0

0
0

文字

分享

0
0
0

在巨浪狂風黑水溝中部署的「離岸風電」,能為台灣帶來充滿希望的能源未來嗎?

鳥苷三磷酸 (PanSci Promo)_96
・2018/09/30 ・3076字 ・閱讀時間約 6 分鐘 ・SR值 534 ・七年級

本文由 NEPII「第二期國家型能源科技計畫」委託,泛科學執行

圖/Lars Plougmann@flickr

在不太遙遠的未來,臺灣海峽會有大量的離岸風機紛紛建起。巨幅的扇葉隨風旋轉,讓電力孤島的臺灣,未來得以提高能源自主率並且避免氣候變遷危害。

臺灣高聳的中央山脈,隔著臺灣海峽與中國福建的武夷山遙遙相望,這樣的地形環境形成了巨型的「狹管效應」,讓臺灣海峽成為世界排得上名的良好風場。美國國家可再生能源實驗室(National Renewable Energy Laboratory,簡稱 NREL)評估臺灣海峽的離岸風力可高達七級。NREL 將風力分成七個等級,依據風力數據的風度和品質、地形的複雜性和資源的地理差異,等級三以上的地區便適合發展風力發電。

(圖一)風力等級一覽表。截圖來源:National Renewable Energy Laboratory
風力等級一覽表。圖/National Renewable Energy Laboratory
(圖二)世界各地風力等級示意圖。截圖來源:National Renewable Energy Laboratory
世界各地風力等級示意圖。圖/National Renewable Energy Laboratory

離岸風電在臺灣

著眼與臺灣發展再生能源發電的迫切需求,「風力發電4年推動計畫」原規畫 2025 年離岸風電 3GW 目標,行政院長賴清德於 2018 年 3 月 22 日正式宣布加碼提高至 5.5GW。

臺灣現階段的離岸風場開發,主要分為三個階段進行:首先為「示範風場」的開發建置,次階段為「潛力場址」,目標為 2020年完成 520 MW、2025年完成 5.5 GW 裝置容量設置。最後一個階段則是目前能源局仍在規劃細節的「區塊開發」。

三家離岸示範風場開發商台電、上緯、永傳均已於 2015 年 11 月完成離岸風場測風塔之建置,並開始進行長期之離岸風場量測記錄。2016 年,臺灣的離岸風電元年,上緯於 10 月 25 日與 27 日於苗栗近海先後完成兩架離岸風機 (Siemens 4MW+4MW) 之裝置,開啟臺灣離岸風電產業的第一頁。

要在茫茫大海之中建造超過百米的巨大風機,在進行基礎的探測、累積資料確定架設位置之後,目前的實作主要是在深度 50公尺以內的海床打樁,安裝水下結構,再安裝風機裝備,並且同步鋪設將電力併入陸上電網的海底電纜;前面種種均需仰賴相當昂貴的離岸風機的施工船隊進行,而架設完成後續還會有風機的運轉與維護的需求。而如若風場的選擇合適,在原有風機抵達使用年限後,可再拆換新型的風機系統,生生不息、永續利用該地風能。

離岸風電,臺灣嶄新的產業未來?

當我們談論到離岸風電的產業技術發展,多數人很自然會聯想到風力發電機零組件的建造,事實上,離岸風電的產業還包括了水下結構的建置、海事工程、以及風機的運轉與維護等,每個項目都有相當複雜的產業與技術存在。

目前台灣的風力發電主要設置於海岸,但未來將逐步增加興建離岸風機。圖為台中高美濕地一帶的風機。圖/juemi @Pixabay

即將大舉投入離岸風機建造的臺灣,是不是能一併發展國產化的離岸風電產業,進而創造出除了電力之外更多的經濟產能?目前現階段經濟部採取的策略,在於離岸風電發展的遴選機制中納入了「產業關聯效益」項目,以「事前承諾、事後具體執行」方式辦理,希望能帶動本土的供應鏈發展。

