是國內教育推行目標,立意是良好的,不過筆者認為最大的問題還是來自於執行層面能夠真正落實的程度,這其實與學生的素質息息相關。例如大學中的科學教育常常標榜原文書教學,但囿於學生英文能力,往往變成專業沒學好,英文也沒學好,造成雙輸的格局。筆者認為優質基礎科研教科書的中文化仍然是臺灣科技推動的基礎,學生需要透過相當量上的閱讀形塑屬於自己的科學觀。

研究團隊組成,集中科學動能

日本實驗室文化自成一格,具有相當的組織性,研究團隊由 1 至數名教授領軍,向下由副教授、助理教授、助教、助理、博士後研究員及研究生所組成。相較於臺灣,研究室的規模通常較為龐大,且每個團隊中學術專業人員比例較高。

這樣的文化有利有弊,主持教授在資源、研究方向及人事權上擁有相當的權力,考驗著體制內的種種人性,但若指揮調度得當,大編制的研究單位好處是科研動能得以集中,對於有價值的研究主軸可以乘勝追擊,取得主要的學術成就。

臺灣近年來透過鼓勵整合型研究計畫的提出企圖將研究能量予以整合,其中不乏有相當優異的成果,不過這種任務性的編制團隊能否透過互動激發出真正的研發能量,需要更細膩的政策配合以及考驗著計畫總主持人的智慧。

日本科研的成本效益偏低

對比臺灣,日本整體科研體系的花費是巨大的。目前,日本科學界的年度預算約占 1400 億美元上下,約佔世界科研預算的 10%,不過國際期刊中文獻的產出並未達到相對的成效。根據荷蘭著名期刊出版商 Elsevier 公司所做的統計分析顯示,日本科學家平均每 100萬美元的科研預算投資僅造就 0.7 篇科學文獻的產出,相較於第一名的荷蘭(3.7)低上許多。日本在世界期刊論文發表數於近年來更有明顯下降的趨勢,在 2015 年甚至被急起直追的印度超越,總排名滑落至世界第 5。

他山之石,可以攻錯

科學研究的成效是什麼?是得到諾貝爾獎的光環加持,學術期刊發表數,全民素質的提升,抑或是科研活動所產生的產業技術推動力?一直以來就是科學界爭論的議題。這是一個相當複雜的議題。但無疑的,時至今日,日本籍科學家在諾貝爾獎項上的亮麗表現,是長期全民投入的開花結果。

相較於臺灣,日本科研環境仍是令人相當羨慕的,雖然收入不豐,科學家在日本社會上仍然保有相當的地位,年度科學經費中的80%來自企業出資,使得科學研究議題與產業形成更密集的結合,暢通未來高科技人才培育後的就業管道,筆者認為這些都是值得臺灣思索以政策形塑科研體制時的參考。

延伸閱讀

  1. 日本諾貝爾獎得主,https://goo.gl/E6thbb
  2. 各國諾貝爾獎得主人數,https://goo.gl/4VPy6N
  3. 楊子晴,〈荷蘭出版社調查指出日本科研現狀:投入大成果少〉,《環球網》,2018年3月26日,https://bit.ly/2CgPK1d

 

〈本文轉載自《科學月刊》2018年11月號〉

一個在數位時代中堅持紙本印刷的科普雜誌,

讓你在接收新知之餘,也能感受蘊藏在紙張間的科學能量。

文章難易度
科學月刊_96
235 篇文章 ・ 2572 位粉絲
非營利性質的《科學月刊》創刊於1970年,自創刊以來始終致力於科學普及工作;我們相信,提供一份正確而完整的科學知識,就是回饋給讀者最好的品質保證。

1

6
1

文字

分享

1
6
1
日常生活範式的轉變:從紙筆到 AI
賴昭正_96
・2023/03/08 ・5723字 ・閱讀時間約 11 分鐘

  • 作者/賴昭正|前清大化學系教授、系主任、所長;合創科學月刊

技術的進步是基於讓它適應你,因此你可能根本不會真正注意到它,所以它是日常生活的一部分。
——比爾.蓋茨(微軟公司創辦人之一)

幾天前與內人米天寶到一家常去的餐館,沒想到已經換了主人;找到一張桌子坐下後,好久都不見服務員上來打招呼;正覺得奇怪時,唯一的服務員終於出現了。內人迫不及待的馬上要菜單,「對不起,我們這裡沒有菜單,請掃描點菜。」內人哦了一聲,不知所措……還好有不落伍的老公在旁,因此總算沒有餓著肚子回家吃泡麵。

