0

0
0

文字

分享

0
0
0

在巨浪狂風黑水溝中部署的「離岸風電」,能為台灣帶來充滿希望的能源未來嗎?

鳥苷三磷酸 (PanSci Promo)_96
・2018/09/30 ・3076字 ・閱讀時間約 6 分鐘 ・SR值 534 ・七年級

本文由 NEPII「第二期國家型能源科技計畫」委託,泛科學執行

圖/Lars Plougmann@flickr

在不太遙遠的未來,臺灣海峽會有大量的離岸風機紛紛建起。巨幅的扇葉隨風旋轉,讓電力孤島的臺灣,未來得以提高能源自主率並且避免氣候變遷危害。

臺灣高聳的中央山脈,隔著臺灣海峽與中國福建的武夷山遙遙相望,這樣的地形環境形成了巨型的「狹管效應」,讓臺灣海峽成為世界排得上名的良好風場。美國國家可再生能源實驗室(National Renewable Energy Laboratory,簡稱 NREL)評估臺灣海峽的離岸風力可高達七級。NREL 將風力分成七個等級,依據風力數據的風度和品質、地形的複雜性和資源的地理差異,等級三以上的地區便適合發展風力發電。

(圖一)風力等級一覽表。截圖來源:National Renewable Energy Laboratory
風力等級一覽表。圖/National Renewable Energy Laboratory
(圖二)世界各地風力等級示意圖。截圖來源:National Renewable Energy Laboratory
世界各地風力等級示意圖。圖/National Renewable Energy Laboratory

離岸風電在臺灣

著眼與臺灣發展再生能源發電的迫切需求,「風力發電4年推動計畫」原規畫 2025 年離岸風電 3GW 目標,行政院長賴清德於 2018 年 3 月 22 日正式宣布加碼提高至 5.5GW。

-----廣告,請繼續往下閱讀-----

臺灣現階段的離岸風場開發,主要分為三個階段進行:首先為「示範風場」的開發建置,次階段為「潛力場址」,目標為 2020年完成 520 MW、2025年完成 5.5 GW 裝置容量設置。最後一個階段則是目前能源局仍在規劃細節的「區塊開發」。

三家離岸示範風場開發商台電、上緯、永傳均已於 2015 年 11 月完成離岸風場測風塔之建置,並開始進行長期之離岸風場量測記錄。2016 年,臺灣的離岸風電元年,上緯於 10 月 25 日與 27 日於苗栗近海先後完成兩架離岸風機 (Siemens 4MW+4MW) 之裝置,開啟臺灣離岸風電產業的第一頁。

要在茫茫大海之中建造超過百米的巨大風機,在進行基礎的探測、累積資料確定架設位置之後,目前的實作主要是在深度 50公尺以內的海床打樁,安裝水下結構,再安裝風機裝備,並且同步鋪設將電力併入陸上電網的海底電纜;前面種種均需仰賴相當昂貴的離岸風機的施工船隊進行,而架設完成後續還會有風機的運轉與維護的需求。而如若風場的選擇合適,在原有風機抵達使用年限後,可再拆換新型的風機系統,生生不息、永續利用該地風能。

離岸風電,臺灣嶄新的產業未來?

當我們談論到離岸風電的產業技術發展,多數人很自然會聯想到風力發電機零組件的建造,事實上,離岸風電的產業還包括了水下結構的建置、海事工程、以及風機的運轉與維護等,每個項目都有相當複雜的產業與技術存在。

-----廣告,請繼續往下閱讀-----
目前台灣的風力發電主要設置於海岸,但未來將逐步增加興建離岸風機。圖為台中高美濕地一帶的風機。圖/juemi @Pixabay

即將大舉投入離岸風機建造的臺灣,是不是能一併發展國產化的離岸風電產業,進而創造出除了電力之外更多的經濟產能?目前現階段經濟部採取的策略,在於離岸風電發展的遴選機制中納入了「產業關聯效益」項目,以「事前承諾、事後具體執行」方式辦理,希望能帶動本土的供應鏈發展。

「歐洲風機的製造技術發展已經相當純熟,」國立臺灣大學工程科學及海洋工程學系江茂雄系主任,身兼 NEPII 離岸風能及海洋能主軸中心召集人說:「因此要全部由臺灣製造相當困難,較現實的策略是發展重要的零組件或是在地設廠進行風機組裝。」

另一個需要克服的產業困境,是臺灣並無自己的海事工程船隊,因此無論是架設離岸風機、海纜施工或是未來的運轉跟維護,均需仰賴規模龐大的海事工程船隊,可能會有機具需遠距離調度、時間過長、成本過高、時程受制於人等疑慮;但自行籌組船隊需要相當龐大的資本額,未來需要設法解決。

另一方面,著眼於臺灣海峽的優良風場以及富有颱風與地震的環境,臺灣離岸風場開發為各國離岸風電公司趨之若鶩投入亞洲市場的試金石與練兵場。在這樣的環境中,臺灣還有哪些技術發展有機會迎頭趕上呢?

-----廣告,請繼續往下閱讀-----

「針對臺灣海域之抗颱耐震機組,以及浮動式平台的研發,相當適合做為主力投入發展的技術。」江茂雄主任說,現行的適用於深度 50 米以下的固定式基礎的離岸風機國外產業已經相對成熟。浮動式平台不需打樁、組裝受天氣影響小,海事工程成本較低。目前這方面的技術各國仍陸續研發中,全球較具規模之實海域驗證計畫包括挪威的 Hywind示範計畫、葡萄牙的WindFloa計畫,以及日本的福島浮體式洋上風場計畫。如能與國外廠商合作,可做為臺灣發展浮動式平台的產業能量。

產業發展,人才哪來?