「歐洲風機的製造技術發展已經相當純熟,」國立臺灣大學工程科學及海洋工程學系江茂雄系主任,身兼 NEPII 離岸風能及海洋能主軸中心召集人說:「因此要全部由臺灣製造相當困難,較現實的策略是發展重要的零組件或是在地設廠進行風機組裝。」

另一個需要克服的產業困境,是臺灣並無自己的海事工程船隊,因此無論是架設離岸風機、海纜施工或是未來的運轉跟維護,均需仰賴規模龐大的海事工程船隊,可能會有機具需遠距離調度、時間過長、成本過高、時程受制於人等疑慮;但自行籌組船隊需要相當龐大的資本額,未來需要設法解決。

另一方面,著眼於臺灣海峽的優良風場以及富有颱風與地震的環境,臺灣離岸風場開發為各國離岸風電公司趨之若鶩投入亞洲市場的試金石與練兵場。在這樣的環境中,臺灣還有哪些技術發展有機會迎頭趕上呢?

「針對臺灣海域之抗颱耐震機組,以及浮動式平台的研發,相當適合做為主力投入發展的技術。」江茂雄主任說,現行的適用於深度 50 米以下的固定式基礎的離岸風機國外產業已經相對成熟。浮動式平台不需打樁、組裝受天氣影響小,海事工程成本較低。目前這方面的技術各國仍陸續研發中,全球較具規模之實海域驗證計畫包括挪威的 Hywind示範計畫、葡萄牙的WindFloa計畫,以及日本的福島浮體式洋上風場計畫。如能與國外廠商合作,可做為臺灣發展浮動式平台的產業能量。

產業發展,人才哪來?

2025 年臺灣預計完成 5.5GW的離岸風機裝置容量,經濟部並估計可創造2萬人次的就業機會,帶動近兆元的國內外廠商投資額。但這些就業內容並非天下掉下來的餡餅,離岸風電產業的人才培育,也因此迫在眉睫。

離岸風機設置除了能源革新,更能帶動經濟發展,但相關專業人才的培育也迫在眉睫。 圖/經濟部開放資料

在離岸風電產業大抵將所需的就業人力分為兩大類:「綠領」與「白領」。

「綠領」的工作內容類似我們認知的藍領工人,需要實地操作、調度機械,但還需具備使用英文的能力並且通過相關的證照。如位於台中港「海運發展學院園區」的安全訓練中心即預定 2019 年初對外營運,提供國際GWO認證的安全訓練課程。

「白領」的工作內容則為管理階層,包括工程師、管考、法務等面向,需要相對專業的訓練。目前臺灣大學率先啟動,與丹麥大學合作已於今年九月推出「離岸風電學分學程」,未來預計也將開設在職訓練課程,以及還需教育部同意才能增設的「離岸風電學位學程」。

離岸風電作為重點發展的再生能源項目,初期投入的成本較高,且新興技術充滿了高風險與變數,因此相當仰賴政策方向的引導與補助。如國產化的政策於去年10月正式納入遴選要求,才帶動了國內相關生產鏈的投入。而未來第三階段「區塊開發」應針對可能的風場作出更完整的環境評估與量測,包括海床條件探勘、風場探勘與生態評估等內容,從而降低離岸風電開發的風險與爭議,以此迎向真正永續發展、綠能生生不息的未來。

圖/fxxu @Pixabay

延伸閱讀

參考資料

本文由 NEPII「第二期國家型能源科技計畫」委託,泛科學執行

文章難易度
鳥苷三磷酸 (PanSci Promo)_96
155 篇文章 ・ 268 位粉絲
充滿能量的泛科學品牌合作帳號!相關行銷合作請洽:contact@pansci.asia

0

2
1

文字

分享

0
2
1
【水獺媽媽專欄:從日常學永續】我也好想像太陽一樣,可以發光又發電!
PanSci_96
・2022/11/02 ・830字 ・閱讀時間約 1 分鐘

立即填寫問卷,預約【課程開賣早鳥優惠】與送你【問卷專屬折扣碼】!