又半年前,與三位高中同學聚餐,餐後有位同學問怎麼從這裡到他弟弟的地方……,我回答說路就在你的口袋裡:「嘿,谷歌(Google),導航到……」。再又大約 1 年前,與一對老夫妻同事不知道怎麼談到了 228 事變,先生突然問那是哪一年發生的,沒有人能回答;我突然想到答案就在我口袋裡,拿出手機:「嘿,谷歌,228 事變是哪一年發生的?」

1970 年,林孝信等人在芝加哥大學創辦《科學月刊》時,日常所用的的工具是:紙張、鉛筆、橡皮、透過郵寄傳送的書信、及非必要不用的長途電話或傳真。在下圖中可以看到當時筆者用手寫的第 1 期文章「什麼是半導體」、審稿意見表、審稿人的修改、科學月刊專用稿紙、以及筆者在加州做論文時給總部林孝信的信封。這些工具現在都可以算是古董,早不是《科學月刊》運作模式,也已全部在筆者日常生活中退役了!

圖/筆者提供

是什麼重大科技的發展造成了這些改變呢?年輕的讀者或許不知道,但是筆者回想起來都覺得有點可怕,真不敢相信將不少筆者這一代人甩停在「石器時代」的巨大變化就在筆者後半生中發生!

讓我們在這裡一起來回顧這 40 年來的科技大里程碑吧。

個人電腦

筆者 1975 年回到清華,隔年的暑假為高中化學教師進修班開了一門相當受歡迎的(台灣非法組裝的)蘋果個人電腦程序課。那時個人電腦才剛問世不久,但已經慢慢地引起廣大群眾的注意與興趣。

因此到了 1981 年,曾經是全世界最賺錢、最受歡迎品牌的大型電腦計算機公司 IBM(International Business Machines)終於被迫進入個人電腦市場。IBM 的聲名很快地使個人電腦在消費群眾裡達到臨界量,但那時使用者必須記得電腦語言及程式名字才能執行。

圖/筆者提供

1984 年,蘋果電腦公司(Apple Computers)推出了 Macintosh 後,個人電腦市場才真正開始起飛。Macintosh 導入電腦鼠標,其「所見即所得」(WYSIWYG, what you see is what you get)界面更讓使用電腦變得非常簡單[1]:只要會按鼠標就好,不必再記那些電腦語言及程式名字。隔年,微軟(Microsoft Corporation[2])也推出了具鼠標及「所見即所得」界面的 Windows 操作系統後,儘管個人電腦成為主流還需要幾年時間,但毫無疑問地個人電腦時代已經來臨了!

在個人電腦出現之前,每到月底筆者就為了與銀行對帳搞得頭暈腦脹(時常對不起來);1993 年後,筆者便開始使用「個人賬戶管理軟體」Quicken,現在不但帳目了然,核對更大部分只是一分鐘的事情而已:它早已經是筆者日常生活中不可或缺的一部分!另一個則是微軟的「文件處理軟體」Word。但後者因間接地涉及到人工智能的應用,所以留在後面再做詳細討論。

互聯網與萬維網

互聯網(internet)始於 1960 年代,為美國政府研究人員共享信息的一種方式。它的發展有兩個原因:

  1. 60 年代的計算機體積龐大且固定不動,為了利用存儲在其它地方的計算機信息,人們必須通過傳統郵政系統發送計算機磁帶;
  2. 另一個催化劑是蘇聯於 1957 年 10 月 4 日發射人造衛星 Sputnik,促使國防部考慮即使在核攻擊後仍能傳播信息的方式,因此發展了阿帕網(ARPANET,Advanced Research Projects Agency Network,高級研究計劃署網絡)。

阿帕網雖然非常成功,但其成員僅限於某些與國防部有合同的學術和研究組織,因此創建其它網絡來提供信息共享是無可避免的……。

開始時各計算機網絡並沒有一種標準的方式來相互通信。科技學家終於在 1983 年 1 月 1 日建立了「傳輸控制協議/互聯網協議」(TCP/IP)的一新通信協議,使不同網絡上的不同類型計算機終於可以相互「交談」,現在的互聯網於焉誕生,因此當天被認為是互聯網的官方生日。阿帕網和國防數據網(Defense Data Network)後來也正式改用 TCP/IP標準,因此所有網絡現在都可以通過一種通用語言連接起來。