2025 年臺灣預計完成 5.5GW的離岸風機裝置容量,經濟部並估計可創造2萬人次的就業機會,帶動近兆元的國內外廠商投資額。但這些就業內容並非天下掉下來的餡餅,離岸風電產業的人才培育,也因此迫在眉睫。

離岸風機設置除了能源革新,更能帶動經濟發展,但相關專業人才的培育也迫在眉睫。 圖/經濟部開放資料

在離岸風電產業大抵將所需的就業人力分為兩大類:「綠領」與「白領」。

「綠領」的工作內容類似我們認知的藍領工人,需要實地操作、調度機械,但還需具備使用英文的能力並且通過相關的證照。如位於台中港「海運發展學院園區」的安全訓練中心即預定 2019 年初對外營運,提供國際GWO認證的安全訓練課程。

-----廣告,請繼續往下閱讀-----

「白領」的工作內容則為管理階層,包括工程師、管考、法務等面向,需要相對專業的訓練。目前臺灣大學率先啟動,與丹麥大學合作已於今年九月推出「離岸風電學分學程」,未來預計也將開設在職訓練課程,以及還需教育部同意才能增設的「離岸風電學位學程」。

離岸風電作為重點發展的再生能源項目,初期投入的成本較高,且新興技術充滿了高風險與變數,因此相當仰賴政策方向的引導與補助。如國產化的政策於去年10月正式納入遴選要求,才帶動了國內相關生產鏈的投入。而未來第三階段「區塊開發」應針對可能的風場作出更完整的環境評估與量測,包括海床條件探勘、風場探勘與生態評估等內容,從而降低離岸風電開發的風險與爭議,以此迎向真正永續發展、綠能生生不息的未來。

圖/fxxu @Pixabay

延伸閱讀

參考資料

本文由 NEPII「第二期國家型能源科技計畫」委託,泛科學執行

-----廣告,請繼續往下閱讀-----
文章難易度
鳥苷三磷酸 (PanSci Promo)_96
212 篇文章 ・ 312 位粉絲
充滿能量的泛科學品牌合作帳號!相關行銷合作請洽:contact@pansci.asia

0

1
0

文字

分享

0
1
0
「護國神山」越高 電力壓力越大:臺灣海洋能是解方?
PanSci_96
・2024/11/07 ・3548字 ・閱讀時間約 7 分鐘

半導體廠和資料中心的耗電量巨大,隨著護國神山的持續壯大,台灣的電力供應是否還能承受這種壓力?

或許,大海能夠給予我們答案。

在我們的周遭,有一個龐大且源源不絕的能源,但卻長期被我們所忽視——大海。太平洋上的鄰居夏威夷,已經部署了一座 1.25 百萬瓦特(1.25MW)的波浪能發電示範裝置,並即將併入夏威夷的電網。雖然這個發電量看似不大,但一台裝置只需要 38 公尺長、18 公尺寬的空間。想要放置更多的裝置,需要更大的空間嗎?大海有的是空間。

看來從海洋中擷取能源,或許就是台灣能源的終極解答。但為什麼還沒有人大力投入這個領域呢?

-----廣告,請繼續往下閱讀-----
歡迎訂閱 Pansci Youtube 頻道 獲取更多深入淺出的科學知識!

從海洋擷取能源

事實上,從海洋中獲取能量的想法並不新鮮。利用海洋的物理或化學特性所開發的能源,稱為海洋能。海洋能可以大致分為多種不同的形式,每種原理各有不同。

首先是波浪能。夏威夷建設的波浪能示範電廠,就是利用波浪的上下運動所產生的位能變化,或者是利用波浪中海水運動所帶有的動能,來產生電力。值得一提的是,無風不起浪。波浪的產生及其動能的來源,來自於風吹過海面時所產生的摩擦力。而風的出現,可能來自地球自轉,或者是太陽加熱地表和空氣所產生的氣壓差,空氣從高壓區流向低壓區,進而產生風。因此,波浪能的源頭其實是地球和源源不絕的太陽能,被視為永續能源。

其次是潮汐能。月球的引力是潮汐漲退的主要原因。潮汐造成海洋水位的變化,產生位能;同時,漲潮和落潮的水流也帶有動能,這兩種能量都可以用來發電。

另一種是海流能。這是利用海洋中洋流流動的能量。例如,台灣附近的黑潮,水流方向不論冬夏,都是由南向北,而且流速相當快,約每秒 1 至 2 公尺。只要在海流中放置水輪機,就能驅動發電機發電。

-----廣告,請繼續往下閱讀-----

接下來是較為特殊的兩種方式。溫差能(OTEC,Ocean Thermal Energy Conversion)利用海水表面和深海之間的溫度差來發電。我們知道,海水表面因為受到太陽照射,溫度較高;越往深海,溫度越低,一般溫差可達 14 至 25 攝氏度。我們可以利用這個溫差來發電,原理類似地熱發電。OTEC 系統除了發電外,還可以結合海水淡化、海洋養殖和空調冷卻系統等多種用途,可謂一舉多得。

最後是鹽差能。這是利用鹹水和淡水之間的鹽度差異所產生的化學電位差來發電。發電廠通常建設在河水和海水的交界處,將海水和淡水當作一個巨大的化學電池的兩極。

台灣適合發展海洋能嗎?