「隨手關燈,節能減碳」這是在我們日常生活中,絕對會看見或聽見的標語!在家裡被爸爸媽媽隨時叮嚀、到學校被老師耳提面命、忘記關燈而被罵的記憶肯定不會少。

建立節能好習慣很重要,但我們現在還有哪些跟能源相關的永續行動呢?

台灣的發電來源,主要仰賴燃煤、燃氣等化石燃料,比重高達80%,但提供穩定電量讓人類使用的同時,卻也大量排放二氧化碳及空氣汙染物、加劇氣候變遷,灰濛濛的天空就是最直接的證據。

近年,政府積極推動能源轉型,希望降低對化石燃料的依賴,發展再生能源,尤其是太陽光電和離岸風力發電。

像是今年夏天,家長跟小朋友都很期待的「班班有冷氣」政策,除了讓大家可以舒適上課,也同步規劃「校校會發電」,降低對地球的負擔。

近年,政府積極推動能源轉型,希望降低對化石燃料的依賴,發展再生能源,尤其是太陽光電和離岸風力發電。圖/水獺媽媽提供

不過大家有發現,學校的發電設備裝在哪裡嗎?

原本烈日長期曝曬,又熱又空的學校頂樓,竟然可以搖身一變,成為設置太陽能板的最佳基地!而當地球最豐沛的資源——陽光,照射到板內的矽晶片時,光子會撞擊電子並產生電流。

這些我們肉眼看不到的次原子粒子,卻悄悄在太陽能板中移動,而且發電的過程不會排放任何溫室氣體,也不會造成空氣汙染,非常不可思議!

陽光照射到板內的矽晶片時,光子會撞擊電子並產生電流。圖/水獺媽媽提供

也許我們都沒想過,學校可以從原本「電的消費者」變成「電的供給者」,將能源轉型落實在校園中,那麼大家趕快找個時間,去看看自己的學校,有沒有用來發電的太陽能板吧!

隨手關燈,一起節能愛地球!圖/水獺媽媽提供
PanSci_96
1011 篇文章 ・ 1110 位粉絲
PanSci的編輯部帳號,會發自產內容跟各種消息喔。

0

3
2

文字

分享

0
3
2
若風力、太陽能變成主要能源,如何不被無風陰天弄得全國大停電?──《牛津通識課|再生能源:尋找未來新動能》
日出出版
・2022/07/20 ・3299字 ・閱讀時間約 6 分鐘

電網:將電力輸送到各地的網路系統

在十九世紀,電力是在靠近電力需求的地方生產的,但到了二十世紀,規模經濟催生出集中式發電廠、長距離傳輸線和地方的變電站。現在,世界上大多數國家的電力都是透過電網來提供。

電網,就是用來傳輸電力的網路,像是電廠、變電廠、配電系統等等,都是電網的一環。圖/Pixabay

這套系統是為了滿足供電需求──最低需求稱為基本負載(baseload)──所設計的,由最便宜的發電機來滿足。

直到最近,發電方式通常是以燃煤為主(也有國家是以核電或水力發電為主),而且大部分的時間都在運作。會搭配其他發電廠(通常是循環燃氣渦輪發電機)來支援,以滿足每天的負載量變化,也會有可快速運作的小型燃氣渦輪或柴油發電機來應對激增的需求或是發電廠停擺等故障問題。

發電廠和變電站間的輸配電系統很重要,這可確保即使有單一線路或發電廠出現問題,仍舊能夠維持電力供應。電網有辦法將電力輸送到偏遠社區,也能獲得偏遠地區的發電。

再生能源進場後,該如何和傳統電廠互相配合?

