3

14
1

文字

分享

3
14
1

是誰點亮了夜晚的寂靜?

dr. i
・2012/04/03 ・835字 ・閱讀時間約 1 分鐘 ・SR值 543 ・八年級

-----廣告,請繼續往下閱讀-----

位在印度洋馬爾地夫群島海岸,夜晚海中的會發光的微生物被潮水沖到岸邊。(圖:Doug Perrine/Alamy)

最近網上有一篇常被轉貼的照片,是一張由Doug Perrine所拍攝的印度洋島嶼的海岸,夜晚的天空繁星點點,沙灘上也佈滿了發光的小顆粒,像是鑽石般地閃爍著,其實他們是被潮水沖上岸的微生物。這是一項非常古早就存在的「生物發光現象」(Bioluminescence),有些生物因為體內的酵素作用產生光,而大家所最熟悉的例子就是螢火蟲吧!

無數的螢火蟲,攝於日本岡山縣。(圖:Tsuneaki Hiramatsu)

 

經過數億年的演變下來,生物還具有這樣的能力,表示它一定有些功能,經過科學家的研究和歸類,主要有分兩大類:防禦型和攻擊型。

「防禦型」包括用光線刺激獵食者的視覺,讓他害怕並退卻,或是利用障眼法的原理,將光照往一個方向引誘獵食者,並快速往另一個方向逃之夭夭。例子像是一些水母和烏賊等等,都具備這樣的能力。

「攻擊型」是利用光線來使獵物暈眩並失去方向感,再趁機捕捉。也有的生物會利用微弱的光來引誘獵物靠近再張開血盆大口,大快朵頤一番,像是鮟鱇魚。

-----廣告,請繼續往下閱讀-----

當然,對於大多數生活於現代文明社會的我們,關心的不是他在進化史上所扮演的角色,而是它帶給我們視覺上的美感與震撼!

寄生在朽木上的蕈類(圖: AMNH\J. Sparks)

 

圖:Scientific American

 

圖:Osamu Shimomura

 

日本產的「螢烏賊」是常見的桌上佳餚。(圖:gocarter.com)

 

(資料來源:The Bioluminescence Web PageWikipediaAnn. Rev. Mar. Sci. 2:293-343 (2010) )

轉載自 :: dr. i ::  新發現 | 新科技 |  新生活 |  新藝術  欲轉貼請註明文章出處

-----廣告,請繼續往下閱讀-----
文章難易度
所有討論 3
dr. i
33 篇文章 ・ 0 位粉絲
小時候的啓蒙師父是小叮噹,偶像是馬蓋先,並崇拜發明燈泡的愛迪生,當時志向是發明會飛的車。在歐洲旅居十二年後回台灣,目前投身科技與藝術的跨界整合以及科學教育和傳播,現任國立台灣師範大學科技與文創講座兼任助理教授。dr. i 一輩子最大的幻想,是能夠使用時光機和隱形風衣。如果您恰巧擁有其中一項,請拜託用以下的連絡方式連絡!http://facebook.com/newartandscience

0

2
0

文字

分享

0
2
0
從「衛生紙」開始的環保行動:一起愛地球,從 i 開始
鳥苷三磷酸 (PanSci Promo)_96
・2024/12/03 ・1592字 ・閱讀時間約 3 分鐘

-----廣告,請繼續往下閱讀-----

你是否也曾在抽衛生紙的瞬間,心頭閃過「這會不會讓更多森林消失」的擔憂?當最後一張衛生紙用完,內心的愧疚感也油然而生……但先別急著責怪自己,事實上,使用木製品和紙張也能很永續!只要我們選對來源、支持永續木材,你的每一個購物決策,都能將對地球的影響降到最低。

二氧化碳是「植物的食物」:碳的循環旅程

樹木的主食是水與二氧化碳,它們從空氣中吸收二氧化碳,並利用這些碳元素形成枝葉與樹幹。最終這些樹木會被砍伐,切成木材或搗成紙漿,用於各種紙張與木製品的製造。

木製品在到達其使用年限後,無論是被燃燒還是自然分解,都會重新釋放出二氧化碳。不過在碳循環中,這些釋出的二氧化碳,來自於原本被樹木「吸收」的那些二氧化碳,因此並不會增加大氣中的碳總量。

只要我們持續種植新樹,碳循環就能不斷延續,二氧化碳在不同型態間流轉,而不會大量增加溫室氣體在大氣中的總量。因為具備循環再生的特性,讓木材成為相對環保的資源。

但,為了木製品而砍伐森林,真的沒問題嗎?當然會有問題!

