0

0
1

文字

分享

0
0
1

日本籍科學家近年屢獲諾貝爾醫學獎,是怎麼辦到的?──《科學月刊》

科學月刊_96
・2018/12/26 ・2877字 ・閱讀時間約 5 分鐘 ・SR值 616 ・十年級

-----廣告,請繼續往下閱讀-----

  • 林翰佐/銘傳大學生物科技學系副教授,科學月刊總編輯。

近年在科學獎項上表現傑出的日本,是如何辦到的?

每年10月份起,伴隨著一絲秋意,年度科學盛事諾貝爾獎的得獎名單陸續揭曉。每年的此時是《科學月刊》編輯部最忙的時候,為了讓讀者對年度諾貝爾獎得獎者及其研究有更深入淺出的瞭解,在得獎名單公佈之際,科月編輯部便會邀請國內相關領域專家撰文,匯集於 12 月號的「諾貝爾獎」專輯,以饗大眾。

這是一個需要與時間賽跑的工作。同樣地,今(2018)年這項專輯的籌劃工作也正緊鑼密鼓地執行當中,請大家拭目以待。

近年來,日本籍科學家在諾貝爾生理學或醫學獎(簡稱醫學獎)有相當的斬獲。在 2012 年以前,原本只有 1 次醫學獎獲獎紀錄的日本,近 7 年來卻有高達 4 次的獲獎紀錄,分別是 2012 年的山中伸彌(iPSCs幹細胞)、2015 年的大村智(蛔蟲的治療)、2016 年的大隅良典(細胞的自噬機制)以及 2018 年的本庶佑(發現免疫細胞的負回饋機制併用於癌症的治療),彌補了原先日本在生醫獎項上得獎數偏低的遺憾。

2018年日籍諾貝爾生理學或醫學獎得主:本庶佑。圖/wikipedia

直至目前為止,日本籍科學家總共獲得了 23 次諾貝爾獎科學類獎項的殊榮,包括 11 次的物理獎項、7 次的化學獎項與 5 次的醫學獎項。從世界的角度來看,日本籍科學家的整體表現也相當亮眼,除卻美國(333次)、英國(104次)、德國(90次)及法國(37次),目前暫居排行榜的第 5 名。

-----廣告,請繼續往下閱讀-----

日本人是怎樣辦到的?傳統上我們會認為,東西方教育理念的不同造就日後在科學表現上的差異;西方的教育講究順勢而為,鼓勵孩子探索自己喜歡的事物,東方式的教育則以集體式管理為主,強調規矩以及潛移默化的形塑個人未來應有的社會規範,在此筆者並無意評論 2 種制度的孰優孰劣。

只不過,東方式教育發展極致的日本,其實在科學上的表現也能同樣的傑出,令筆者想要瞭解一下其中的道理。臺灣的教育體制其實受日式教育影響極深,早年筆者於國、高中階段經歷的髮禁及聯考制度,均為日式教育的翻版。在日籍科學家發光發熱之時,臺灣能否也能有相對的優異表現?這是筆者想要探討的主題。

筆者雖未親身經歷日式體制,但周邊不乏有於日本進行科學研究工作經驗的朋友,一陣閒聊之下歸納些許關鍵,在此野人獻曝,跟各位讀者分享。

科學學習氛圍,帶來基礎研究的能量

相較於臺灣,日本人對科學學習是比較熱衷的。這點可以從臺灣的科學啟蒙書籍大多從日文書籍翻譯而來,可以見微知著。學術獎項的取得其實有點類似於參加國際上的體育競賽,雖說最終榮耀歸於一人,事實上背後還涉及許多無名英雄的付出。

-----廣告,請繼續往下閱讀-----

以生物醫學相關的研究為例,實驗室研究人員的研究素質、誠信與對研究計畫的執行效率,攸關最後學術成果發表的品質及其對科學社群的影響力。實驗計畫主持人即便有著無與倫比的聰慧智力,缺乏強而有力的專業團隊,透過實驗驗證理論基礎也是枉然。

團隊人力的培養有賴社會氛圍的支持,有如日本職棒市場的雄厚能量來自於全民棒球運動的基礎。如果說大家對於基礎科學研究興趣缺缺,自然缺乏這種推升的動能引領科學研究超凡入聖。

閱讀習慣,鍛鍊獨立思考的能力

想要針對某一個議題上有別於前人之開創性的見解,需要大量而廣泛的閱讀,然後透過獨立思考來獲得。圖/wikipieda

相較於臺灣,日本人的閱讀習慣是好很多的。這點可從兩地出版業的榮枯略知一二。閱讀習慣為什麼會跟科學能力有關聯呢?科學研究注重研究上的新穎性(novelty),想要針對某一個議題上有別於前人之開創性的見解,需要大量而廣泛的閱讀,然後透過獨立思考來獲得。

基於日人的閱讀能量,出版界有著合理的利潤,將大量的國外書籍翻譯成日文,形成一股正回饋(positive feedback),滋養著國民獨立思考的基礎,這使得日人在相關創造性產業的開發均較亞洲各國有長足的領先。這種「全面翻譯」的方式當然也有它的缺陷,其中一項問題便在於日本國人普遍性外語能力的薄弱,反映在托福等國際性英語測驗的平均成績上。英文化的不足也反映在日本在國際期刊上投稿數與投入經費不成比例的問題。

-----廣告,請繼續往下閱讀-----

有關於教育上「國際化」,「英文化」一直是國內教育推行目標,立意是良好的,不過筆者認為最大的問題還是來自於執行層面能夠真正落實的程度,這其實與學生的素質息息相關。例如大學中的科學教育常常標榜原文書教學,但囿於學生英文能力,往往變成專業沒學好,英文也沒學好,造成雙輸的格局。筆者認為優質基礎科研教科書的中文化仍然是臺灣科技推動的基礎,學生需要透過相當量上的閱讀形塑屬於自己的科學觀。

研究團隊組成,集中科學動能

日本實驗室文化自成一格,具有相當的組織性,研究團隊由 1 至數名教授領軍,向下由副教授、助理教授、助教、助理、博士後研究員及研究生所組成。相較於臺灣,研究室的規模通常較為龐大,且每個團隊中學術專業人員比例較高。