海洋每年蘊藏的能源遠超全球發電需求,潛力無窮。 圖/envato

地球表面約有 70% 是海洋,蘊藏著無窮的潛力。國際能源總署(IEA)在 2007 年發布的報告預估,海洋每年蘊藏了 21,100 到 93,100 太瓦小時的發電量。作為對比,根據統計公司 Statista 的資料,2022 年全球總發電量為 29,165 太瓦小時。也就是說,海洋蘊藏的能源,足以供給全球所需,甚至可能多出數倍。

海洋能除了蘊藏量龐大之外,發電不需要佔用陸地,又屬於不會造成環境污染的可再生能源,具備多重優勢。既然如此,為什麼我們不大力發展海洋能呢?畢竟台灣四面環海,感覺應該非常有利於開發海洋能。但事實上,不是每一種發電方式都適合台灣。

-----廣告,請繼續往下閱讀-----

根據工研院於 2018 年整理的資料,台灣的地理環境較有潛力發展的是波浪能、溫差能和海流能。在詳細介紹這些能夠發多少電之前,我們先有個概念作為對照。2023 年,台電系統(不包括民營電廠)發電總裝置容量約為 55 吉瓦(GW),而目前封存的核四,兩部機組的總裝置容量為2.7 GW。

首先,波浪能發電適合的區域包括東北角外海、富貴角一帶,以及澎湖和雲林、彰化外海,發電功率有望達到 2.4 GW。溫差能發電適合的範圍則在花蓮、台東外海,具有 2.8 GW 的發電潛力。至於海流能發電,適合的地區在富貴角、澎湖水道(台澎海峽),以及東部外海的黑潮,共有 4.2 GW 的發電潛力。此外,在金門和馬祖,也有一些潮汐能發電的潛力。

總計而言,台灣的海洋能蘊藏量至少有 9.4 GW 的潛力,相當於七部核能機組的發電量。這樣的發電潛力也意味著巨大的經濟價值,估計海洋能市場的產值可達數兆台幣。

發展海洋能的困難之處

既然海洋能蘊藏量龐大,為什麼我們至今未見台灣有大規模的海洋能開發計畫呢?

-----廣告,請繼續往下閱讀-----

首先,海洋能的技術發展仍存在許多挑戰。在各種海洋能中,潮汐發電目前最接近成熟的商業化階段,且已有正在運作的商業發電廠。例如,全球有十多座潮汐發電廠在運作中,其中韓國的始華湖潮汐發電廠是全球最大的,發電容量達 254 MW。此外,還有一些潮汐發電廠處於規劃或建造階段。

然而,潮汐發電的效益取決於潮差(滿潮和乾潮之間的水位差)的大小。一般而言,需要潮差達到 5 公尺以上才有經濟效益。台灣除了金門、馬祖等外島之外,潮差均不足5公尺,因此潮汐發電的潛力較低,並非首選。

至於台灣適合發展的波浪能、溫差能和海流能,目前全球的發展進度都較為遲緩。以波浪能發電為例,雖然蘇格蘭曾有過小規模的商業化案例,但已經退役。不過,最近也有新的波浪能計畫正在進行,包括本文開頭提到的夏威夷案場,這是愛爾蘭公司 OceanEnergy 在夏威夷設置的波浪能轉換器 OE-35,裝置容量為 1.25 MW。另外,瑞典公司 CorPower Ocean 在葡萄牙設置了 C4,裝置容量為 600 kW。雖然規模不大,但已達到商業化的程度,有望在不久的將來成為新的商業化發電方式。

至於溫差能、海流能和鹽差能,都還處於技術發展或小規模實驗測試階段,距離成功商業化發電還有一段路要走。

-----廣告,請繼續往下閱讀-----

那麼,海洋能發展緩慢的原因是什麼呢?技術層面是一大挑戰。首先,海水對電器設備具有腐蝕性。同時,海上的強風大浪可能造成設備損壞。海洋生物也會附著在設備上,影響其運作效能。因此,打造耐用且抗生物附著的海洋能發電設備,本身就是一個巨大挑戰。

海洋能發展緩慢因設備易腐蝕、受強風大浪及生物附著影響。圖/envato

此外,即使我們能夠製造出能夠承受各種海洋環境的發電裝置,是否能長期高效地發電也是一個問題。如果無法建立耐用且具有一定規模的海洋能發電設施,成本將無法下降,進而阻礙海洋能的開發。

台灣在海洋能開發的進展

波浪能方面,工研院開發了「懸浮點吸收式波浪發電」系統,包含具有運動模組和浮筒模組的上浮體,以及具有穩定作用的下浮體。當波浪經過時,上、下浮體會產生相對運動,能量擷取系統藉此吸收波浪的能量。

國家海洋研究院則與台灣海洋大學合作,進行「振盪水柱式波浪發電系統」的研究。該系統利用波浪的上下擺動,擠壓空氣艙內的空氣,將空氣擠出至口徑較小的排氣口,造成空氣流速加快,進而驅動排氣孔中的扇葉發電。成大也有實驗室透過數值分析軟體,進行發電裝置最佳化設計的研究。

-----廣告,請繼續往下閱讀-----

海流能方面,國家海洋研究院、台灣大學、中山大學和台灣海洋大學均參與了「浮游式洋流發電機組」的研發。發電機艙採流線型設計,類似一台風箏。機艙後方的葉片在受到洋流衝擊後轉動,驅動發電機產生電力。目前,20 kW 級的發電機組「錨碇」已在90公尺深的海中初步測試成功。中研院也正在研發 100 kW 等級的渦輪機,預計今年在台東外海下水測試。

在進度較慢的溫差能發電方面,台泥預計在和平火力發電廠打造台灣第一個溫差能發電系統。

未來展望與政策目標

不知不覺中,台灣在海洋能的開發上已經投入了不少資源,雖然還需接受海洋環境的考驗,但前景可期。根據目前的政策目標,台灣將從技術較為成熟的海洋能開始,分階段推進。目標是在 2030 年完成 10 萬瓦特到 100 萬瓦特等級的示範發電機組,並於 2035 年設置 100 萬瓦特到 1000 萬瓦特的商業發電機組。根據屆時的技術發展狀況,期望在 2050 年達成裝置容量 1.3 至 7.5 GW 的目標。

在政策執行方面,海洋能開發涉及多個部會的管轄,如環境部、農業部漁業署、內政部國土管理署等。為簡化申請流程並促進開發,設立單一窗口相當重要。值得一提的是,根據最近的消息,台灣已有民間公司提交了 100 kW 的波浪能示範電廠申請,預計最快在 2025 年完成台灣首個海洋能示範場。

-----廣告,請繼續往下閱讀-----

台灣作為四面環海的島國,有機會在這個領域取得突破,為未來的能源供應找到新的解決方案。

-----廣告,請繼續往下閱讀-----

討論功能關閉中。

PanSci_96
1259 篇文章 ・ 2384 位粉絲
PanSci的編輯部帳號,會發自產內容跟各種消息喔。

1

1
0

文字

分享

1
1
0
離岸風機建設又貴又麻煩,蓋的好處是什麼?又會對環境造成什麼影響?
PanSci_96
・2023/11/04 ・5785字 ・閱讀時間約 12 分鐘

北風和太陽,你賭誰贏?