-----廣告,請繼續往下閱讀-----
從吸碳到固碳的循環

砍對樹,很重要

實際上,有不少木材來自於樹木豐富的熱帶雨林。然而,熱帶雨林是無數動植物的棲息地,它們承載著地球豐富的生物多樣性。當這些森林被非法砍伐,不僅生態系統遭到破壞,還有一個嚴重的問題–黃碳,也就是那些大量儲存在落葉與土壤有機質中的碳,會因為上方森林的消失重新將碳釋放進大氣之中。這些原本是森林的土地,將從固碳變成排碳大戶。

不論是黃碳問題,還是要確保雨林珍貴的生物多樣性不被影響,經營得當的人工永續林,能將對環境的影響降到最低,是紙漿和木材的理想來源。永續林的經營者通常需要注重環境保護與生態管理,確保砍下每顆樹木後,都有新的樹木接續成長。木材反覆在同一片土地上生成,因此不用再砍伐更多的原始林。在這樣的循環經營下,我們才能不必冒著破壞原始林的風險,繼續享用木製品。

人工永續林的經營者需要注重環境保護與生態管理,確保砍下每顆樹木後,都有新的樹木接續成長。

如何確保你手中的紙張來自永續林?

如果你擔心自己無意中購買了對環境不友善的商品,而不敢下手,只要認明FSC(森林管理委員會)認證與 PEFC(森林認證制度)認證標章,就能確保紙漿來源不是來自原始林。並且從森林到工廠、再到產品,流程都能被追蹤,為你把關每一張紙的生產過程合乎永續。

只要認明 FSC(森林管理委員會)認證與 PEFC(森林認證制度)認證標章,就能確保紙漿來源不是來自原始林。

家樂福「從 i 開始」:環境友善購物新選擇

不僅是紙張,家樂福自有品牌的產品都已經通過了環保認證,幫助消費者在日常生活中輕鬆實踐環保。選擇 FSC 與 PEFC 標章只是第一步,你還可以在購物時認明家樂福的「從 i 開始」價格牌,這代表商品在生產過程中已經符合多項國際認證永續發展標準。

-----廣告,請繼續往下閱讀-----

「從 i 開始」涵蓋十大環保行動,從營養飲食、無添加物、有機產品,到生態農業、動物福利、永續漁業、減少塑料與森林保育,讓你每一項購物選擇都能與環境保護密切相關。無論是買菜、買肉,還是日常生活用品,都能透過簡單的選擇,為地球盡一份力。

選擇 FSC 與 PEFC 標章只是第一步,你還可以在購物時認明家樂福的「從 i 開始」價格牌
-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

鳥苷三磷酸 (PanSci Promo)_96
212 篇文章 ・ 312 位粉絲
充滿能量的泛科學品牌合作帳號!相關行銷合作請洽:contact@pansci.asia

0

0
0

文字

分享

0
0
0
夏夜竹林裡的小精靈「螢光蕈」──那些發光的菇菇們!
MiTalk
・2019/05/15 ・3121字 ・閱讀時間約 6 分鐘 ・SR值 535 ・七年級

-----廣告,請繼續往下閱讀-----

  • 柯惠棉/中央研究院/生物多樣性研究中心/博士後研究員

儘管毫不起眼,在歧異多樣的棲地與微環境中,確實棲息著亟待發現的神奇寶貝們。這個專欄將依序介紹這個季節會出現在台灣各個角落的有趣微生物。

發光蕈:真菌系寶貝,特殊技能是發出冷光

發光蕈,發光的真菌,跟螢火蟲同樣是會發出冷光(bioluminescence)的生物。雖然有時候被稱為螢光蕈,但其實它的發光原理和螢光大不相同。有別於螢光(fluorescence)需要用外來的光源激發,冷光則是由生物體內的化學反應來產生光。簡單來說,發光的過程是由一個被稱為螢光素酶 (luciferase)的蛋白氧化一個稱為螢光素(luciferin)的化學分子,在這裡過程中產生了光子而發光。