這樣的文化有利有弊,主持教授在資源、研究方向及人事權上擁有相當的權力,考驗著體制內的種種人性,但若指揮調度得當,大編制的研究單位好處是科研動能得以集中,對於有價值的研究主軸可以乘勝追擊,取得主要的學術成就。

臺灣近年來透過鼓勵整合型研究計畫的提出企圖將研究能量予以整合,其中不乏有相當優異的成果,不過這種任務性的編制團隊能否透過互動激發出真正的研發能量,需要更細膩的政策配合以及考驗著計畫總主持人的智慧。

-----廣告,請繼續往下閱讀-----

日本科研的成本效益偏低

對比臺灣,日本整體科研體系的花費是巨大的。目前,日本科學界的年度預算約占 1400 億美元上下,約佔世界科研預算的 10%,不過國際期刊中文獻的產出並未達到相對的成效。根據荷蘭著名期刊出版商 Elsevier 公司所做的統計分析顯示,日本科學家平均每 100萬美元的科研預算投資僅造就 0.7 篇科學文獻的產出,相較於第一名的荷蘭(3.7)低上許多。日本在世界期刊論文發表數於近年來更有明顯下降的趨勢,在 2015 年甚至被急起直追的印度超越,總排名滑落至世界第 5。

他山之石,可以攻錯

科學研究的成效是什麼?是得到諾貝爾獎的光環加持,學術期刊發表數,全民素質的提升,抑或是科研活動所產生的產業技術推動力?一直以來就是科學界爭論的議題。這是一個相當複雜的議題。但無疑的,時至今日,日本籍科學家在諾貝爾獎項上的亮麗表現,是長期全民投入的開花結果。

相較於臺灣,日本科研環境仍是令人相當羨慕的,雖然收入不豐,科學家在日本社會上仍然保有相當的地位,年度科學經費中的80%來自企業出資,使得科學研究議題與產業形成更密集的結合,暢通未來高科技人才培育後的就業管道,筆者認為這些都是值得臺灣思索以政策形塑科研體制時的參考。

延伸閱讀

  1. 日本諾貝爾獎得主,https://goo.gl/E6thbb
  2. 各國諾貝爾獎得主人數,https://goo.gl/4VPy6N
  3. 楊子晴,〈荷蘭出版社調查指出日本科研現狀:投入大成果少〉,《環球網》,2018年3月26日,https://bit.ly/2CgPK1d

 

〈本文轉載自《科學月刊》2018年11月號〉

-----廣告,請繼續往下閱讀-----

一個在數位時代中堅持紙本印刷的科普雜誌,

讓你在接收新知之餘,也能感受蘊藏在紙張間的科學能量。

文章難易度
科學月刊_96
249 篇文章 ・ 3653 位粉絲
非營利性質的《科學月刊》創刊於1970年,自創刊以來始終致力於科學普及工作;我們相信,提供一份正確而完整的科學知識,就是回饋給讀者最好的品質保證。

0

3
3

文字

分享

0
3
3
圖形處理單元與人工智慧
賴昭正_96
・2024/06/24 ・6944字 ・閱讀時間約 14 分鐘

-----廣告,請繼續往下閱讀-----

  • 作者/賴昭正|前清大化學系教授、系主任、所長;合創科學月刊

我擔心人工智慧可能會完全取代人類。如果人們能設計電腦病毒,那麼就會有人設計出能夠自我改進和複製的人工智慧。 這將是一種超越人類的新生命形式。

——史蒂芬.霍金(Stephen Hawking) 英國理論物理學家

大約在八十年前,當第一台數位計算機出現時,一些電腦科學家便一直致力於讓機器具有像人類一樣的智慧;但七十年後,還是沒有機器能夠可靠地提供人類程度的語言或影像辨識功能。誰又想到「人工智慧」(Artificial Intelligent,簡稱 AI)的能力最近十年突然起飛,在許多(所有?)領域的測試中擊敗了人類,正在改變各個領域——包括假新聞的製造與散佈——的生態。

圖形處理單元(graphic process unit,簡稱 GPU)是這場「人工智慧」革命中的最大助手。它的興起使得九年前還是個小公司的 Nvidia(英偉達)股票從每股不到 $5,上升到今天(5 月 24 日)每股超過 $1000(註一)的全世界第三大公司,其創辦人(之一)兼首席執行官、出生於台南的黃仁勳(Jenson Huang)也一躍成為全世界排名 20 內的大富豪、台灣家喻戶曉的名人!可是多少人了解圖形處理單元是什麼嗎?到底是時勢造英雄,還是英雄造時勢?

黃仁勳出席2016年台北國際電腦展
Nvidia 的崛起究竟是時勢造英雄,還是英雄造時勢?圖/wikimedia

在回答這問題之前,筆者得先聲明筆者不是學電腦的,因此在這裡所能談的只是與電腦設計細節無關的基本原理。筆者認為將原理轉成實用工具是專家的事,不是我們外行人需要了解的;但作為一位現在的知識分子或公民,了解基本原理則是必備的條件:例如了解「能量不滅定律」就可以不用仔細分析,即可判斷永動機是騙人的;又如現在可攜帶型冷氣機充斥市面上,它們不用往室外排廢熱氣,就可以提供屋內冷氣,讀者買嗎?