台灣為了發展綠能卯足全力,風力與太陽能是最受關注的兩大巨頭。這幾年太陽能就像開了加速器,建置量扶搖直上,產生的討論與爭議當然也不少。但在風光併行的策略中,風機的關注度似乎就沒有那麼高。

最主要的原因,大概就是太陽能板近年大量設置,甚至出現在我們的周圍,因此產生更多對於環境影響的討論。

然而風機不比太陽能,單一支風機隨便就超過 20 層樓高,十分巨大。不僅建設成本較高,也需要蓋在遠離人群的地方。

-----廣告,請繼續往下閱讀-----

但是,為何風機一定要如此巨大,甚至跑到外海去蓋呢?那麼巨大的風機,對環境生態會造成多少衝擊?

到海上去蓋風機有什麼好處呢?

蓋在海上,遠離陸地的風車我們稱為離岸風機。雖然風電的新聞版面不如光電,但其實一直有持續在進展。例如今年 6 月,台中外海的渢妙風場,就才剛遞交行政契約簽署文件,該地的最大裝置容量預計有 1800MW。

但即便如此,我們還是能感受到風力發電的開發比光電吃力許多。其中原因是,要將風力發電廠從陸上搬到海上,要付出的代價可不小。根據經濟部的資料,如果用年發電量一百萬瓦來算,設置離岸風電的裝置成本約 1 億 5 千~1 億 7 千萬元,幾乎是陸域風電廠的三倍。此外,離岸風電開發流程也比陸域長,經過前期的選址調查與評估後,還要另外花 1~2 年安裝水下基礎,才能建置風力發電裝置。既然如此,在討論離岸風電之前,我們應該先問問,跑去海上找風電有什麼優勢呢?

最常聽到的理由是噪音的影響。風力發電運轉過程持續發出低頻噪音,對周圍環境帶來噪音污染,引起居民反彈。環保署原本規定,風機與最近建築物距離 250 公尺以下就必須做環評,不過由於近年來仍爭議不斷,今年初更修法將門檻提高到 500 公尺。

-----廣告,請繼續往下閱讀-----
圖/giphy

而且台灣的陸域風機已經發展了二十幾年,優良風場飽和後,接下來如何權衡容量擴張和環境影響成為一大課題。因此往海上發展便成為重要的選項。

不過除了沒地可用這個原因之外,從發展的角度來看,更吸引人的因素其實是海上更加豐沛的風電資源。之前我們在介紹「宇宙太陽能」那集的時候,有提到科學家考慮將太陽能板送到遠離地表的太空中,好避開夜晚與雲層的影響,能不分天氣接收直接日照。

建置離岸風電也是一樣的道理,遠離陸地的平坦海面可以讓氣流暢行無阻。相較之下,陸地上的建築物,植物,地形等等都會顯著地拖慢地表附近的風速。更進一步,越往上空,風速被地表建物影響的幅度就越小。因此風機一支比一支高大,原因除了受風面積增加之外,在於高處的風能也更加豐沛。

最重要的是,風能和風速的三次方成正比,也就是說,風速只要快兩倍,風力發電的功率就會直接翻八倍。因此風速幾乎可以說是頭號考量因子,而高風速的外海也成為了最佳的選擇。

-----廣告,請繼續往下閱讀-----

平常站在海邊,海風就已經常讓人站不穩了,但其實從平均風速資料可以看到,台灣海峽附近離海岸線十公里以外的海上風速更是快上許多。尤其台灣海峽北半部相較其他鄰近海域,蘊含的風能可說是相當驚人。這是因為台灣海峽位在中央山脈和中國的武夷山脈中間,兩座山脈形成天然管道,而且方向剛好與盛行的東北季風與西南季風方向一致,每當季風流過山脈中間時,就會加速通過形成強勁的風場,就像兩座高樓大廈中間總是吹著強風一樣。

平均風速圖。圖/global wind atlas
平均風力功率圖。圖/global wind atlas

說到這裡,台灣要發展離岸風電,可說是需求與資源兼備。從 2012 年 7 月,經濟部公告「風力發電離岸系統示範獎勵辦法」開始,台灣的離岸風電已經發展超過十年。不過,離岸風電近期進度有待追趕。根據 109 年經濟部能源轉型白皮書台灣風力發電推動方案,2025 年離岸風力發電累計設置容量的目標是 5.7 GW。但統計到今年五月,離岸風力發電裝置容量只有 1.15 GW,雖然預估到年底達 2 GW,但還是不夠快,這也讓經濟部原本預計 2025 年達成的再生能源佔比 20% 目標,延至 2026 年 10 月才可能達標。。在政府與企業積極向海借地來蓋風力發電廠時,遇到了什麼問題呢?

離岸風電對環境有影響嗎?