能夠產生冷光的生物,從陸地上的螢火蟲,叩頭蟲以及蕈類【圖一】,到海洋中的弧菌屬【圖二】以及雙鞭毛蟲門,甚至磷蝦都演化出冷光系統。以螢光素酶和螢光素產生冷光看起來似乎是個簡單的化學反應,但其實它沒那麼簡單。

【圖一】Mycena 屬的發光覃。上:長在枯木上的 M. kentingensis ,攝於屏東墾丁。下: 長在竹子上的 M.chlorophos ,攝於屏東科技大學。圖/柯惠棉提供

-----廣告,請繼續往下閱讀-----

【圖二】培養在錐形瓶裡面的 Vibrio 菌種。圖/柯惠棉提供

螢光素酶與螢光素只是統稱,實際上不同物種螢光素酶的蛋白質序列並不一樣,參與的螢光素也不同2

螢火蟲的螢光素酶以及螢光素的分子組成早在 1968年3與 1978 年1已經被科學家所解開,但是真菌的螢光素是直到 2015 年才為人們所知6,而第一個真菌螢光素酶的序列甚至到了 2018 年底才被解開4。除此之外,發光機制的不同,也讓各物種發出顏色不一樣的光。例如發光真菌發出的是波長介於 520 到 530nm 間的綠光,而細菌大約是 490 nm,不同螢火蟲物種發出的光,從綠光到黃綠光(538 – 570 nm)都有。

九種已知螢光素,各有不同的分子結構。圖/取自Kaskova 等人,2016)

-----廣告,請繼續往下閱讀-----

是誰住在發光的木頭裡?發光真菌~

發光蕈是什麼時候被發現的呢? 古希臘哲學家亞里斯多德(Aristotle)以及古羅馬作家老普林尼(Pliny the Elder)曾經描述過發光的木頭。但當時對他們而言,發光的木頭僅是一個既夢幻又神秘的自然事件。直到 1954 年,奧地利化學家 JohannFlorian Heller 才著手研究它,首先確認了發光的原因是木頭裡真菌菌絲的傑作。

真菌中只有傘菌目(Agaricales)中某些類群的真菌具有發光特性,包括 Omphalotus lineage 當中的 12 個物種、Armillaria lineage 裡面的 10 個物種,以及 Mycenoid lineage 裡面超過 50 個物種都會發光。至於這些發光的真菌,是不是來自相同祖先?它們可能是從同一個祖先演化出來,經過一段時間後,部分種類喪失了發光的特性。它們也有可能是因為某種共同需求,而都演化出類似的發光系統。這一點至今仍是個未解之謎。

更有趣的是,不同真菌物種的發光部位不盡相同。譬如 Armillariamellea 在生活史中,只有菌絲體時期會發光,但是形成子實體之後就不會。但是在台灣常見的螢光小菇 Mycena chlorophos上,則是在菌絲體及子實體的蕈傘與蕈褶皆會發光,而蕈柄則無【圖1】。

台灣不只農產多,發光小菇也很多

由於發光小菇在台灣的普遍性,目前台灣發光小菇的採集記錄最多,研究此真菌的報告亦最多。

-----廣告,請繼續往下閱讀-----

其中,嘉義大學園藝系洪進雄教授研究的是發光小菇菌絲體的培養條件8。中興大學高孝偉教授研究團隊則記錄各地發光小菇的特性。目前發光小菇都是在竹林中才能找到;不同地點採集到的小菇在發光特性上略有不同,像是在台灣北部石碇以及三義所採集的樣本不會發光,中南部的溪頭及墾丁的樣本同時有發光與不發光的個體,而在阿里山、臺南、屏東、花蓮所採集的樣本則都會發光。然而,利用分子方式所建立的親緣關係可區分石碇、三義跟中南部的樣本,但無法用來區分發光與不發光的樣本10

至於其他 Mycena 屬的發光蕈物種,由於種類繁多(全世界大約有五百多種),要以外部形態來鑑定是有名的困難。近幾年高孝偉教授研究團隊利用形態及分子方法,鑑定出台灣新種墾丁小菇(M. kentingensis )7、晶瑩小菇(M. jingyinga )、鹿谷小菇(M. luguensis )及維納斯小菇(M.venus )9

此外,中央研究院蔡怡陞副研究員的研究團隊也以定序全基因體的方式,致力研究發光真菌的演化。他們採取的策略是:分別取出發亮與微弱或不亮的真菌組織 RNA,定序後進行轉錄體(transcriptome)比較,根據表現程度的不同來推測可能參與發光機制的基因。

花若芬芳,蝴蝶自來;菇菇發光,蟲蟲過來?