CPU 與 GPU

不管是大型電腦或個人電腦都需具有「中央處理單元」(central process unit,簡稱 CPU)。CPU 是電腦的「腦」,其電子電路負責處理所有軟體正確運作所需的所有任務,如算術、邏輯、控制、輸入和輸出操作等等。雖然早期的設計即可以讓一個指令同時做兩、三件不同的工作;但為了簡單化,我們在這裡所談的工作將只是執行算術和邏輯運算的工作(arithmetic and logic unit,簡稱 ALU),如將兩個數加在一起。在這一簡化的定義下,CPU 在任何一個時刻均只能執行一件工作而已。

-----廣告,請繼續往下閱讀-----

在個人電腦剛出現只能用於一般事物的處理時,CPU 均能非常勝任地完成任務。但電腦圖形和動畫的出現帶來了第一批運算密集型工作負載後,CPU 開始顯示心有餘而力不足:例如電玩動畫需要應用程式處理數以萬計的像素(pixel),每個像素都有自己的顏色、光強度、和運動等, 使得 CPU 根本沒辦法在短時間內完成這些工作。於是出現了主機板上之「顯示插卡」來支援補助 CPU。

1999 年,英偉達將其一「具有集成變換、照明、三角形設定/裁剪、和透過應用程式從模型產生二維或三維影像的單晶片處理器」(註二)定位為「世界上第一款 GPU」,「GPU」這一名詞於焉誕生。不像 CPU,GPU 可以在同一個時刻執行許多算術和邏輯運算的工作,快速地完成圖形和動畫的變化。

依序計算和平行計算

一部電腦 CPU 如何計算 7×5+6/3 呢?因每一時刻只能做一件事,所以其步驟為:

  • 計算 7×5;
  • 計算 6/3;
  • 將結果相加。

總共需要 3 個運算時間。但如果我們有兩個 CPU 呢?很多工作便可以同時(平行)進行:

-----廣告,請繼續往下閱讀-----
  • 同時計算 7×5 及 6/3;
  • 將結果相加。

只需要 2 個運算時間,比單獨的 CPU 減少了一個。這看起來好像沒節省多少時間,但如果我們有 16 對 a×b 要相加呢?單獨的 CPU 需要 31 個運算的時間(16 個 × 的運算時間及 15 個 + 的運算時間),而有 16 個小 CPU 的 GPU 則只需要 5 個運算的時間(1 個 × 的運算時間及 4 個 + 的運算時間)!

現在就讓我們來看看為什麼稱 GPU 為「圖形」處理單元。圖一左圖《我愛科學》一書擺斜了,如何將它擺正成右圖呢? 一句話:「將整個圖逆時針方向旋轉 θ 即可」。但因為左圖是由上百萬個像素點(座標 x, y)組成的,所以這句簡單的話可讓 CPU 忙得不亦樂乎了:每一點的座標都必須做如下的轉換

x’ = x cosθ + y sinθ

y’ = -x sinθ+ y cosθ

-----廣告,請繼續往下閱讀-----

即每一點均需要做四個 × 及兩個 + 的運算!如果每一運算需要 10-6 秒,那麼讓《我愛科學》一書做個簡單的角度旋轉,便需要 6 秒,這豈是電動玩具畫面變化所能接受的?

圖形處理的例子

人類的許多發明都是基於需要的關係,因此電腦硬件設計家便開始思考:這些點轉換都是獨立的,為什麼我們不讓它們同時進行(平行運算,parallel processing)呢?於是專門用來處理「圖形」的處理單元出現了——就是我們現在所知的 GPU。如果一個 GPU 可以同時處理 106 運算,那上圖的轉換只需 10-6 秒鐘!

GPU 的興起

GPU 可分成兩種:

  • 整合式圖形「卡」(integrated graphics)是內建於 CPU 中的 GPU,所以不是插卡,它與 CPU 共享系統記憶體,沒有單獨的記憶體組來儲存圖形/視訊,主要用於大部分的個人電腦及筆記型電腦上;早期英特爾(Intel)因為不讓插卡 GPU 侵蝕主機的地盤,在這方面的研發佔領先的地位,約佔 68% 的市場。
  • 獨立顯示卡(discrete graphics)有不與 CPU 共享的自己專用內存;由於與處理器晶片分離,它會消耗更多電量並產生大量熱量;然而,也正是因為有自己的記憶體來源和電源,它可以比整合式顯示卡提供更高的效能。

2007 年,英偉達發布了可以在獨立 GPU 上進行平行處理的軟體層後,科學家發現獨立 GPU 不但能夠快速處理圖形變化,在需要大量計算才能實現特定結果的任務上也非常有效,因此開啟了為計算密集型的實用題目編寫 GPU 程式的領域。如今獨立 GPU 的應用範圍已遠遠超出當初圖形處理,不但擴大到醫學影像和地震成像等之複雜圖像和影片編輯及視覺化,也應用於駕駛、導航、天氣預報、大資料庫分析、機器學習、人工智慧、加密貨幣挖礦、及分子動力學模擬(註三)等其它領域。獨立 GPU 已成為人工智慧生態系統中不可或缺的一部分,正在改變我們的生活方式及許多行業的遊戲規則。英特爾在這方面發展較遲,遠遠落在英偉達(80%)及超微半導體公司(Advance Micro Devices Inc.,19%,註四)之後,大約只有 1% 的市場。

-----廣告,請繼續往下閱讀-----
典型的CPU與GPU架構

事實上現在的中央處理單元也不再是真正的「單元」,而是如圖二可含有多個可以同時處理運算的核心(core)單元。GPU 犧牲大量快取和控制單元以獲得更多的處理核心,因此其核心功能不如 CPU 核心強大,但它們能同時高速執行大量相同的指令,在平行運算中發揮強大作用。現在電腦通常具有 2 到 64 個核心;GPU 則具有上千、甚至上萬的核心。

結論

我們一看到《我愛科學》這本書,不需要一點一點地從左上到右下慢慢掃描,即可瞬間知道它上面有書名、出版社等,也知道它擺斜了。這種「平行運作」的能力不僅限於視覺,它也延伸到其它感官和認知功能。例如筆者在清華大學授課時常犯的一個毛病是:嘴巴在講,腦筋思考已經不知往前跑了多少公里,常常為了追趕而越講越快,將不少學生拋到腦後!這不表示筆者聰明,因為研究人員發現我們的大腦具有同時處理和解釋大量感官輸入的能力。

人工智慧是一種讓電腦或機器能夠模擬人類智慧和解決問題能力的科技,因此必須如人腦一樣能同時並行地處理許多資料。學過矩陣(matrix)的讀者應該知道,如果用矩陣和向量(vector)表達,上面所談到之座標轉換將是非常簡潔的(註五)。而矩陣和向量計算正是機器學習(machine learning)演算法的基礎!也正是獨立圖形處理單元最強大的功能所在!因此我們可以了解為什麼 GPU 會成為人工智慧開發的基石:它們的架構就是充分利用並行處理,來快速執行多個操作,進行訓練電腦或機器以人腦之思考與學習的方式處理資料——稱為「深度學習」(deep learning)。