現在,太陽光電場和風場在許多電網上提供的電力占比日益升高,這正在改變對發電廠的要求。在一般情況下,一天之中混合使用再生能源和傳統發電廠的發電方式最為經濟,而不是完全使用大型的傳統發電機。

風場和太陽光電場容易受到天氣的影響,現階段該如何讓再生能源電場與一般傳統電廠配合,也是能源議題中的一大考驗。圖/Pixabay

除了提供潔淨的電力外,風場和太陽光電場的營運成本最低──這稱為邊際成本(marginal costs)──因為它們沒有燃料成本,並且會首先調用。

為了讓風場和太陽光電場達到最大使用效能,最好是搭配能夠因應電力供需變化而快速反應的其他發電廠;而且理想上,這些電廠的運作也應該符合經濟效應,運作時消耗的用電量僅占其最大負載量的一小部分。

一般來說,燃煤電廠和核電廠的數量並不會有快速的增減,而燃氣和再生能源電廠則是更好的選項。根據地點的不同,水力發電、生質能、地熱和聚光太陽能(搭配蓄熱儲能)都可以擔任靈活發電的功能。

化石燃料發電廠可以儲存燃料並因應需求來提供電力。風場和太陽光電場與這些可以隨時供電──稱為可調度或固定供應──的發電廠不同,這兩者的運作都取決於天氣這項變數。

運用 AI 技術,擺脫「天氣」這個天生弱點!

儘管有時會出現風力弱和陰天的日子,然而,與一些人想像的剛好相反,擁有大量風力發電和太陽光電的電網其實能夠在需要時提供電力。

透過人工智慧(artificial intelligence,AI)來獲取良好的天氣預報,太陽光電場和風場的輸出變化通常是可以預期的,因此可得到最佳結果。

透過人工智慧的協助,可以更有效的運用電力。圖Envato Elements

當再生能源供應達到總電力需求的 30% 時,這些變化可以輕易透過裝配在電網上的快速反應發電廠來填補,以滿足供電需求的變化。

當一處 1000 兆瓦的大型發電廠意外跳電(可能是設備故障或過載),處理起來可能遠比風力發電或太陽光電的電力突然下降更具挑戰性。備用儲電站必須迅速上線,而風場和太陽光電場若是尚未達到滿載,還可以在有風和晴天的天氣迅速提高其發電量,提供額外的寶貴備用電。

再生能源成為主要來源後,怎麼讓電供保持穩定?

為了提供潔淨、安全和價格低廉的電力,並且在本世紀中葉大幅減少碳排放,避免氣候變遷演變到危及生靈的程度,全球的供電必須以再生能源為主。透過增加再生能源的輸出、地理分布以及與其他電網的連結,再生能源的供電占比將可望提高到電網的 50% 左右。

在一定程度上,增加這類綠電的發電能力可以彌補天氣條件惡劣的情況,而連接大範圍的太陽光電場和風場則可以提供更平穩可靠的電力。

在歐洲,丹麥已經與挪威、瑞典或德國等國進行電力交易,以此來平衡電力供需:在他們自己的風力發電量高時出口電力,而在發電量低時則進口電力。

然而,建立洲際再生電網並非易事。過去曾經有一項 DESERTEC(沙漠科技基金會)的提案,計畫要將北非的太陽能傳送到歐洲,但由於政治不穩定,再加上不同地區和國家對規畫中的電網各有所圖,產生相互衝突的反對意見,因此難以具體實現提案。

增加太陽能板的面積、建立跨國、洲際再生電網,都是維持電力供應穩定的做法。圖/Pixabay

此外,由於太陽能板的成本急劇下降,因此日照多的優勢變得不那麼重要,因為可以靠增加太陽能板的大小來彌補日照少的缺憾,這比支付長距離傳輸費用更為經濟。能夠在地方發電也等於是提供了一份供電的安全保障,不必依賴化石燃料進口。然而,廣泛架設的電網確實對於供需平衡有極大的幫助。

若是能配合供電來調整電力需求,就可降低對儲能廠的需求──這稱為「需量反應(demand response)」──或許可成為一個更便宜的選項,因為那些用來支援電力尖峰的快速反應發電廠的運作成本最高。

智慧電網:更聰明、更彈性的調整電力供應!