既然提到了發光蕈演化的過程可能跟功能有關,接下來你便想問:為何真菌要發光?為誰發光?我們知道螢火蟲發光是為了求偶,那真菌是不是也是為了繁殖下一代而發光?的確,科學家對於真菌發光所提出的假說之一,便是真菌利用發亮的子實體來吸引昆蟲啃食,並幫忙散播孢子。

-----廣告,請繼續往下閱讀-----

一群科學家在巴西椰林(Coconut Forest) 裡做了個實驗來驗證這個假說5。他們的目標是Neonothopanus gardneri (屬於前述 Omphalotus lineage 其中一員),想知道它們發光的目的是否與繁殖有關?

他們做了19 個假蕈,上面黏著發出發光波長 530 nm 的 LED 燈,來模擬野生 N. gardneri 所發出的光。對照組則是把燈關掉的另外19 個假蕈。他們把假蕈放在森林裡,連續觀察五個夜晚,記錄吸引到的昆蟲。實驗的結果顯示,發光的假蕈吸引了六隻鞘翅目(對照組為零)和 17 隻雙翅目(對照組為四)的昆蟲,證實它發的光具有吸引昆蟲靠近的功效。

雖然有這樣的實驗佐證,但其他發光的真菌物種是否也是為了吸引昆蟲而發光呢?有些發光蕈只有無性世代的菌絲會發亮,它們顯然是為了別的理由才這麼做的。另外有個假說認為,發光的反應是蕈類在分解腐爛木頭時,為了移除過程中產生的有毒活性氧(reactive oxygen species),而產生的代謝副產物。不過目前尚未有相關研究可以支持這個假說。

發光菇菇,快使出冷光攻擊,基因工程標記新技術?

說了這麼多演化或是機制,科學家又為什麼要研究冷光機制呢?冷光除了真的很夢幻之外,它們有沒有實際上的應用?當然有的,冷光可以被運用在生物研究上。你可以利用基因工程,把螢光素酶蛋白表現在某些特定的生物細胞內,當作標記。這樣一來這個細胞不需要激發就會發光,可以藉由偵測發出來的光來追踪細胞,而且在活體細胞也能夠觀察。或是也可以把螢光素酶基因接在啟動子後面,幫助科學家來偵測某個特定基因轉錄的程度。

-----廣告,請繼續往下閱讀-----

說完這些有趣而費解的謎題,若想一窺它們的廬山真面目,5-9 月在下過雨的嘉義阿里山、新化國家植物園、屏東墾丁的竹林或是山區,都是造訪它們的好去處。2018 年我們也在台東太麻里發現它們的蹤跡。賞發光蕈需要在全暗的環境下,建議選擇已經熟悉的步道或是在白天先探過一次路,最好攜伴同行。會長香菇的地方一定既潮濕又溫暖,是同時觀察青蛙的好地方,但也是愛吃青蛙的掠食者(如蛇)活動的好地方。此外有些昆蟲(包括蟑螂)也喜歡吃香菇,你也有機會遇見。賞菇,也就同時是個觀察大自然各種生物生態的好時機。

墾丁竹林叢中的發光小菇。圖/柯惠棉提供

參考文獻

  1. M, McElroy WD (1978) Purification and properties of fireflyluciferase. Methos Enzymol, 3-15.
  2. Kaskova ZM, Tsarkova AS, Yampolsky IV (2016) 1001 lights: luciferins,luciferases, their mechanisms of action and applications inchemical analysis, biology and medicine. Chemical Society Reviews45, 6048-6077.
  3. Kishi Y, Matsuura S, Inoue S, Shimomura O, Goto T (1968) Luciferinand luciopterin isolated from the Japanese firefly, Luciola cruciata.Tetrahedron Lett, 2847-2850.
  4. Kotlobay AA, Sarkisyan KS, Mokrushina YA, et al. (2018) Geneticallyencodable bioluminescent system from fungi. Proc Natl Acad Sci U SA 115, 12728-12732.
  5. Oliveira AG, Stevani CV, Waldenmaier HE, et al. (2015) Circadiancontrol sheds light on fungal bioluminescence. Curr Biol 25, 964-968.
  6. Purtov KV, Petushkov VN, Baranov MS, et al. (2015) The chemicalbasis of fungal bioluminescence. Angew Chem Int Ed Engl 54, 8124-8128.
  7. Shih YS, Chen CY, Lin WW, Kao HW (2014) Mycena kentingensis , anew species of luminous mushroom in Taiwan, with reference to itsculture method. Mycol Prog 13, 429-435.
  8. 周秀宜、洪進雄 (2014) 發光小菇菌絲體離體培養之研究。碩士論文。
  9. 張瓊之、高孝偉 (2017) 台灣產螢光菇的分類及分子親緣關係。碩士論文。
  10. 施雨伸、高孝偉 (2013) 臺灣產螢光小菇的分布、分類及人工培養,並兼述一新種。碩士論文。