黃仁勳在 5 月 22 日的發布業績新聞上謂:「下一次工業革命已經開始了:企業界和各國正與英偉達合作,將價值數萬億美元的傳統資料中心轉變為加速運算及新型資料中心——人工智慧工廠——以生產新商品『人工智慧』。人工智慧將為每個產業帶來顯著的生產力提升,幫助企業降低成本和提高能源效率,同時擴大收入機會。」

附錄

人工智慧的實用例子:下面一段是微軟的「copilot」代書、谷歌的「translate」代譯之「one paragraph summary of GPU and AI」。讀完後,讀者是不是認為筆者該退休了?

-----廣告,請繼續往下閱讀-----

GPU(圖形處理單元)和 AI(人工智慧)之間的協同作用徹底改變了高效能運算領域。GPU 具有平行處理能力,特別適合人工智慧和機器學習所需的複雜資料密集運算。這導致了影像和視訊處理等領域的重大進步,使自動駕駛和臉部辨識等技術變得更加高效和可靠。NVIDIA 開發的平行運算平台 CUDA 進一步提高了 GPU 的效率,使開發人員能夠透過將人工智慧問題分解為更小的、可管理的、可同時處理的任務來解決這些問題。這不僅加快了人工智慧研究的步伐,而且使其更具成本效益,因為 GPU 可以在很短的時間內執行與多個 CPU 相同的任務。隨著人工智慧的不斷發展,GPU 的角色可能會變得更加不可或缺,推動各產業的創新和新的可能性。大腦透過神經元網路實現這一目標,這些神經元網路可以獨立但有凝聚力地工作,使我們能夠執行複雜的任務,例如駕駛、導航、觀察交通信號、聽音樂並同時規劃我們的路線。此外,研究表明,與非人類動物相比,人類大腦具有更多平行通路,這表明我們的神經處理具有更高的複雜性。這個複雜的系統證明了我們認知功能的卓越適應性和效率。我們可以一邊和朋友聊天一邊走在街上,一邊聽音樂一邊做飯,或一邊聽講座一邊做筆記。人工智慧是模擬人類腦神經網路的科技,因此必須能同時並行地來處理許多資料。研究人員發現了人腦通訊網路具有一個在獼猴或小鼠中未觀察獨特特徵:透過多個並行路徑傳輸訊息,因此具有令人難以置信的多任務處理能力。

註解

(註一)當讀者看到此篇文章時,其股票已一股換十股,現在每一股約在 $100 左右。

(註二)組裝或升級過個人電腦的讀者或許還記得「英偉達精視 256」(GeForce 256)插卡吧?

(註三)筆者於 1984 年離開清華大學到 IBM 時,就是參加了被認為全世界使用電腦時間最多的量子化學家、IBM「院士(fellow)」Enrico Clementi 的團隊:因為當時英偉達還未有可以在 GPU 上進行平行處理的軟體層,我們只能自己寫軟體將 8 台中型電腦(非 IBM 品牌!)與一大型電腦連接來做平行運算,進行分子動力學模擬等的科學研究。如果晚生 30 年或許就不會那麼辛苦了?

-----廣告,請繼續往下閱讀-----

(註四)補助個人電腦用的 GPU 品牌到 2000 年時只剩下兩大主導廠商:英偉達及 ATI(Array Technology Inc.)。後者是出生於香港之四位中國人於 1985 年在加拿大安大略省成立,2006 年被超微半導體公司收購,品牌於 2010 年被淘汰。超微半導體公司於 2014 年 10 月提升台南出生之蘇姿豐(Lisa Tzwu-Fang Su)博士為執行長後,股票從每股 $4 左右,上升到今天每股超過 $160,其市值已經是英特爾的兩倍,完全擺脫了在後者陰影下求生存的小眾玩家角色,正在挑戰英偉達的 GPU 市場。順便一題:超微半導體公司現任總裁(兼 AI 策略負責人)為出生於台北的彭明博(Victor Peng);與黃仁勳及蘇姿豐一樣,也是小時候就隨父母親移居到美國。

(註五)

延伸閱讀

  • 熱力學與能源利用」,《科學月刊》,1982 年 3 月號;收集於《我愛科學》(華騰文化有限公司,2017 年 12 月出版),轉載於「嘉義市政府全球資訊網」。
  • 網路安全技術與比特幣」,《科學月刊》,2020 年 11 月號;轉載於「善科教育基金會」的《科技大補帖》專欄。
文章難易度

討論功能關閉中。

賴昭正_96
43 篇文章 ・ 56 位粉絲
成功大學化學工程系學士,芝加哥大學化學物理博士。在芝大時與一群留學生合創「科學月刊」。一直想回國貢獻所學,因此畢業後不久即回清大化學系任教。自認平易近人,但教學嚴謹,因此穫有「賴大刀」之惡名!於1982年時當選爲 清大化學系新一代的年青首任系主任兼所長;但壯志難酬,兩年後即辭職到美留浪。晚期曾回台蓋工廠及創業,均應「水土不服」而鎩羽而歸。正式退休後,除了開始又爲科學月刊寫文章外,全職帶小孫女(半歲起);現已成七歲之小孫女的BFF(2015)。首先接觸到泛科學是因爲科學月刊將我的一篇文章「愛因斯坦的最大的錯誤一宇宙論常數」推薦到泛科學重登。