儘管我們剛剛提到,離岸風電對岸上居民影響較小,但是對於海上的居民就不是這麼一回事了。舉例來說,首當其衝的就是空中飛的鳥與蝙蝠。風力發電機組的葉片高速旋轉,時常讓空中的鳥類與蝙蝠閃避不及而撞擊死亡。一篇 2013 年的研究估計,北美洲的風電扇葉每年殺死的鳥隻數量約介於 14 萬到 32 萬之間,雖然這是針對北美陸域的調查,但由於台灣海峽也是許多鳥類跟蝙蝠的遷徙路線,豎立在台灣海峽的風力發電機必然會成為不少生物的絕命終結站。

面對這類的鳥擊事件,許多較新的風力發電機組開始引進新型態的防鳥設計。像是在機組周圍裝設音波偵測器、熱感應器,藉此來監控鳥類與蝙蝠活動,並依據監測結果停機降載。此外,還有一份 2020 年的研究將風電機組的其中一個扇葉塗黑,並發現該機組的鳥擊事件數量降低 70%。研究人員表示這是因為單一的黑色扇葉可以減少高速旋轉的動態模糊,讓鳥類看得更清楚。不過比起這些預防措施,最根本的做法是從謹慎的選址做起,讓風場遠離鳥類的聚居地,例如候鳥遷徙路徑上的濕地或是過境棲地,降低風機和鳥類接觸的機會。

-----廣告,請繼續往下閱讀-----
圖/giphy

當然,鳥擊的威脅是陸域和離岸風電都會有的難題。而離岸風電雖然遠離我們居住的陸地,不會對我們產生噪音危害。但建造和運轉期間所帶來的「水下噪音」,卻對當地,也就是海洋生態帶來不可忽略的影響,也因此成為離岸風場環評的一大關注重點。

在建造離岸風電機組時,需要先在海床上打樁作為固定的基礎,才能繼續往上建造風力發電機組。打樁的過程就等於將一根超大的釘子打入海床中,會產生極大的撞擊聲,雖然打樁的噪音是短期的,蓋好之後就不會再有了,但在運轉期間,離岸風場也會和陸上機組一樣發出低頻的嗡嗡聲。不論是打樁還是運轉的噪音,都會在海水中傳遞,影響到海中生物的生存。

由於聲音在水中傳遞速度快,損耗低,加上海水中光線不足,能見度較低。魚類跟海洋哺乳類等生物的聽覺自然演化得比視覺靈敏,讓他們有了非常廣闊的聽覺「領域」。因此從生態保育的觀點來看,海底噪音跟地上的噪音一樣,需要嚴密的監控和管制,否則會對海洋生物的感知與溝通能力帶來極大的影響。

環保署在 2022 年的二月將海事工程打樁噪音的規範訂為單一次打樁不能超過 190 分貝、打樁超過 160 分貝的次數不能超過總打樁次數的 5%。國內研究也建議打樁開始前 30 分鐘,必須確認沒有鯨豚在方圓 750 公尺內;並以緩啟動模式開始打樁,讓附近鯨豚可以及時迴避。畢竟,瀕臨絕種的中華白海豚就棲息在台灣西岸中段的沿海區域,和最有開發潛力的風場地區高度重疊,因此在設立風場時需要格外地謹慎。

-----廣告,請繼續往下閱讀-----
圖/海洋委員會海洋保育署

離岸風電可能帶來的環境負擔,需要在建造前以及運轉期間持續監控。但目前台灣發展離岸風電遇到的最大瓶頸,其實並不是環評與選址等環境問題,而是其他供應面的限制。

離岸風機的施工問題

前幾年在 COVID-19 疫情的籠罩下,各項工程與供應運輸時程難免延宕,國內離岸風電的建置進度大幅落後。此外,政府政策、國外廠商的商業決策、以及資金流動等等現實問題,都影響到台灣離岸風電的發展。

離岸風機的建設,不是選址選好了就萬事解決,這些巨型建築的架設也是一大挑戰。要知道,過去 3MW 的陸域風機,葉片的長度就可能超過 30 公尺。建設在外海,裝置容量超過 10MW 的離岸風機,葉片的長度會超過 100 公尺,整支風機的高度更可能來到 260 公尺,蓋一座風機就像是在蓋一座摩天大樓。

要在海面上搭建如此龐大的建物十分具有挑戰性,各個大型組件需要先在陸地上做好,運到港口,再由工程船隻載到海上進行組裝。

-----廣告,請繼續往下閱讀-----

而能攜帶並安裝這些部件的「安裝船」是台灣目前最欠缺的。而且不只台灣,近年來為了趕上對再生能源的需求,從歐盟到中國等國家的離岸工程開發案不斷成長,相關船隻的需求和價格也水漲船高。這使得台灣開發商想要租到合適的工程船變的越來越困難,已經做好的組件只能放在港口等待安裝。

面對這樣的困境,國內造船產業也有所回應。在今年六月,台灣國際造船宣布,亞洲最大的海事工作船「環海翡翠輪」已經完成交船。全長 216.5 公尺、寬 49 公尺,甲板面積有相當於 1.3 座足球場的超大面積,足以提供進行離岸風電水下基礎及大型風機的運輸與安裝作業。目前環海翡翠輪已經行程滿檔,工程已排程至 2025 年。

結語

雖然目前進度落後,但根據政策的規劃,台灣還是會持續興建離岸風場,往能源轉型的目標前進。

但除了劃更多區域、建造更大型的風機,風力發電還有別的玩法嗎?除了常見的水平軸三葉式風車之外,我們還有沒有其他的選擇?在拚發電量以外,有沒有對生態影響更低的風力發電方式?如果你也對其他型態的風力發電有所好奇,就請使出超級感謝,或加入會員來敲碗吧!如果你看不過癮,也可以看我們與 taiwan keywords 合作的這一集,看我如何挑戰爬上 23 層樓高的風機。

-----廣告,請繼續往下閱讀-----

最後也想問問大家,關於風力發電,你還有哪些問題呢?

  1. 風力發電的工作船有哪幾種?應用了哪些科技?
  2. 那麼大台的風力發電機水下基礎是怎麼蓋的?製程跟材料環保嗎?
  3. AI 能夠讓風力發電更穩定嗎?
  4. 更多想法,留言告訴我們吧

歡迎訂閱 Pansci Youtube 頻道 獲取更多深入淺出的科學知識!