1989 年 11 月,第一個提供商業互聯網服務(ISP, internet service provider)公司 The World 在美國出現。儘管當時電話撥號連接只能以每秒 5 萬 6 千位元的慢得令人痛苦的速度下載[3],與現在的所謂寬帶(broadband)之至少 2500 萬位元的速度相比,真是小巫見大巫,但在兩年就產生了廣泛的消費者基礎。1991 年,美國國家科學基金會(NSF)看到該公司打開了這似乎再也關閉不了的閘門,終於解除了對商業 ISP 的禁令。

圖/筆者提供

1989 年,為了滿足世界各地大學和研究所的科學家對自動化信息共享的需求,英國計算機學家伯納斯-李(Tim Berners-Lee)爵士在瑞士歐洲核子研究中心(CERN)提出了萬維網(WWW, World Wide Web)的構想:在互聯網上建立一種可以透過「超文本鏈接」(hyperlink)將文檔連接到其它文檔的信息系統,使用戶能夠從一個文檔移到另一個文檔來搜索信息。

伯納斯-李 1990 年底成功地展示了包括 WWW 瀏覽器和 HTTP 服務器的系統,於 1991 年 1 月開始提供給其它研究機構。1991 年 8 月 23 日向公眾發布後,兩年內出現了 50 個網站。現在全世界的網站已經高達 20 億個!

1994 年 10 月 13 日第一款「商業化」網絡瀏覽器 Netscape 問世,四個月內即佔據了四分之三的瀏覽器市場上;配合了個人電腦「所見即所得」的快速發展,上網已漸成為全民運動。2000 年代初期所發展出在一條電話線中可以同時負載電話和互聯網之技術[4],更為互聯網注入了新的活力,使用戶可以同時上網和打電話,提供了可以「永遠在線」的互聯網服務。

離開學校或研究機構後,互聯網、萬維網、網絡瀏覽器、谷歌搜索引擎便成了是筆者寫作時尋求資料的必要工具。例如筆者在 2005 年寫《量子的故事》第二版時,如果不是它們的幫助,根本是不可能的工作!而現在寫這篇文章也是因為它們在陪伴著筆者才能快速完成的。

還有,筆者的所有經濟活動都已經是「無紙」(paperless)化了:水、電公司以及銀行等用電子郵件(見後)寄賬單後,自動提款;退休金、社會福利金每月自動入賬;銀行間可以隨時互相轉賬;……;因此可以整年不上銀行,也可以在遙遠的區域銀行開利息比較高的戶頭。股票的交易更是不可同日而語:以前根本看不到股票的瞬間動盪,買賣股票必須打電話給券商下單;現在都是瞬間個人操作!

生活中的所有經濟活動都已經是「無紙」了。圖/Envato Elements

電子郵件

早期的電腦使用者只能在同一台電腦裡留言。1971 年,麻省理工學院畢業生湯姆林森(Ray Tomlinson)在阿帕網工作時想出了創建一個使用 @ 符號的程序,使用戶能夠在阿帕網系統中的電腦間互發送消息。

沒過多久就有人找到了使用電子郵件賺錢的方法。1978 年,圖雷克(Gary Thurek)為當時 IBM 大型電腦勁敵 DEC(Digital Equipment Corporation)向數百名阿帕網用戶發送電子郵件推銷一款新產品,聲稱為該公司帶來了 1300 萬美元的銷售額,並為自己贏得了「垃圾郵件之父」的美名。 

1982 年,「簡單郵件傳輸協議」(SMTP)標準化了郵件服務器發送和接收消息的方式。其它協議如互聯網「消息訪問協議」(IMAP)和「郵局協議」(POP),相繼在 80 年代中期出現。1993 年,美國兩家大商業互聯網服務商(AOL 和 Delphi)將他們的電子郵件系統連接到互聯網,使用戶能夠利用這種簡單快捷的通信方式。1996 年,微軟 Hotmail 成為第一個完全基於互聯網的免費電子郵件服務;一年後,微軟發布了預裝在 Windows 中的電子郵件程序。

現在的電子郵件當然已經不再只是當初之文字的傳送而已:圖片、網站連接、語音等等都可以透過電子郵件瞬間傳送到地球的另一方;真不敢想像當初一篇文章寄到台灣後、至少兩個禮拜才能收到回音的日子是怎麼過的?!