 

本文轉載自MiTalkzine,原文《夜光派對- 叢林中的夢幻發光蕈

歡迎訂閱微雜誌MiTalkzine,加入 MiTalker 的行列,一起來認識這個星球上千萬種各式各樣的微生物吧!

-----廣告,請繼續往下閱讀-----

訂閱連結:https://goo.gl/Qo59iG

-----廣告,請繼續往下閱讀-----
MiTalk
10 篇文章 ・ 5 位粉絲
MiTalk 由一群微生物領域的科學家組成,希望能讓更多人喜歡上這些有趣的小生物。MiTalkzine 是我們推出的免費電子科普雜誌,歡迎訂閱

0

15
2

文字

分享

0
15
2
科學寶可夢2 #171 電燈怪:深海中的大大大大大太陽
Rock Sun
・2018/03/07 ・3543字 ・閱讀時間約 7 分鐘 ・SR值 505 ・六年級

-----廣告,請繼續往下閱讀-----

身為一名訓練師,你真的了解你的寶貝們嗎?寶可夢圖鑑讀熟了沒?

其實圖鑑告訴你的比想像中的還多喔!每個星期周末跟著 R 編一起來上一門訓練師的科學課吧!來跟大家分析這些寶可夢們是如何使用科學力來戰鬥的。

在Y編的百般詢問之下(其實是我自我放逐~~~),R編決定來繼續「科學寶可夢」這個專題。儘管寶可夢有點退燒了,但這充滿空想、奇幻又可以用科學來驗證、討論的世界,對我們科學青年根本是個遊樂場~ 不是嗎?或許之後……還可以繼續不知道那裡的科學探險呢~

(圖/Bulbapedia)

 你就只會看到一團光,然後就瞎了 #171 電燈怪

雖然我們上一位介紹的安瓢蟲就是以星光當成能源來過活的,但其實R編個人對寶可夢世界裡與「光」有關的寶可夢不抱太大的期待,因為……好像沒有哪隻寶可夢是以光出名的啊!沒想到過沒多久又發現了一隻不只和光有關,且單單從圖鑑敘述就知道牠一定強到沒朋友的寶可夢。

「電燈怪發出的光線之亮,就算是從 5000 米的水下發出也能傳到到水面上。」(金、葉綠、心金)

「如果深夜里從船上向漆黑的海望去,電燈怪所發出的亮光有時看起来就像星星一樣。」(藍寶石、鑽石、珍珠、白金、黑白…..)

「會放出刺眼的亮光眩暈對手,然后趁其無法動彈時將其整個吞下。」(銀、火紅、魂銀……)

各位觀眾,是 5000 米(公尺)啊!!!(注1)先別說在海底了,假設今天場景拉到了海平面上,5000 公尺的距離就像是你站在 101 某個樓層能夠平視看到新光三越站前店(如果沒有建築物擋住的話)頂的手電筒!這有可能嗎?R編覺得很難,但也不是沒機會。不過在此之前先讓我們再推一萬步,來追究一下電燈怪是怎麼發光的?