2

2
2

文字

分享

2
2
2
諦聽宇宙深處的低吟,宇宙低頻重力波訊號代表的意義——《科學月刊》
科學月刊_96
・2023/11/01 ・3782字 ・閱讀時間約 7 分鐘

-----廣告,請繼續往下閱讀-----

  • 作者/陳哲佑
    • 任職於日本理化學研究所,專長為黑洞物理、宇宙學、重力理論等。
    • 熱愛旅行、排球與珍珠奶茶
  • Take Home Message
    • 今(2023)年 6 月,北美奈赫茲重力波天文臺(NANOGrav)團隊觀察到宇宙中的低頻重力波。
    • NANOGrav 團隊利用數個脈衝星組成「脈衝星陣列」(PTA),測量各脈衝星訊號到達的時間,計算不同訊號的到達時間是否存在著相關性。
    • PTA 得到的重力波訊號相當持續,沒有明確的波源。科學家推測此訊號可能來自多個超大質量雙黑洞系統互繞而產生的疊加背景。

2015 年 9 月,位於美國的雷射干涉儀重力波天文臺(Laser Interferometer Gravitational-Wave Observatory, LIGO)成功偵測來自雙黑洞碰撞的重力波訊號(請見延伸閱讀 1)。

這個發現不僅再次驗證愛因斯坦(Albert Einstein)「廣義相對論」的成功,更引領人類進入嶄新的重力波天文學時代。到了現在,我們不僅能使用各種電磁波波段進行觀測,還多了重力波這個強而有力的工具能夠窺探我們身處的宇宙,甚至還有同時結合兩者的多信使天文學(multi-messenger astronomy)註1,皆能帶給人類許多單純電磁波波段觀測無法觸及的資訊(請見延伸閱讀 2)。

如同不同波段的電磁波觀測結果為我們捎來不同的訊息,重力波也有不同的頻譜,且頻譜與產生重力波的波源性質有非常密切的關係。以雙黑洞碰撞為例,系統中黑洞的質量與碰撞過程中發出的重力波頻率大致上成反比,因此當系統中黑洞的質量愈大,它產生的重力波頻率就愈低。

目前地球上的三個重力波天文臺:LIGO、處女座重力波團隊(The Virgo Collaboration, Virgo),以及神岡重力波探測器(Kamioka Gravitational wave detector, KAGRA, or Large-scale Cryogenic Gravitational wave Telescope, LCGT)都受限於干涉儀的長度,只對頻率範圍 10~1000 赫茲(Hz)的重力波有足夠的靈敏度,此範圍的重力波對應到的波源即是一般恆星質量大小的雙黑洞系統。

-----廣告,請繼續往下閱讀-----

然而,來自超大質量黑洞互繞所發出的重力波頻率幾乎是奈赫茲(Nano Hertz,即 10-9 Hz)級別,如果想要探測到此重力波,就需要一個「星系」規模的重力波探測器。雖然這聽起來彷彿天方夜譚,但就在今年 6 月,北美奈赫茲重力波天文臺(North American Nanohertz Observatory for Gravitational Waves, NANOGrav)的團隊利用「脈衝星計時陣列」(pulsar timing array, PTA)成功地觀測到這些低頻重力波存在的證據。

以不同方式觀察不同頻率的重力波

與電磁波相似,重力波也有不同的頻率。不同頻率的重力波會對應到不同性質的波源,且需要不同的方式觀測。圖/科學月刊 資料來源/Barack, et al. 2018

NANOGrav 如何觀測低頻重力波?

讀者聽過脈衝星(pulsar)嗎?它是一種高速旋轉且高度磁化的中子星(neutron star)註2,會從磁極放出電磁波。隨著脈衝星的旋轉,它的電磁波會以非常規律的時間間隔掃過地球,因而被身處於地球上的我們偵測到,就像是海邊的燈塔所發出的光,會規律地掃過地平面一般。由於脈衝星的旋轉模式相當穩定,掃過地球的脈衝就如同宇宙中天然的時鐘,因此在天文學上有相當多的應用——甚至可以用來觀測重力波。

利用脈衝星觀測重力波的第一步,首先要記錄各個脈衝星的電磁脈衝到達地球的時間(time of arrival),並且將這些訊號與脈衝星電磁脈衝的理論模型做比對。

如果訊號和理論模型相符,那麼兩者相減後所得到的訊號差(residual)只會剩下一堆雜訊;相反的,如果宇宙中存在著重力波,並且扭曲了該脈衝星和地球之間的時空,那麼兩訊號相減之後就不會只有雜訊,而會出現時空擾動的蹤跡。

-----廣告,請繼續往下閱讀-----
利用數個脈衝星組成的脈衝星計時陣列,可用來尋找宇宙中低頻的重力波訊號。圖/Tonia Klein, NANOGrav 

然而以觀測的角度來看,即便我們從來自單一脈衝星的訊號中發現訊號差出現偏離雜訊的跡象,也不能直接推論這些跡象一定是來自重力波。畢竟科學家對脈衝星的內部機制和脈衝傳遞的過程也並未完全了解,這些未知的機制都可能會使單一脈衝星的訊號差偏離雜訊。

因此為了要判斷重力波是否存在,就必須進行更進一步的觀測:利用數個脈衝星組成脈衝星陣列,測量每個脈衝星訊號到達的時間,並且計算這些不同脈衝星訊號的到達時間是否存在某種相關性。

舉例來說,如果脈衝星和地球之間沒有重力波造成的時空擾動,那麼即便每顆脈衝星的訊號差都出現偏離雜訊的跡象,彼此之間的訊號也會完全獨立且不相干;反之,如果脈衝星和地球之間有重力波經過,這些重力波便會扭曲時空,不僅會改變這些脈衝訊號的到達時間,且不同脈衝星訊號到達的時間變化也會具有某種特定的相關性。

根據廣義相對論的計算,一旦有重力波經過,不同脈衝星訊號之間的相關性與脈衝星在天球上的夾角會滿足一條特定的曲線,稱為 HD 曲線(Hellings-Downs curve)。

-----廣告,請繼續往下閱讀-----

科學家以兩顆脈衝星為一組觀測單位,藉由觀測多組脈衝星的訊號、計算它們之間的相關性,再比較這些數據是否符合 HD 曲線,就能夠進一步推斷低頻重力波是否存在。值得一提的是,由於重力波訊號非常微弱,用來作為陣列的脈衝星必須有非常穩定的計時條件,因此一般會選擇自轉週期在毫秒(ms)級別的毫秒脈衝星作為觀測對象。