2012 年,湯姆林森在專門討論技術如何改變廣大群眾未來生活的「The Verge」網站裡謂:「我看到電子郵件的使用方式大體上與我預想的完全一致」。

智能手機

手機(cell phone)和車載電話(car phone)早就存在,但當時只能用來打電話(因為少見及昂貴,擁有它們事實上是一種身份的代表)。80 年代初手機網絡開始出現後,手機便慢慢取代家用電話成為無線便攜式電話。1999 年,加拿大「動態研究」(Research In Motion)公司推出可以傳接電子郵件的黑莓(BlackBerry)手機;2002 年進一步推出了一款「允許用戶管理他們所有的業務通信和信息、永遠在線、永遠連接的時尚……無線手持設備」的智能手機後,黑莓手機迅速成為商務人士必備的生活工具。

黑莓手機為商務人士必備的生活工具。圖/維基百科

2005 年 7 月,谷歌收購移動操作系統「安卓」(Android)。蘋果電腦公司於 2007 年元月推出具有應用程序功能和突破性互聯網通信工具的結合體手機 iPhone;緊接著, 台灣宏達國際電子股份有限公司於 2008 年 9 月推出第一款商用安卓操作系統的智能手機。

2010,谷歌當時的企業發展副總裁勞維(David Lawee)回憶說這是谷歌「有史以來最好的交易」。誠然也!現今,安卓及蘋果手機操作系統(iOS)幾乎已經控制了整個智能手機市場。

現在的手機已經不再只是打電話的工具,而是將巨大的計算能力置於我們的掌中,帶領廣大的群眾進入了掌上個人電腦領域,徹底地完全改變了我們的日常生活方式!

人工智能

前面提到「文件處理軟體」是筆者日常生活中不可或缺的一部分!但真正讓筆者丟掉紙張、鉛筆、和橡皮擦的並不是它,而是谷歌的「語音轉文字軟體」。說來慚愧,筆者以前國文沒學好,不會注音符號;因此雖然有「文件處理軟體」,筆者還是沒有辦法輸入中文。

因此曾有一段時間「威脅」《科學月刊》,謂如果不找人幫打字,那就不寫了。筆者當然心知肚明,隨著科普文章的作者越來越多,這「威脅」遲早會不管用的,因此很早就想用「語音轉文字軟體」。但早期的「語音轉文字軟體」似乎聽不太懂筆者的台灣國語,錯誤百出,因此只能心有餘而力不足的感嘆而已。

「語音轉文字軟體」所使用的思考方式不是寫傳統軟體的邏輯,而是「人工智能」(artificial intelligence)的運用。但中文「童因志泰掇」,因此人工智能必須比較「聰明」,相對地發展也比較慢。但今日的中文「語音轉文字軟體」已非昔比;如果沒有它,筆者在中文文章寫作以及通訊上,不是丟不了紙筆,便還是一位只能用英文的「假外國人」!

今天的「人工智能」不但是能支持語音轉文字的智能設備、還會與你下棋、幫你開車!事實上當然不止如此:如前面所說的,還可以隨時回答你的歷史與地理之無知!你想知道現在的高中生如何做數學作業嗎?只要將問題用智能手機照相下來,就可以立即得到答案!不懂中文的外孫女有一天突然用中文發簡訊給筆者問:「為什麼需要學第 2 種外國語呢?」

「人工智能」幫助我們達成日常生活中的各種事。圖/Envato Elements

去年 11 月 30 日美國舊金山 OpenAI 公司提供了一款免費的人工智能軟體 ChatGPT,它不但可以回答你任何問題、跟你聊天,還可以快速(以秒計)幫你寫散文、詩歌、文章。這不但立即引起整個教育界的震撼,也成為報章雜誌熱門討論的話題!過年後,不少公立高中學校便迫不及待地宣布禁止裝置及使用。

斯坦福大學教育學助理教授萊文(Sarah Levin)說:「如果你要它(對一些流行小說)進行文學分析,它會做得很好,幫你寫一篇會讓許多老師很高興、希望自己的學生都能夠寫出來的 B+ 文章!」寫一篇散文是美國大學「入學考試」中非常重要的一個評估標準,不知道他們以後將如何如何處理這一問題?

斯坦福大學「科技工數」(STEM)教學與學習實驗室的負責人李(Victor Lee)也說:「從技術層面來看,就像谷歌超越所有的網路搜索引擎,或 Netflix 改變了人們對流媒體內容的期望一樣,它(ChatGPT)將沖擊(整個)教育系統。……我們正處於一個新時代。」

這到底是好是壞? ChatGPT 回答說:「在校使用我或其他語言模型可以成為加強教育的寶貴工具;但重要的是要謹慎對待這項技術,並確保以有利於學生學習的方式使用我」。

結論

因為筆者覺得很有道理,在這裡我們就用被誤傳是愛因斯坦所說的話來結束吧:「我害怕技術與我們的人性重疊的那一天,世界上只會有一代白痴[5]。看來那一天已經離我們不遠了!?