使用智慧電網可以讓電網營運商和用戶間進行雙向溝通,調整電力負載量,使其與供電端相等,這樣就能確定出需要從電網中取用的的需求量,或是添加量。

出現短時間停電或減少電力供應時,許多運作仍有可能繼續維持,好比那些具有熱慣性的操作──像是保持鐵或瀝青、熔融物或超市冰箱冷藏食物的溫度;或是建築物的溫度調節──或是在將零件組裝成產品前,先製造出充足的零件備量。

智慧電網最重要的就是雙向的溝通來進行調整。圖/Envato Elements

同樣地,可以透過啟動電爐、大型電解槽或海水淡化廠(以幫助應對氣候變遷造成的乾旱)來增加需求量。在數位化科技的推動下,我們正處於智慧電網革命的開端,這將會對電力負載量造成重大變化,將會讓邁向再生能源的這段過渡期更為容易,並且為客戶帶來更低的成本。

另外,可以用價格差異來鼓勵客戶改變他們的電力需求。在義大利,有推行一個簡單的計畫,是以固定費用(取決於所使用的最大功率)和每度電的價格來回收發電廠的資本和配電成本以及發電成本。

以限制電力需求的方式(讓消費端的電價變得更便宜),白天必須間隔使用電熱水壺、洗衣機和烤箱等電器;如果一次全部使用,就會跳電。

這樣便可降低發電成本中最高的尖峰用電。而在離峰期(例如夜間)提供便宜電價也是一種方式。不過要達到有效調整,需要同時使用智慧電網和智慧電錶。這樣用戶端可以看到他們的消費細節,並選擇僅在低電價或優惠價格時段才使用某些電器設備。

儲能設備對於提高再生能源的發電占比非常有幫助。以太陽光電場和風場這樣的組合來供應夜間用電,往往會有白天過度生產,導致電價下跌的情況。若是沒有儲能設備,必須盡可能出口過剩電力,或是以減少供電來降低損失。短期儲能可以將部分電力從下午轉移到晚上,因此小容量即可以滿足日常需求。

隨著電池成本的急劇下降,這種儲能的可用性變得越來越高,而且也開始取代那些用來補強綠電不足時的快速反應化石燃料電廠。

——本文摘自《【牛津通識課02】再生能源:尋找未來新動能》,2022 年 6 月,日出出版,未經同意請勿轉載。

日出出版
8 篇文章 ・ 4 位粉絲

0

2
1

文字

分享

0
2
1
每年有一千萬公頃的森林消失!把樹種回去,就可以解決問題了嗎?──《牛津通識課|再生能源:尋找未來新動能》
日出出版
・2022/07/19 ・1997字 ・閱讀時間約 4 分鐘

碳捕捉:把電廠排出來的二氧化碳再抓回去!

一九九〇年代,尚未開發出風能和太陽能,當時對氣候變遷的擔憂日益增加,因此有人建議捕捉和儲存那些從化石燃料發電廠排放出來的二氧化碳,如此就可將其轉變成一種低碳電力。

碳捕捉主要是透過化學反應將煙道氣(flue gas)中的二氧化碳分離出來,然後再將其壓縮液化,泵入地下洞穴,例如含水層或是廢棄的油氣田。

同時要針對傳統的發電機開收排放二氧化碳的費用。這將鼓勵電廠採用碳捕捉技術,不過前提是碳價要夠高,超過捕捉和封存二氧化碳的成本。

然而,即使在龐大的歐盟市場,碳的價格也從未高到足以讓碳捕捉在電力生產中具有競爭力,而且真正在運作的碳捕捉工廠很少。

碳捕捉將煙道氣(flue gas)中的二氧化碳分離出來,然後再加工處理。圖/Envato

即使如此,捕捉二氧化碳排放依舊可望成為一種脫碳方法,在未來某些產能製程中合乎成本效益。一個例子是將天然氣轉化為氫氣,這還能用於加熱和製造燃料電池,或用於生產水泥以及甲醇和氨等重要工業化學品。

碳捕捉的各種可行性:直接從空氣抓?多種一點樹?