NANOGrav 在今年 6 月發布的觀測結果就是利用位於波多黎各的阿雷西博天文台(Arecibo Observatory,已於 2020 年因結構老舊而退役)、美國的綠堤望遠鏡(Robert C. Byrd Green Bank Telescope)和甚大天線陣(Very Large Array, VLA)觀測 68 顆毫秒脈衝星。

他們分析了長達 15 年的觀測數據後,發現這些脈衝星訊號的相關性與 HD 曲線相當吻合,證實了低頻重力波確實存在於我們的宇宙中。

除了 NANOGrav,其他團隊例如歐洲的脈衝星計時陣列(European Pulsar Timing Array, EPTA)、澳洲的帕克斯脈衝星計時陣列(Parkes Pulsar Timing Array, PPTA)、印度的脈衝星定時陣列(Indian Pulsar Timing Array, InPTA),以及中國的脈衝星計時陣列(Chinese Pulsar Timing Array, CPTA)等,皆得到相符的結果。

-----廣告,請繼續往下閱讀-----

NANOGrav 觀測結果帶來的意義

與先前 LIGO 觀測到的瞬時重力波訊號不同,目前利用 PTA 得到的重力波訊號是相當持續的,而且並沒有較明確的單一波源,反而像是由來自四面八方數個波源組成的隨機背景訊號。

打個比方,LIGO 收到的重力波訊號像是我們站在海邊,迎面而來一波一波分明的海浪,每一波海浪分別對應到不同黑洞碰撞事件所發出的重力波;而 PTA 的訊號則是位於大海正中央,感受到隨機且不規則的海面起伏。

目前對這些奈赫茲級別的重力波訊號最合理也最自然的解釋,是來自多個超大質量雙黑洞系統互繞而產生的疊加背景。若真是如此,那這項發現將對天文學產生重大的意義。

過去科學界對於如此巨大的雙黑洞系統能否在可觀測宇宙(observable universe)的時間內互繞仍普遍存疑,如果PTA觀測到的重力波真的來自超大質量雙黑洞互繞,那代表這類系統不僅存在,它們的出現還比過去我們預期的更為頻繁,且產生的訊號也更強。

-----廣告,請繼續往下閱讀-----

NANOGrav 的觀測結果

橫軸為脈衝星陣列中,兩脈衝星位置之間的夾角;縱軸為訊號之間的相關性;藍色數據點為 NANOGrav 15 年的觀測結果;黑色虛線為 HD 曲線。可看出數據點的分布與 HD 曲線相當吻合。圖/科學月刊 資料來源/Agazie et al. 2023

不過除了雙黑洞系統,也有其他「相對新奇」的物理機制也可能產生這樣的重力波背景,包含早期宇宙的相變、暗物質,以及其他非標準模型的物理等。若要從觀測的角度去區分這些成因,最重要的關鍵在於,能否從隨機背景中找到特定的波源方向。

如果是雙黑洞系統造成的重力波,勢必會有來自某些方向的訊號比較強;反之,如果是早期宇宙產生的重力波,那麼這些重力波將會隨著宇宙的膨脹瀰漫在整個宇宙中,因此它們勢必是相當均向的。

為了找到波源方向,提升訊號的靈敏度成為了當務之急。而若要提升 PTA 的靈敏度,最主要的方式有兩種——其一是將更多的脈衝星加入陣列;其二則是延長觀測的時間。

目前,不同的 PTA 團隊已經組成國際脈衝星計時陣列(International PTA)互相分享彼此的脈衝星觀測資料。隨著觀測技術的進步,解密這些奈赫茲級別的神祕重力波將指日可待。

-----廣告,請繼續往下閱讀-----

註解

  1. 相較於過往只能以可見光觀測宇宙,多信使天文學能利用多種探測訊號,如電磁波、微中子、重力波、宇宙射線等工具探索宇宙現象,獲得更多不同資訊及宇宙更細微的面貌。
  2. 質量較重的恆星在演化到末期、發生超新星爆炸(supernova)後,就有可能成為中子星。

延伸閱讀

  1. 林俊鈺(2016)。發現重力波!,科學月刊556,248–249。
  2. 金升光(2017)。重力波獨白落幕 多角觀測閃亮登場,科學月刊576,892–893。
  3. NANOgrav. (Jun 28 2023). Scientists use Exotic Stars to Tune into Hum from Cosmic Symphony. NANOgrav.
  • 〈本文選自《科學月刊》2023 年 10 月號〉
  • 科學月刊/在一個資訊不值錢的時代中,試圖緊握那知識餘溫外,也不忘科學事實和自由價值至上的科普雜誌。
所有討論 2
科學月刊_96
249 篇文章 ・ 3653 位粉絲
非營利性質的《科學月刊》創刊於1970年,自創刊以來始終致力於科學普及工作;我們相信,提供一份正確而完整的科學知識,就是回饋給讀者最好的品質保證。

0

0
0

文字

分享

0
0
0
人類終於實現室溫超導體之夢?常溫常壓超導體 LK-99——《科學月刊》
科學月刊_96
・2023/11/01 ・4262字 ・閱讀時間約 8 分鐘

  • 作者/王立民
    • 臺灣大學物理學系教授,主要研究領域包括超導物理、高溫超導電子元件等
  • Take Home Message
    • 今(2023)年 7 月 27 日,韓國研究團隊宣稱他們發現一種在常溫常壓下能產生超導體性質的材料「LK-99」。
    • 筆者團隊在實驗室中合成了 LK-99 樣品,並觀察到此樣品在常溫時呈現出抗磁性性質,但不具有超導體的完全抗磁特性。
    • LK-99 樣品具有半導體的導電特性,在 390 K 也有電阻急遽下降的變化,但應為樣品內含的硫化亞銅所致,因此僅可被視為一種具抗磁性半導體材料。

一直以來,實現「室溫超導體」就是人類的夢想。今(2023)年 7 月 27 日,來自韓國的研究團隊宣稱發現一種在常溫常壓下能產生超導體性質的材料「LK-99」,隨即引起全世界的振奮與轟動。