在此先警告讀者:或許筆者下篇文章已經不是自己寫的了[6]

註釋

  1. 這兩項技術(鼠標和「所見即所得」)都不是蘋果電腦公司的創見,市場上均早已有之。SRI International 的 Douglas Engelbart 於 1960 年代初開始開發鼠標;鼠標控制計算機系統的第一次公開演示是 1968 年。因其對後來使用個人電腦的重要性發展,該次演示被稱為「所有演示之母」(the mother of all demos)。到 1972 年,從 Engelbert 得來的靈感,隔鄰 Xerox 公司的研究單位 PARC 之圖形用戶界面技術已經發展到可以支持第一個 WYSIWYG 編輯器的程度;1974 年,Butler Lampson、Charles Simonyi、及其團隊推出了世界上第一個所見即所得的文檔處理程序 Bravo。
  2. IBM 一直不看好個人電腦,也害怕個人電腦侵蝕了大型電腦的利潤,因此對個人電腦的發展一直採取消極的態度,所以將操作系統的發展工作交給了微軟。
  3. 可以看到一個接一個的英文字母在螢幕上出現。
  4. 在這之前,人們無法同時打電話和瀏覽互聯網,為了避免家庭爭執,許多家庭(包括筆者)均被強迫裝上兩條電話線。
  5. 愛因斯坦:「我們的技術已經超越了我們的人性,這一點已經變得非常明顯。」
  6. 事實上現在人工智慧的最大問題是:還沒辦法個性化!所以是寫不出這句話來了。

延伸閱讀:
「網路安全技術與比特幣」(科學月刊 2018 年 6 月號),轉載於「財團法人善科教育基金會」的網站

賴昭正_96
35 篇文章 ・ 36 位粉絲
成功大學化學工程系學士,芝加哥大學化學物理博士。在芝大時與一群留學生合創「科學月刊」。一直想回國貢獻所學,因此畢業後不久即回清大化學系任教。自認平易近人,但教學嚴謹,因此穫有「賴大刀」之惡名!於1982年時當選爲 清大化學系新一代的年青首任系主任兼所長;但壯志難酬,兩年後即辭職到美留浪。晚期曾回台蓋工廠及創業,均應「水土不服」而鎩羽而歸。正式退休後,除了開始又爲科學月刊寫文章外,全職帶小孫女(半歲起);現已成七歲之小孫女的BFF(2015)。首先接觸到泛科學是因爲科學月刊將我的一篇文章「愛因斯坦的最大的錯誤一宇宙論常數」推薦到泛科學重登。

1

1
0

文字

分享

1
1
0
AI 也會出差錯?使用人工智慧可能帶來的倫理與風險——《科學月刊》
科學月刊_96
・2023/02/19 ・3976字 ・閱讀時間約 8 分鐘

  • 甘偵蓉|清華大學人文社會 AI 應用與發展研究中心博士後研究學者。

Take Home Message

  • Facebook 或 Instagram 的訊息推薦、YouTube 或 Netflix 推薦觀賞影片、掃瞄臉部以解鎖手機,AI 應用早已在我們日常生活中隨處可見。
  • AI 應用中四種常見的倫理和風險:演算法偏誤、相關技術或產品偏離原先使用目的、擁有善惡兩種用途,以及演算法設計不良或現有技術限制。
  • 近年來各國家皆制訂有關 AI 發展的規範,臺灣則在 2019 年制訂「AI 科研發展指引」,期望能改善 AI 發展帶來的問題與風險。

當談到人工智慧(artificial intelligence, AI)、也就是 AI 時,讀者會想到什麼?是多年前由史匹柏(Steven Spielberg)導演的那部《A.I. 人工智慧》(A.I. Artificial Intelligence)中那個一直盼不到人類母愛而令人心碎的機器人小男孩?還是由史密斯(Will Smith)主演的《機械公敵》(I, Robot)裡那些沒遵守機器人三大法則的機器人或中央系統?