也有人認真思考過直接從空氣中捕捉二氧化碳的可行性,因為目前我們所面對的現實非常危險,即二氧化碳排放量下降的速度恐怕來不及讓上升溫度控制在攝氏 1.5 度內。

種植更多的樹木可能是最簡單也最便宜的方法,但首先必須遏止每年大量的伐林問題。

每年約有一千萬公頃的森林遭到砍伐,用於種植大豆、棕櫚油和其他作物,以及放牧牲畜。這樣的伐林導致全球每年約 10% 的二氧化碳排放量和生物多樣性的重大損失。

目前二氧化碳排放量下降的速度沒辦法使上升的溫度控制在 1.5°C 內,再加上樹木被大量的砍伐,導致全球每年約 10% 的二氧化碳排放量和生物多樣性的重大損失。圖/Envato

此外,封存大量二氧化碳所需的樹林面積也相當大──約要美國國土面積的四分之一,需要超過六年,甚至幾十年的時間才能讓樹木長到成熟,每年只能吸收平均全球燃燒化石燃料的 10% 排放量。

而在成長期過後,還需要更換樹木,因為在建築中也會使用到木材。有人建議,可以燃燒林業的廢棄物來產生能量(熱或電),並捕捉和封存排放出來的二氧化碳。

這種生質能源的碳捕捉尚有爭議,必須要確保改變土地利用的這項變動最後的結果是產生淨負排放,而不是增加碳的排放量。此外,這種方法尚在開發中,可能會與其他對可耕地和淡水的需求產生競爭關係。

多種樹,真的可以救地球嗎?事情可沒有我們想的那麼簡單!圖/Pixabay

不過,可以使用化學吸收器直接從空氣中捕捉二氧化碳,這種方法比生質能源更緻密、更可靠, 只是目前的價格較為昂貴。

奧利金能源公司(Origen Power)正在開發將碳捕捉與具有商業價值的石灰生產相結合,這樣的製程可望降低成本。

吸碳新創公司「Carbon Engineering」也在開發另一種方法,是使用與二氧化碳接觸會形成碳酸鈣的氫氧化鉀。整個過程以石灰來合成氫氧化鉀,形成碳酸鈣,然後將其加熱,釋放出二氧化碳,進行壓縮和封存──這時便會再度合成石灰。他們預估,以這種方式捕捉二氧化碳的成本可望降低至每噸 100 美元。

碳捕捉的展望與未來

為了增加產值,可以將捕捉來的二氧化碳與氫結合(比方說以再生電力來電解水,製造出氫氣),這可用來合成低碳燃料,取代汽油、柴油或航空燃料,這樣一來,其總排放量會遠低於某些生質燃料。

若是要捕捉和封存燃煤發電廠排放的二氧化碳,電力成本會增加約 60%,而使用再生能源來發電,成本則低得多。

然而,隨著空氣碳捕捉的研發和大量投資,再加上在某些工業製程中捕捉二氧化碳,以及重新造林,預估到二〇五〇年時,碳捕捉可能會吸收掉全球年排放量的 10%。

到二〇五〇年,再生能源和核能的總發電量可能接近當前全球需求量的 90%,透過碳捕捉,全世界可能會達到二氧化碳淨零排放。但要處理大量再生電力,電網在輸送和分配上需要適應風場和太陽光電場輸出量的種種變數,因此發展儲能設備非常重要。

——本文摘自《牛津通識課|再生能源:尋找未來新動能》,2022 年 6 月,日出出版,未經同意請勿轉載。

日出出版
8 篇文章 ・ 4 位粉絲