參考資料

-----廣告,請繼續往下閱讀-----
所有討論 1
PanSci_96
1259 篇文章 ・ 2384 位粉絲
PanSci的編輯部帳號,會發自產內容跟各種消息喔。

0

3
3

文字

分享

0
3
3
要利用光能還是熱能?小孩子才做選擇,我全都要!——全光譜太陽綠能永續系統
研之有物│中央研究院_96
・2023/04/22 ・6471字 ・閱讀時間約 13 分鐘

本文轉載自中央研究院「研之有物」,為「中研院廣告」

  • 採訪撰文/林承勳
  • 責任編輯/簡克志
  • 美術設計/蔡宛潔

有效利用太陽的光能和熱能

能源減碳已是國際趨勢,近年政府積極開發再生能源,逐年增加發電比例,而太陽能深具開發潛力。新興的鈣鈦礦太陽能電池是目前的研究熱點,不僅製造成本較低,單片發電效率已可達到 25%,逐漸趕上主流單晶矽太陽能電池的 26%。中央研究院「研之有物」採訪院內應用科學研究中心研究員朱治偉,他與研究團隊試圖開發一個小型的全光譜太陽能系統,讓光電轉換效率最好的波段被鈣鈦礦太陽能電池吸收,其他波段的光會穿過半透明的材料面板,抵達下層的集熱管,讓多餘太陽熱能可以回收再利用。

臺灣發展再生能源的關鍵:太陽能

太陽能是目前最為普遍的再生能源之一。近年來,臺灣的太陽能建設有逐步增加,且經濟部已訂下在西元 2025 年,國內再生能源發電量要佔總發電量 20% 的目標,其中太陽能發電量還要達到 20GW(1GW = 10 億瓦)的規模。

除了政府與業者的大型太陽能專案,太陽能發電對於公司行號或是一般社區大樓也有其誘因。樓頂架設太陽能裝置不但可以隔熱、防漏水,每年產生的電力也能由政府以較高的價格收購,創造額外利潤。然而太陽能發電在現階段還有許多缺點等待解決,像是發電裝置在購買設備時就必須先投入大量的建造成本,之後才逐年發電回收。

-----廣告,請繼續往下閱讀-----

太陽能發電裝置體積龐大、極占空間,以目前市佔率最高的單晶矽太陽能電池來說,裝置架設完成後就沒有辦法再任意移動,如果遭逢颱風或地震等臺灣常見的天災,無法搬至安全處的太陽能板很有可能受到嚴重損傷。此外,機器也要定期保養維修,否則當灰塵逐漸堆積、器材日漸老舊,發電效率也會一點一點地下降。

矽晶太陽能電池裝置昂貴、笨重且無法移動,需要定期清洗,否則當灰塵逐漸堆積,發電效率也會一點一點地下降。圖/iStock

好消息是,單晶矽太陽能電池笨重、易碎而無法隨意重組的缺點,在未來很有機會用新型「鈣鈦礦材料」來克服。鈣鈦礦材料可以做成薄膜,附著在可撓曲的軟性基材上。如此一來,鈣鈦礦太陽能電池可以收捲攜帶,便利性遠勝過單晶矽太陽能電池。

朱治偉舉高雄愛河上現有的電動船為例,船上架設的是單晶矽太陽能板,而光是一個面板就重達三十到四十公斤,二十片總共八百公斤。「船雖然能夠自主發電,但發電量還不夠驅動機台本身的重量。」朱治偉笑著說,如果用鈣鈦礦太陽能電池替代,不但能大幅減輕重量,在天氣不好時還能將發電裝置取下,騰出空間做其他用途。

朱治偉手持鈣鈦礦太陽能電池,單片面板就包含許多個元件,其中一小塊就是一個發電單元,端看目標電流與電壓來決定諸多電池要串聯或並聯。圖/研之有物

發電效率大比拼:鈣鈦礦電池 vs. 單晶矽電池

除了裝置的便利性之外,太陽能光電轉換效率也是使用時需考量的一大要素。朱治偉指出,單晶矽太陽能電池單片面板在實驗室的發電效率可達 26%,但進到後段模組後,由於需要多片、大面積組裝,並經由導線串聯和並聯,過程中都會產生電阻導致電量損失。實際運作起來,效率只剩下 22%~23%。

-----廣告,請繼續往下閱讀-----

鈣鈦礦材料的出現,讓單晶矽受到極大挑戰。以發電效率來說,鈣鈦礦太陽能電池在實驗室的效率可達 25.8%,幾乎跟單晶矽不相上下。雖然鈣鈦礦技術還在研發階段,尚未真正投入市場應用,但以小面積材料測試的實驗數據來說,學界與業界都對其發展潛力寄予厚望。

鈣鈦礦材料的另一項優勢在於,原料非常容易取得,且生產過程耗能與成本都相對低廉。「相較之下,目前發電效率稍微占優勢的單晶矽,是個高耗能、高污染的產業。」朱治偉指出,光是要提煉出矽元素,就得先用高溫把原料的砂熔化,接著在昂貴設備的高溫環境中緩慢結晶。

「而且單晶矽材料對於缺陷的容忍度很低。」朱治偉補充說道。所謂缺陷容忍度,就是材料在結晶時,有缺陷出現對於功能、效率的影響程度。

單晶矽在結晶過程中,原子排列越整齊、純度越高,缺陷就會越少,如此一來,電子在整齊的晶格裡可以很順暢地流動;一旦晶體排列不整齊、有缺陷產生,電子流動就會受到阻礙,讓材料發電效率變差。單晶矽對於缺陷的容忍度很低,缺陷會嚴重影響到單晶矽電池發電效率,因此結晶純度要求 99.9999% 以上。