《A.I. 人工智慧》(A.I. Artificial Intelligence)電影海報,上映於 2001 年。圖/IMDb

或許未來有一天,人類真的可以設計出如電影中那些像人一樣的 AI 系統或機器人。但目前為止,你常聽到的 AI 其實既很厲害又很不厲害,為什麼呢?厲害的是它下圍棋可贏過世界冠軍,還能夠比放射科技師更快、更準確地辨識 X 光片中疑似病變的細胞;但它不厲害的是,很會下圍棋的 AI 就只能下圍棋,別說不會打牌,連撲克牌是什麼都不知道!而且每次學新事物幾乎都是打掉重練,得不斷做好多考古題才有可能學得會,不像人類通常教幾次就會舉一反三。

不過,即使目前世界上的 AI 都是這種只具備特定功能的「弱 AI」(artificial narrow intelligence, ANI),但已經為這個世界帶來相當大的進步與便利。所以,以下要談的就是 ANI 的倫理與風險。

談到這種只具特定功能的 ANI,讀者知道目前生活周遭有哪些事物有利用 AI 技術嗎?其實 Google 上的搜尋資訊、Facebook 或 Instagram 的訊息推薦、對智慧型手機喊「Siri 現在外面有下雨嗎?」等功能,或是以掃瞄臉部解鎖手機與進入大樓、YouTube 或 Netflix 推薦觀賞影片,甚至是投履歷求職、銀行審核貸款申請等都常用到 AI 技術,它早在我們日常生活中隨處可見。

AI 技術在日常生活中隨處可見,如 YouTube 推薦觀看影片。圖/Pexels

但也正是如此,讓人們這幾年在使用 AI 時,逐漸發現它可能造成的問題或傷害,以下簡單介紹常見的四種AI應用可能造成的倫理問題或風險。

演算法偏誤

第一種是演算法偏誤(algorithmic bias)。什麼是演算法偏誤?簡單來說就是 AI 在某些群體的判斷準確率或預測結果上總是很差,導致結果可能對於此群體造成系統性的不利。但為何會造成演算法偏誤?常見原因有三項。

第一項原因是,建立 AI 模型的研究資料集有偏誤,在性別、種族、社經地位等特徵上,沒有真實世界的人口分布代表性。例如數位裝置採用 AI 臉部辨識技術解鎖,原本是希望保護個人使用數位裝置的安全性,結果皮膚深的人卻常常遇到辨識失敗而無法解鎖。這通常是因為目前許多 AI 模型都是以機器學習技術設計,而機器學習的主要特性就是從過去人類留下的大量資料中學習;當初提供電腦學習臉部辨識的圖片時,如果多數都是白皮膚而非黑皮膚、多數都是男性的臉而非女性的臉,那麼電腦在學習辨識人臉的準確率上,整體而言辨識男性白人就會比辨識女性黑人要高出許多。

第二項產生演算法偏誤的原因是建立 AI 模型的研究資料集不只有偏誤,還反映現實社會中的性別、種族、社經地位等歧視;例如美國警政單位以過往犯罪資料訓練出獄後犯人再犯風險評估的 AI 模型,那些資料不意外地有色人種的犯罪紀錄遠多於白人犯罪紀錄。然而,那些紀錄也反映美國社會長久以來對於有色人種的歧視,其中包含警察對於有色人種的盤查比例遠高於白人、法院對於有色人種的定罪比例及判刑嚴重程度也遠高於白人、警力通常被派往多黑人與拉丁裔人種居住的窮困社區盤查等。所以根據過往犯罪資料所訓練出來的 AI 模型,不意外地也就會預測有色人種的再犯機率普遍來說比白人高。

第三項產生演算法偏誤的原因則是 AI 學會了連系統開發者都沒有察覺到,潛藏在資料裡的偏誤。例如科技公司人資部門本來想借助 AI 更有效率地篩選出適合來面試的履歷,所以挑選在該公司任職一定年資且曾升遷二次的員工履歷來訓練 AI 模型。問題是,高科技公司向來男多女少,所提供給 AI 學習的資料自然就男女比例相當不均。AI 也就學會了凡是出現偏向女性名字、嗜好、畢業學校系所等文字的履歷,平均所給的評分都比出現偏向男性等相關文字的履歷還低。

潛藏在資料裡的偏誤造成 AI 預測結果彷彿帶有性別歧視。圖/Envato Elements

但目前科技公司陽盛陰衰,是受到以往鼓勵男性就讀理工、女性就讀人文科系,或男性在外工作女性在家帶小孩等性別刻板偏見所影響。所以 20~30 年來許多人做出各種努力以消除這種性別刻板偏見所帶來的不良影響,政府也努力制定各種政策來消除這種不當的性別偏見,像是求才廣告基本上不能限定性別、公司聘雇員工應該達到一定的性別比例等。因此,訓練 AI 的研究資料一旦隱藏類似前述性別比例不均的現象,訓練出來的 AI 預測結果就彷彿帶有性別歧視,讓人們過往致力消除性別不平等的各種努力都白費了!