此外,在理論計算上也顯示 LK-99 在適當的摻雜與晶格排列下,具有表現超導性的可能。

幾天後,美國勞倫斯柏克萊國家實驗室(Lawrence Berkeley National Laboratory, LBNL)的研究員格里芬(Sinéad Griffin)也指出,透過超級電腦的計算模擬顯示,當銅原子(copper, Cu)滲透到晶格中的路徑處於適當的條件和位置——特別是取代某一個鉛原子(lead, Pb)的特殊位置時——它們就能夠具有超導的共同特徵。

這是首篇證實 LK-99 理論上可行的論文,更帶動了能源科技公司美國超導體(American Superconductor Corporation, AMSC)的股價在收盤前暴漲。緊接著其他以密度泛函理論(density functional theory, DFT)計算 LK-99 的能帶結構也被提出,作者們普遍認為銅的摻雜引起了「從絕緣體到導體」的轉變,並大膽推斷 LK-99 可能具有超導特性。

-----廣告,請繼續往下閱讀-----

然而,各國間許多以實驗工作為主的研究團隊試圖復現韓國研究團隊 LK-99 的結果,卻未能證實 LK-99 是室溫超導體,國際團隊的實驗均顯示它僅是具抗磁性的半導體材料。

在各國紛紛設法復刻韓國團隊的研究時,筆者實驗室也立刻緊鑼密鼓加入,期望驗證這項被宣稱為「世紀大發現」的研究真實性。

超導的「迷」與「謎」

為了解這次室溫超導的真相,我們不得不先從現今超導的研究開始談起。

超導迷人之處不僅在於學術上的奇妙物理相變化,更在實際應用中展現出它獨特的性質——零電阻與完全抗磁性。這幾項特質在電力傳輸、交通、軍事、能源、量子科技等領域中,都具有相當多的應用價值。

-----廣告,請繼續往下閱讀-----

然而自 1911 年荷蘭物理學家歐尼斯(Heike Onnes)發現「汞」(mercury, Hg)在 4.2 K(Kelvin,克耳文)的溫度下會呈現超導特性,成為第一個超導材料以來,歷經 75 年人們發現的最高超導溫度僅有 23 K 的鈮鍺化合物(niobium-germanium)。

1986 年,瑞士物理學家米勒(Karl Alexander Müller)及德國物理學家比得諾茲(Johannes Georg Bednor)發現銅氧化合物超導體(又稱高溫超導體),並於 1987 年獲得諾貝爾物理獎。

同年,中央研究院院士吳茂昆與朱經武也發現超導溫度約 90K 的釔鋇銅氧(YBCO)超導體,它的超導溫度已突破應用液態氮 77 K 的溫度障壘。

而迄今為止,常壓下超導溫度最高的是在 1993 年發現的汞鋇鈣銅氧(HBCCO)超導體,約為 135 K。

-----廣告,請繼續往下閱讀-----

在理論的發展上,1957 年三位美國物理學家施里弗(John Schrieffer)、巴丁(John Bardeen)、古柏(Leon Cooper)提出 BCS 理論(Bardeen–Cooper–Schrieffer theory, BCS theory),解釋了出現於 1986 年以前的「低溫超導體」(或稱傳統超導體)的超導行為,例如同位素效應。然而公認能解釋高溫超導性的理論仍付之闕如,BCS 理論預期的超導上限溫度僅 40 K 左右。

多年來,人們也嘗試提高超導溫度,常用的手法是利用高壓,如在百萬大氣壓下一些含氫化合物將呈現近室溫的超導性,但這些方法其實對超導的理論或實驗研究不具任何意義。

因為根據基本理論,當外加壓力無限大時,超導臨界溫度(Tc)當然可以無限提高。所以具有重大意義的室溫超導,必須是在常壓下出現超導特性的材料,這也是韓國團隊宣稱 LK-99 為常溫常壓超導對科學界帶來震撼的原因。

如何檢驗材料的超導特性?

如前所述,超導具有零電阻與完全抗磁的特性,因此一項材料超導特性的驗證基本上需經由電阻與磁性的量測來確認(若加上比熱量測則會更完整)。以筆者實驗室裡用磁控濺鍍技術所成長的高溫超導 YBCO 薄膜為例,圖一(a)為量測此材料電阻率(ρ)比值隨溫度(ρ/ρ100 K− T)變化的關係(以 100 K 為基準),可以看到當溫度降至大約 88 K 時,YBCO 薄膜的電阻急速下降至近零電阻(儀表偵測極限)狀態。

-----廣告,請繼續往下閱讀-----

而在磁性的量測,則利用超導量子干涉磁量儀(SQUID magnetometer)量測 YBCO 薄膜在零磁冷卻(zero-field cooling, ZFC)與磁冷卻(field-cooling, FC)下的磁化強度(magnetization, M)隨溫度變化的關係。

之所以需量測 ZFC 與 FC 曲線,是為了確認超導的磁通釘扎(magnetic flux pinning)效應,也就是磁力線在超導體內部低位能區的束縛狀態(可由 FC 曲線觀察此現象),而此效應也是所謂「第二類超導體」的特徵之一。

圖一、YBCO 薄膜電阻率的比值(a)與磁化率(b)隨溫度變化的關係。當溫度降至大約 88 K 時,YBCO 薄膜的電阻急速下降至近零電阻狀態。圖/科學月刊(作者提供)

另外,若材料本身為完全無雜質存在的「百分之百超導體」,則它的磁化率(χ,定義為 M/H,H 為外加磁場強度)在 ZFC 低溫下則是完美的 -1 值(為超導體的邁斯納效應)。

相對地若材料本身只含有部分超導材料,混合了某些非超導材料,則 χ 雖仍為負值但卻會小於 1,且對應材料中超導成分所占的體積比率。因此透過磁性 ZFC、FC 的量測可以精確地定性與定量一項材料的超導特性。