R編比較喜歡這種~殺氣!!(圖/Pokemon by Reviews)

-----廣告,請繼續往下閱讀-----

source:Wikimedia

其實圖鑑上有提到這點:電燈怪就跟許許多多地球上的深海發光生物一樣,靠著身體中的細菌產生化學反應來制造亮光。生物之所以發光有各式各樣不同的理由,像是吸引獵物、溝通、尋找伴侶等等。這些生物有很大一部分居住在海中,而圖鑑裡也有說電燈怪是靠閃瞎獵物來捕食……這聽來蠻合理的,除了牠鮮豔的藍黃色以外,牠的外型甚至跟現實世界的鮟鱇魚幾乎一模一樣(注2)。

所以電燈怪發光是很合理的,但能在 5000 公尺外看到牠的亮光嗎?問題就在於,就算鮟鱇魚頭上的燈跟我們在地球眼睛看到的太陽光一樣亮,別說 5000 公尺了,在水裡連在 100 公尺內看到都很勉強;之所以會有這樣的現象,跟光在水中的物理有關。

水的密度比空氣大超過 800 倍,這對於光的傳遞來說是很不友善的一件事。在水下,光的傳遞會受到深度、視覺距離、水面的狀況影響等因素影響,但絕大部分的紅光在 5 公尺內會被吸收、橘光則是 10 公尺、黃光 20 公尺、綠光 30 公尺,最後藍光在 60 公尺身的時候就消失了,這時候的光基本上被吸收到剩不到 10%。(注3)

-----廣告,請繼續往下閱讀-----

就算今天海水的狀況好一點,太陽光頂多也只能傳遞到水下 200 公尺,所以這段距離在海洋學上被稱為「透光帶」(Epipelagic)。這個範圍的海水居住著需要陽光的海洋生物,像是一些行光合作用的浮游生物。再往下到 1000 公尺深,叫做「中層帶」(Mesopelagic),這裡要行光合作用基本上已經不可能了,只有在最理想、風平浪靜、海水超級清澈的極少數情況下這裡才有一點點光,但少到讓人絕望。

然後在這之下的深海則叫做「深層帶」(Bathypelagic),再來是「深淵帶」(Abyssopelagic)(y編按:說好不提娜娜琪的……(R編再按:那啥?吃的嗎?))。帶如其名,在這裡的生物別說看過光了,連ㄍㄨㄤ這個字怎麼拼都不知道。5000 公尺深就落在這裡,而電燈怪可以從這裡……散發出來連水面都看的到的光……!?

從深海中的LED燈開始,來大膽猜一下電燈怪能有多亮呢?

舉個例子給大家參考一下,曾經下潛到水下 10,000 公尺深、著名的水下載具深海挑戰者號上面裝有一個 2 公尺高的 LED 探照燈陣列(注4),雖然 R編找了很久找不到這 LED 探照燈陣列的功率或照度,但是根據製造者說法,這個探照燈在深海能看到 30 公尺外的地方……這也只有電燈怪的0.6%而已。由於實在找不到太多可靠或明白的資料,R編決定做個冒險的計算,就是使用平方反比定律,來試著計算電燈怪的光到底有多強,這下子我們可能會忽略很大一部分水的散射,導致我們的電燈怪會超乎預期的強。

所以說牠臉上的黃斑紋到底是幹嘛?保護眼睛嗎?(圖/Pokemon Wiki)

-----廣告,請繼續往下閱讀-----

反平方定律是一個推估物理量的分布或強度的定律,數值會按照距離源的平方反比而下降,最常被用在計算能量擴散(爆炸)或光與距離間的關係。舉個例子:如果今天我們在 2 公尺之外測量一個燈泡照度為 10 勒克斯(也就是每平方公尺 10 流明),那麼它在 1 公尺處的照度就是 (2/1)2x10=40 勒克斯。當然也可以放遠計算,而數字只會越來越趨近於零,但不會消失。

例如深海挑戰者號的LED燈在 30 公尺為照度剩 1 勒克斯(大概比滿月的晚上再亮一點點),那麼 5000 公尺外它的照度就只剩下 0.000036 勒克斯,比之前提過的星光還弱 3 倍。如果我們反過來推倒,假設今天我們在水面上看到電燈怪的燈光有 1 勒克斯,那麼實際上在海中的牠有多亮呢?