其他 AI 應用帶來的倫理與風險

除了演算法偏誤的問題外,第二種可能帶來的倫理問題或風險是 AI 技術已經偏離原先使用目的,例如深偽技術(deepfake)原本用來解決圖片資料量不夠的問題,後來卻被利用在偽造名人性愛影片等。

第三種則是有些 AI 技術或產品本身就可能有善惡兩種用途(dual-use)。例如 AI 人臉辨識技術可用在保護數位裝置的使用者或大樓保全,但也可用來窺探或監控特定個人;無人機可以在農業上幫助農夫播種,但也可作為自動殺人武器;可用來搜尋如何產生毒性最少的藥物合成演算法,也能反過來成為搜尋如何產生毒性最強的藥物合成演算法。

最後,第四種是演算法設計不良或現有技術限制所導致的問題。在演算法設計不良方面,例如下棋機器人手臂可能因為沒有設計施力回饋或移動受阻暫停等防呆裝置,而造成誤抓人類棋手的手指且弄斷的意外。在現有技術限制方面,道路駕駛的交通標誌在現實中可能時常有老舊或髒汙的情況,儘管對於人類駕駛來說可能不影響判讀,但對於自駕車來說很可能就因此會嚴重誤判,例如無法正確辨識禁止通行標誌而繼續行駛,或是將速限 35 公里誤判成 85 公里等。但前述情況也有可能是自駕車網路、控制權限或物件辨識模型受到惡意攻擊所致。

以上介紹了 AI 常見的四種倫理問題或風險:演算法偏誤、相關技術或產品偏離原先使用目的、擁有善惡兩種用途,以及演算法設計不良或現有技術限制。但人們該如何減少這些倫理問題與風險呢?

培養AI使用倫理與風險的敏銳度

近五、六年來國際組織如聯合國教育科學及文化組織(United Nations Educational, Scientific and Cultural Organization, UNESCO)、歐盟(European Union, EU)、電機電子工程師學會(Institute of Electrical and Electronics Engineers, IEEE)或是國家、國際非營利組織皆紛紛制訂有關 AI 發展的白皮書或倫理指引(ethical guidelines),甚至逐漸朝向法律治理的方向,如歐盟的人工智慧規則草案等。儘管這些文件所提出的倫理價值、原則或行為規範,看似各有不同,但經過這些年的討論與摸索,也逐漸匯聚出一些共識。

「人工智慧科研發展指引」提出三項倫理價值,包含以人為本、永續發展、多元包容。圖/Pexels

臺灣相較於前述國際文件來說,在制訂的時間上比較晚。2019 年由當時的科技部(現改為國科會)制訂「人工智慧科研發展指引」,裡面提出的三項倫理價值以及八項行為指引,基本上涵蓋了前述各種國際 AI 發展指引文件最常提及的內容。所謂三項倫理價值包含以人為本、永續發展、多元包容,行為指引則有共榮共利、安全性、問責與溝通、自主權與控制權、透明性與可追溯性、可解釋性、個人隱私與數據治理、公平性與非歧視性共八項。

未來當讀者看到又出現哪些 AI 新技術或產品時,不妨試著評估看看是否有符合這三項價值及八項行為指引。若沒有,究竟是哪項不符合?不符合的原因是上述所介紹常見的四種倫理問題或風險的哪一種?若都不是,還有哪些倫理問題或風險過去被忽略了但值得重視?

AI 技術發展日新月進,在日常生活中的應用也愈來愈廣。但考量法律條文有強制性,在制訂時必須相當謹慎,免得動輒得咎,也很可能在不清楚狀況下反而制訂了不當阻礙創新發展的條文;再加上法律制定也必須有一定的穩定性,不能朝令夕改,否則會讓遵守法規者無所適從。因此可以想見,法令規範趕不上新興科技所帶來的問題與風險本來就是常態,而非遇到 AI 科技才有這種情況。

人們若能培養自身對於 AI 倫理問題或風險的敏銳度,便可發揮公民監督或協助政府監督的力量,評估 AI 開發或使用者有無善盡避免傷害特定個人或群體之嫌,逐漸改善 AI 開發者與大眾媒體常過度誇大 AI 功能,但對於可能帶來的倫理問題或風險卻常閃爍其詞或避而不談的不好現象。