-----廣告,請繼續往下閱讀-----

如圖一(b)所示,此為量測 YBCO 薄膜在外加磁場 5 Oe(oersted,奧斯特)下 ZFC、FC 磁化率 χ 隨溫度變化的關係。圖中可以看到 YBCO 薄膜在低溫 2 K 下 ZFC 的 χ 值為 -1,顯示它完美的抗磁性,且 ZFC 與 FC 曲線分離也顯示樣品中存在著磁通釘扎效應。

另一種大家熟知、直觀的超導現象即為磁浮實驗。圖一(a)左上角的照片便是利用筆者實驗室自行成長的大塊 YBCO 單晶(黑色),在液態氮冷卻下的磁浮實驗照片。

圖中可清楚看到磁鐵飄浮於 YBCO 晶體上方,但此處需強調的是——一項材料並不是具磁浮現象就可斷言為超導體,例如因具有高抗磁性而可產生磁浮現象的熱解碳(pyrolytic carbon),就是一種具磁浮現象但並非超導體的例子。因此,超導特性的檢驗仍須以嚴謹的電性與磁性測量為檢驗標準。

驗證 LK-99 是否為超導體

依據韓國團隊在論文中揭露的 LK-99(化學成分為 Pb9Cu(PO4)6O)合成方法,此材料的技術門檻不高,從原料到成品僅需數天即可完成。

-----廣告,請繼續往下閱讀-----

首先根據文獻,我們合成的 LK-99 樣品外觀與顏色與其他團隊結果無異(圖二右上角),圖二為合成 LK-99 樣品的 X 光繞射圖(X-ray diffractometer, XRD)。此結果同樣與韓國等團隊所呈現的結果差異不大,均顯示其中的成分組成並非單純化合物,尤其是其中出現銅-硫化合物的「雜相」,意味著在對 LK-99 的特性量測與下定論時需格外小心。

圖二、筆者實驗室合成的 LK-99 樣品外觀(右上)。LK-99 樣品的 X 光繞射圖與韓國等團隊所呈現的結果差異不大,均顯示其中的成分組成並非單純化合物,尤其是在合成方法中出現副產物硫化亞銅(Cu2S)的「雜相」。圖/科學月刊

圖三(a)為筆者實驗室合成的 LK-99 樣品在外加磁場 200 Oe 下的磁化強度量測結果,顯示 LK-99 在室溫(約 300 K)下具抗磁性,但換算磁化率則極低,約為 10-4 左右。我們觀察到 LK-99 的 ZFC、FC 與韓國研究團隊公開的數據類似,也觀察到類似第二類超導體 ZFC 與 FC 曲線的分離,但這可能是因樣品中存在著具有磁通釘扎效應的雜質,才會造成它在低溫(10 K)以下呈現磁矩反轉成大於零的順磁性。

圖三(b)則為筆者實驗室製作的 LK-99 樣品電阻率隨溫度變化的關係圖,樣品在常溫以下呈現半導體的導電行為,特別是在溫度約 390 K 觀察到電阻急遽降低的情形,類似韓國團隊宣稱的在約 378 K 出現超導零電阻現象。

然而,已有中國科學院研究團隊的實驗結果表明,此超導現象可能是由於合成方法產生的副產物硫化亞銅所引起,硫化亞銅已知會在 377 K 出現結構相轉變並伴隨電阻急遽下降。而 LK-99 樣品在以能量色散光譜(energy-dispersive-spectroscopy)元素分析後也能觀察到硫元素的存在,與 X 光繞射的結果吻合。

-----廣告,請繼續往下閱讀-----

因此,我們在實驗室中觀察到 LK-99 樣品在溫度約 390 K 時電阻急遽降低的現象,推論應為硫化亞銅所致,與超導無關。

圖三、樣品在常溫以下呈現半導體的導電行為,特別是在溫度約 390 K 附近觀察到電阻急遽降低的情形。但此超導現象可能是由於合成方法產生的硫化亞銅所引起,與超導無關。(a)LK-99 樣品在外加磁場 200 Oe 下的磁化強度量測結果,顯示 LK-99 在室溫下具抗磁性,但換算磁化率則極低。(b)LK-99 樣品電阻率隨溫度變化的關係圖。圖/科學月刊

並非室溫超導體的 LK-99

根據韓國團隊所發表的合成方法,我們複製出室溫超導 LK-99 樣品。在磁性測量部分,顯示 LK-99 在室溫為抗磁性物質,但不具超導的完全抗磁特性。

電性測量則顯示 LK-99 具有半導體導電特性,在 390 K 也有電阻急遽下降的變化,但應為樣品內含的硫化亞銅所致,與超導零電阻行為無關。因此,LK-99 僅可被視為一種抗磁性半導體材料,此結論與許多國際團隊的結果一致。在今年 8 月中旬,知名期刊《自然》(Nature)甚至刊出一篇文章直指「LK-99 不是超導體」。

LK-99 的認證實驗仍有待各國(包含韓國國內)其他團隊持續進行,尋找室溫超導之路仍然漫長。

感謝臺灣大學及國科會在研究資源的支持,以及中興大學物理系教授吳秋賢、東海大學物理系教授王昌仁及時找到元素磷,使復現實驗得以立刻進行。

也感謝實驗室團員的努力,使實驗室得以早日揭露 LK-99 真相,相關結果將整理以期刊正式發表。

註解

在超導狀態下,第一類超導體在超導臨界磁場(Hc)以下時呈現完全抗磁狀態(邁斯納效應,Meissner effect)。第二類超導體則呈現兩個臨界磁場:下臨界磁場(Hc1)與上臨界磁場(Hc2),磁場在小於Hc1下為完全抗磁性的狀態;磁場介於 Hc1 與 Hc2 之間時,部分磁力線可以進入超導體內部,呈現非完全抗磁性的混合態。

  • 〈本文選自《科學月刊》2023 年 10 月號〉
  • 科學月刊/在一個資訊不值錢的時代中,試圖緊握那知識餘溫外,也不忘科學事實和自由價值至上的科普雜誌。
科學月刊_96
249 篇文章 ・ 3653 位粉絲
非營利性質的《科學月刊》創刊於1970年,自創刊以來始終致力於科學普及工作;我們相信,提供一份正確而完整的科學知識,就是回饋給讀者最好的品質保證。