經過計算之後,在 30 公尺處電燈怪的照度就高達 27 萬勒克斯,這已經比正中午的太陽光還亮 2 倍以上了,如果我們再拉近點,距離電燈怪只有 10 公分,照度會來到 2.5×1010 勒克斯,我們姑且就先以這個值當作電燈怪燈的照度好了。

電燈怪的燈,如果把它算成一個直徑兩公分的球好了,它的表面積就是 0.0013 平方公尺,乘上 2.5×1010 勒克斯,我們得到光通量為 3000 萬流明,如果再進一步將電燈怪的發光能力換算成現今擁有非常優越轉化效能的燈泡,約 200 流明/瓦特,我們也可以把它類比成一個 15 萬瓦的燈泡

-----廣告,請繼續往下閱讀-----

燈關一下啦~~喂~~(圖/Giphy)

我們要拿怎樣的手電筒比呢?別提了,我們直接跳到海岸救援直升機等級的探照燈,這類的探照燈少有 500 瓦,高則可以到 7000 瓦,而市面上能夠找到的最強探照燈光通量一台也不過才 50,000 流明而已了,在電燈怪的光面前,我們地球上的最頂尖的人造光都像螢火蟲一樣,除非我們集合起來(悟空說:請大家給我力量!),才能比過這隻小小的寶可夢。(注5)

而根據軍用閃光彈的原理,我們正常人只要看到每平方公分 0.2 瓦以上的光就會昏厥。如果我們今天想把電燈怪從深海打撈起來,會發生什麼事呢?我們會先看到一個像手電筒一樣的燈光出現在海面上,漸漸地越來越大、越來越亮,離水面幾百公尺的時候,整個海面已經像日光燈一樣閃亮,我們可以在海面上看到各種不同海洋生物的影子,然後一口氣大力拉上的瞬間,半徑大概 100 公尺內的人都會被瞬間閃暈,範圍之外的大概亮到眼睛都睜不開,而理所當然我們也看不到這隻寶可夢。(注6)

這是…….電燈怪…..還是神?(圖/VideoBlocks)

-----廣告,請繼續往下閱讀-----

海中生物的話呢~~牠們如果有視力的話大概也會落得一樣的下場,反而是眼睛發育不完全的深海動物和完全沒有眼睛的底棲生物們等能夠逃過一劫……原來這就是為什麼電燈怪要住在海底下的原因啊~~真是要好好感謝電燈怪,請牠們盡量待在深海不要隨便造成視力浩劫啊~~

編注:

  1. 這基本上就是全部的敘述了,說實在話「像星星一樣」和後面的閃瞎對手吃掉整個差很多啊~不會覺得這光絕對是有詐嗎?
  2. 這很難說,因為我們只不過才探索極少部分深海而已,說不定哪一天我們真的能找到長得像藍色的布丁,臉上還有黃色斑紋的鮟鱇魚,但絕對不會長這麼可愛。其實現實世界有深海魚類的眼窩是真的會發光的,所以那圈黃色的說不定是發光器?
  3. 雖然這順序有很大的不一樣,因為我們以上討論的是陽光照進海水的情況,但電燈怪可是相反~他是從海裡發出光,光源本身就在水中,不像太陽高高掛在天上,這中間少了非常多東西,如果有更懂類似知識的大大可以幫R編補一下。
  4. 除了LED探照燈外,還有一個機械夾和許許多多的鋰電池、攝影機…..,沒有太多華麗的實驗設備,但靠著安全的設計和卡導演的駕駛,安全的探險回來。
  5. 其實還有更有潛力的強大燈光存在,例如 Imax 投影機陣列、拉斯維加斯樂蜀飯店頂全世界最亮的探照燈、還有許許多多大概不能公布的軍事黑科技,極有可能夠和電燈怪並駕齊驅,但這些真的找不到什麼全面的資料。
  6. 這還不包括可能發生的放熱、視網膜傷害等,只能說這樣的動物待在深海就好了。

參考資料:

  1. 維基百科 (反平方定律光視效能照度生物發光作用深海
  2. 深海挑戰者號
  3. Basic Principles of Light Underwater
  4. How far does light travel in the ocean?
  5. Lumens to watts calculator
  6. What If? 如果這樣會怎樣
  7. 空想科學讀本6
-----廣告,請繼續往下閱讀-----
Rock Sun
64 篇文章 ・ 952 位粉絲
前泛科學的實習編輯,曾經就讀環境工程系,勉強說專長是啥大概是水汙染領域,但我現在會說沒有專長(笑)。也對太空科學和科普教育有很大的興趣,陰陽錯差下在泛科學越寫越多空想科學類的文章。多次在思考自己到底喜歡什麼,最後回到了原點:我喜歡科學,喜歡科學帶給人們的驚喜和歡樂。 "我們只想盡我們所能找出答案,勤奮、細心、且有條理,那就是科學精神。 不只有穿實驗室外袍的人能玩科學,只要是想用心了解這個世界的人,都能玩科學" - 流言終結者