-----廣告,請繼續往下閱讀-----

當矽結晶完後接著要切成薄片,切片時會損耗材料並產生大量粉塵,切完還得進入複雜的半導體製程,不但需要高溫且耗水,還需使用到有毒溶劑。雖然科技廠會將高汙染的排放物先處理到合乎排放標準,但這些製程都需要投入大量的能源跟水。

單晶矽的製程需要耗費大量的能源和水,而且單晶矽對於缺陷的容忍度很低,為了不影響太陽能電池發電效率,結晶純度要求到 99.9999% 以上。圖/Wikimedia Commons

鈣鈦礦材料:高缺陷容忍度、高發電效率、溶液式製程

鈣鈦礦材料的缺陷容忍度很高,即使結晶缺陷是單晶矽的幾百、幾萬倍,都還能有很高的發電效率。「而且鈣鈦礦電池在天氣不好、低照度或是室內時依然能夠持續發電。」朱治偉提到,單晶矽電池在陰天幾乎完全不發電,而鈣鈦礦電池受影響程度較低,仍可繼續發電。

另外,單晶矽電池基本上沒辦法在室內使用,因室內照明環境為低照度、光的波段很狹窄,整體能量會偏低。但是鈣鈦礦電池不但可以使用,其轉換效率可達 30% 以上,可以驅動電力需求低的元件,例如物聯網裝置等。

「更方便的是,鈣鈦礦材料可以溶解在有機溶劑裡。如果使用溶液製程,就能快速、大面積的製作。」朱治偉提到,等到未來技術成熟,就像是在印刷報紙一般,將含有鈣鈦礦材料的溶劑當作墨水,用印刷方式就能快速生產太陽能電池。

-----廣告,請繼續往下閱讀-----

設備建造簡易、材料取得方式環保,如果還能大面積快速印刷來降低製作成本,鈣鈦礦太陽能電池可以說是集各種優點於一身。

不過,鈣鈦礦電池還是有些缺點亟待改善,像是本身材料的穩定性,導致電性上會出現遲滯現象,造成發電量有不穩定、時高時低的問題。此外,由於鈣鈦礦材料是離子材料,一碰到水就會解離,解離後會縮短使用壽命。

鈣鈦礦材料是一種離子材料,結構通式為 ABX3,A 和 X 的位置會分別放入陽離子和陰離子,B 的位置通常會放鉛離子。離子材料在有水氣的環境中容易降解。圖/研之有物

朱治偉指出,想要避免水分接觸到鈣鈦礦材料,能用封裝技術來解決。而穩定性問題則要在一開始長晶時著手。像是藉由添加其他離子促進長晶品質,讓結晶更加緊密結合。只要長晶時越整齊、缺陷越少,電子就能輕易地被導出,電流高、效率穩定,遲滯現象就能減少。「鈣鈦礦太陽能電池還有一個問題,就是裡面含有微量的鉛元素。」朱治偉說,雖然使用量非常少,但鉛終究是有毒的物質,若外洩還是有可能對接觸者造成傷害。目前同樣可以用封裝技術來避免鉛元素外漏,但期待未來有機會能找到其他安全的元素來替代鉛的角色。

小孩子才做選擇,我全都要!

太陽光的波長​分佈從 300 到 2700 奈米都有。一般單晶矽太陽能電池只能吸收 300 到 1100 奈米的光,1200 奈米以上的波段皆無法利用,有些被反射到環境當中,有些則是轉換成熱能。

熱能累積在矽晶板裡面,會影響發電效率。「矽晶板溫度每上升 1°C,效率就下降 0.3%。」朱治偉指出,大太陽底下矽晶板的溫度會達到約 80°C,比室溫高約 50°C 左右,這將導致發電效率降低 15%。

-----廣告,請繼續往下閱讀-----

相較於不透光的矽晶板,鈣鈦礦太陽能電池能做成半透明的薄膜,將透過的陽光做其他運用。因此,中研院全光譜太陽綠能永續計畫採用的組合是:半透明鈣鈦礦太陽能電池搭配集熱管,以便充分利用太陽能。

「我們用新開發的分光鏡,從 800 奈米波長的地方將太陽光一分為二,800 奈米以下的光直接給鈣鈦礦太陽能電池發電,800 奈米以上的光讓集熱管吸收,產製出熱水。熱水經過吸附式致冷系統(absorption chiller system),透過巧妙的蒸發原理設計,將外部冷水致冷,產製出冰水供大樓使用,剩下的溫熱水則供日常盥洗使用。」朱治偉說道。

用 800 奈米劃分,因為鈣鈦礦太陽能電池在 300 到 800 奈米這段波長時,約有 90% 的光電轉換效率。而 800 奈米以上的波段經集熱管轉成熱能,效率可達到 97%~99%;反之,800 奈米以下的光熱轉換效率則不佳。

全光譜太陽綠能永續系統示意圖。圖/研之有物(資料來源/朱治偉)

將不同波長的光,導向適合的元件

上面提到的「分光鏡」,全名為平面光譜分光模組,這是中研院開發的實驗模組,使用具有光波長選擇的導光板,將不同波長的光導向適合的元件。

-----廣告,請繼續往下閱讀-----

這種導光板的作用原理,是經由奈米結構設計來決定要將哪些波段的光引導到哪個方向。在全光譜太陽綠能永續計畫中,是以 800 奈米的波段來區分。

把導光板鋪在太陽能集熱管上,800 奈米以上的光就穿透導光板照到集熱管,800 奈米以下的光就回收,引導到側邊,照在鈣鈦礦光電轉換元件上。

「將鈣鈦礦太陽能電池做在可撓曲的面板上,搭配時就能增加很多使用彈性。」朱治偉提到,脆弱的單晶矽電池受到重壓或劇烈震動就會碎裂,但是鈣鈦礦電池的機械性質很好,結構不易被破壞。