本文感謝工業技術研究院產業科技國際策略發展所支持。

  • 〈本文選自《科學月刊》2023 年 2 月號〉
  • 科學月刊/在一個資訊不值錢的時代中,試圖緊握那知識餘溫外,也不忘科學事實和自由價值至上的科普雜誌。
所有討論 1
科學月刊_96
235 篇文章 ・ 2572 位粉絲
非營利性質的《科學月刊》創刊於1970年,自創刊以來始終致力於科學普及工作;我們相信,提供一份正確而完整的科學知識,就是回饋給讀者最好的品質保證。

0

1
1

文字

分享

0
1
1
比起文字,人類更傾向透過聲音來理解並記憶語言——《大腦這樣「聽」》
天下文化_96
・2023/02/12 ・1436字 ・閱讀時間約 2 分鐘

我們正在逐步瞭解語言學習策略如何改善腦中的聲音處理過程。

語言學習策略與大腦處理聲音的過程息息相關。圖/Envato Elements

以聲音來強化語言能力

如果,我們能在孩子蹣跚學步時,就藉由瞭解他們的聽覺神經系統來預測他們七歲時的閱讀能力,那麼我們就能預先採取行動,避免負面結果發生。

海德公園日校所使用的輔助性聽覺裝置是其中一種方法,普羅維登斯採用的穿戴式計字科技產品是另一種,默澤尼克和塔拉爾開發的聽覺訓練遊戲,以及貝納西奇研發的寶寶玩具則是提供了額外的有效途徑。

對聲音和語言之間的關係有更多瞭解之後,我們就能找出更好的方法幫助孩子發展語言能力,幫助我們可以聽得更好的科技正在蓬勃發展。

了解更多聲音和語言之間的關係,就能找出幫助孩子發展語言能力更好的方法。圖/Envato Elements

我希望看見它們成為主流,而非僅限於像海德公園日校這樣的少數地方。我有位學生是語言障礙人士,我在教學時會戴上有如項鍊的麥克風,而她所戴的輔助性聽覺裝置可以接收來自麥克風的訊號。

某天下課後,我跟她交換裝置,結果令我印象深刻:她站在演講廳的另一頭說話時,我可以清楚聽見她的聲音。我能想像,在嘈雜的環境中每個人都能因這項科技而受惠,如果可以發展出更強的語言能力對每個人都有幫助。

聽覺、閱讀、有聲書

身為一個對聲音有著各種琢磨的人,我想知道體驗聲音的新方式會對我們的聽覺神經系統產生什麼影響。我之前曾提過,我結束一天的方式大部分是由我先生唸書給我聽;但我沒有提到的是,我也會聽有聲書。這對我的聲音意識會有什麼影響?我的閱讀、說話和思考方式會有什麼變化?就理解和記憶的層面而言,聽文本和讀文本的效果似乎相差不遠。

有時候,用聽的效果可能更好。

我就發現莎士比亞筆下那些古文,比起閱讀,用聽的更能讓我理解;演員在聲音中加入諷刺、幽默或其他線索,可以幫助我們對所聽到的內容有更全面的理解。

莎士比亞浪漫喜劇〈仲夏夜之夢〉(A Midsummer Night’s Dream)。圖/GIPHY

大聲朗讀也可以提升你對所讀內容的記憶程度,我認為人類的天性更傾向於透過聲音來理解並記憶語言,而不是透過文本;因為在我們開始讀跟寫之前,聽覺是幾百萬年就演化出來的能力。

有聲書擴大了我們可以閱讀的環境,聽有聲書時我會戴上耳塞式耳機,一方面聆聽內容,一方面同時隔絕了我在烹飪(滋滋作響的洋蔥)、健身或搭火車時的背景噪音。

我期待進一步探究聽文本和讀文本的生物學基礎,以及個體之間的差異;我想要知道聆聽有聲書會對聲音意識的演化產生何種影響。

——本文摘自《大腦這樣「聽」:大腦如何處理聲音,並影響你對世界的認識》,2022 年 12 月,天下文化出版,未經同意請勿轉載。

天下文化_96
122 篇文章 ・ 604 位粉絲
天下文化成立於1982年。一直堅持「傳播進步觀念,豐富閱讀世界」,已出版超過2,500種書籍,涵括財經企管、心理勵志、社會人文、科學文化、文學人生、健康生活、親子教養等領域。每一本書都帶給讀者知識、啟發、創意、以及實用的多重收穫,也持續引領台灣社會與國際重要管理潮流同步接軌。