即使大樓樓頂有障礙物,或是要根據導光板的設計在不同方位擺放太陽能電池,鈣鈦礦電池都可以彈性搭配,使用時攤開、不用時就收捲起來。而且鈣鈦礦電池還可以依物體的弧度來配合製造,很適合用在 3C 產品、汽車、電動車的充電上,未來發展具備各種可能性。

目前中研院已經於院內活動中心樓頂架設了集熱管跟致冷系統,而半透明的鈣鈦礦太陽能電池與導光板在實驗室環境中,也證明小面積發電確實可行。

-----廣告,請繼續往下閱讀-----

不過,想要量產出大面積的鈣鈦礦太陽能電池,單靠學界的製造能量來說有些困難。國內雖然有廠商在研發鈣鈦礦電池,大多沒有真正投入量產。「歐洲跟美國的公司願意投入大量經費研發產製;臺灣普遍的氛圍是傾向等待有明確的研究成果出現,再加入量產行列。」朱治偉說。

圖中機器為吸附式致冷系統。目前中研院已經於院內活動中心樓頂架設了集熱管跟致冷系統,而半透明的鈣鈦礦太陽能電池與導光板在實驗室環境中,也證明小面積發電確實可行。圖/研之有物

科技帶來改變,前景令人期待

與世界各國相比,臺灣電價相對便宜,且用電量相當龐大。根據經濟部能源局的統計資料, 2021 年臺灣總用電量超過 2800 億度,而目前臺灣發電有將近八成是使用化石燃料的火力發電。低電價導致缺乏節電誘因,高用電需求又使火力發電持續高碳排。根據 Our World in Data 資料,2021 年臺灣平均每人排放的二氧化碳為 11.85 噸,為全世界人均排放量的 2.52 倍,名列第 22 名,人均排放量高於日本、德國、新加坡與法國。

2021 年臺灣平均每人排放的二氧化碳為 11.85 噸,為全世界人均排放量(4.69 噸)的 2.52 倍,名列第 22 名,人均排放量高於日本(8.56 噸)、德國(8.08 噸)、新加坡(5.47 噸)與法國(4.74 噸)。圖/Our World in Data

以臺灣的國土面積與經濟規模來說,如此高碳排量代表臺灣的減碳之路還有很大的努力空間。朱治偉指出,目前國內能源有 97% 倚賴進口,若是不努力研發再生能源,對於經濟發展或是國防安全都不會是好現象。

以地熱來說,菲律賓地熱技術的起步比臺灣晚,發展卻非常成功。「臺灣跟菲律賓的地形很相似,發展地熱應該也非難事。」朱治偉表示,即使有學者認為臺灣難以發展再生能源,但在科技發展之下,很多事情都有可能發生。

朱治偉舉例,2014 年得到諾貝爾物理學獎的發光二極體(LED)技術,就是一個科技改變世界的範例,人類得以用新的方式產生高亮度白光。LED 的耗電量僅有白熾燈泡的十分之一,大大改變光照能源的運用。

朱治偉樂觀地指出,就算當前被評估不可行的地熱、風能或海洋能,只要科技持續進步都有機會逐漸實現,新興的鈣鈦礦太陽能電池也是科技進步的一個見證。

鈣鈦礦電池在 2009 年被日本科學家發現時,發電效率其實只有 3%;十年過後,鈣鈦礦電池卻即將追上單晶矽電池發展近百年才達到的效率規模。而且鈣鈦礦材料還可以添加其他離子元素,產生結構變化來影響電性或光性,這個特點讓鈣鈦礦電池未來的發展潛力無窮,也是單晶矽電池完全無法比擬的。

「雖然有些學者不看好,但我相信日新月異的科技在未來能夠改變現狀,讓環境問題慢慢得到改善。」朱治偉說。

聽說高溫會影響太陽能電池的效率?

太陽能電池效率會隨著溫度的上升而下降,下降程度與選用的材料有關。因此太陽能電池效率的標定均在攝氏 25°C。

一般來說,太陽能電池每升高 1°C,會降低整體效率的 0.4% 至 0.5%。溫度過高不僅會降低太陽能電池的效率,也會減低其使用壽命。為了降低溫度過高的影響,建議安裝太陽能板時盡量在底下預留足夠的通風空間,來提高散熱效率。

近期科學家開發出新穎的水凝膠材料,將其貼附於太陽能板背面,利用晚間從大氣吸收和儲存水分。當白天太陽能電池溫度升高時,儲存在水凝膠中的水分便會蒸發,從而降低太陽能板的溫度,如此就可以維持太陽能電池的發電量與延長其使用壽命。

目前的鈣鈦礦電池並不穩定,未來可以如何改善?

鈣鈦礦薄膜材料在形成的過程中,不可避免地會形成大量的淺層能階缺陷(如元素空缺、間隙缺陷和反位替代)與深層能階缺陷(如元素錯位、晶界和沉澱物)。鈣鈦礦薄膜材料雖然可以容忍比較多的缺陷,但是這些缺陷就是造成鈣鈦礦太陽能電池不穩定的最主要因素。

目前在改善鈣鈦礦材料穩定性的研究方向,大致分為兩類:第一類是改變薄膜製程方式來降低缺陷的形成,如兩步驟成膜方式(two-step method)和反溶劑(anti-solvent)製程。第二類是開發多功能分子,鈍化鈣鈦礦材料中不同類型的缺陷,例如以路易斯酸與路易斯鹼、烷基胺鹵鹽、兩性離子、無機鹽類和離子液體來鈍化缺陷。

延伸閱讀

-----廣告,請繼續往下閱讀-----
研之有物│中央研究院_96
296 篇文章 ・ 3620 位粉絲
研之有物,取諧音自「言之有物」,出處為《周易·家人》:「君子以言有物而行有恆」。探索具體研究案例、直擊研究員生活,成為串聯您與中研院的橋梁,通往博大精深的知識世界。 網頁:研之有物 臉書:研之有物@Facebook