0

0
0

文字

分享

0
0
0

輕薄電池新發明 信用卡餘額一眼即知

Trr. 特誌_96
・2012/04/03 ・623字 ・閱讀時間約 1 分鐘 ・SR值 463 ・五年級

立即填寫問卷,預約【課程開賣早鳥優惠】與送你【問卷專屬折扣碼】!

 

假日出門逛街聚餐,玩樂之後看看皮夾裡的信用卡和金融簽帳卡,你知道戶頭裡的餘額是多少嗎?除了到ATM刷卡查看帳戶餘額或者上網路銀行查詢,現在有了更方便的發明!由日本NEC公司所研發的有機自由基電池(Organic Radical Battery,或稱ORB)具有超薄、可彎曲的特性,未來可望應用在信用卡上,為卡片上的小螢幕提供電力,顯示你的帳戶餘額。

有機自由基電池的厚度只有0.3公厘,可以重複充電使用,相當適合用在厚度約0.76公厘的信用卡上。此外,有機自由基電池的輸出功率大,充電速度也比現有的鋰離子電池等充電電池更快,目前NEC公司正在研發整合有機自由機電池的印刷電路板技術,讓負電極可以直接嵌入電路板。有機自由機電池以0.05公厘厚的聚合薄膜包覆,因此可以裝載天線等小型電子元件;雖然輕薄,卻能提供相當大的輸出功率,容量可達3毫安培時、輸出功率5千瓦/升。

簡而言之,這種新型的有機自由基電池只要充一次電,就可以提供螢幕更新資訊2000次、發送位置35次的電力。更令人印象深刻的是,有機自由基電池在充放電500次以後,仍然保有75%的容量,表現相當於一般手機使用的鋰離子電池。NEC公司正在研發各項相關技術,希望不久之後,這種超輕薄、可彎曲的有機自由基電池就能搭配螢幕顯像和加密功能,廣泛應用在各種領域上!

資料來源:Ultra-Thin Batteries Could Power Displays On Credit Cards  本文原發表於Trr.特誌

文章難易度
Trr. 特誌_96
11 篇文章 ・ 0 位粉絲
「Trr.tw 特誌+」是頂躍網際媒體轄下的網站之一,主要經營流行趨勢、潮流消費、當代藝術和生活娛樂等內容,如果您有相關有趣的內容,也歡迎隨時和我們連繫。

0

2
2

文字

分享

0
2
2
蠶繭電池是綠能的未來?!
胡中行_96
・2022/08/25 ・2454字 ・閱讀時間約 5 分鐘

立即填寫問卷,預約【課程開賣早鳥優惠】與送你【問卷專屬折扣碼】!

 

一襲華美的傳統印度紗麗,在燈光下反射出璀璨的光芒。仔細收縫的布邊,附了一只小標籤,上頭繡著飛蛾般的圖樣。那是印度絲綢標誌組織,授予的真絲證明。[1] 買衣服看布料成份,天經地義。不過,如果有一天市面上販售蠶繭電池,廠商是否也會標榜百分之百純天然蠶絲? 2022 年 8 月的《科學報告》期刊上,二名印度學者詳細解說他們攜手打造蠶繭電池的流程,以及背後的科學原理。[2]

將來蠶繭電池廠商,也可以申請印度絲綢組織的真絲證明嗎?圖/Satish Krishnamurthy on Flickr(CC BY 2.0

蠶繭電池的製作

首先,他們弄來一些印度當地家蠶(Bombyx mori)的繭,攤在陽光下曝曬,以確保裡面沒有活著的蛹。吹掉灰塵後,再把蠶繭儲存在木櫃子裡備用。接著,於 25 毫升的再蒸餾水中,加入 12.5 公克的食鹽(NaCl),然後把蠶繭丟進去浸泡 24 小時。另外,也用雷同的方法,準備分別泡了再蒸餾水和氯化鉀(KCl)水溶液的兩個組別。[2]

(a)每個蠶繭都被切成兩份,做一顆蠶繭電池需要 8 份。[2]

(b)切好的蠶繭內面緊實地套住鋁片;外頭則綑上銅線。鋁是負極;銅為正極。[2]

(c)將組裝好的 8 份蠶繭串起來,放在吹風機和圓底瓶之間。上頭吹熱風;下面供應水蒸氣。[2]

(圖/參考資料 2,Figure 2)

經過一番測試之後,研究團隊最滿意食鹽水這組的結果,決定再做一個進階版的裝置:他們將蠶繭電池放在熱水壺的壺嘴,並接上 LED 燈泡。熱水大滾,水壺裡冒出來的蒸氣觸發蠶繭電池,燈泡就會發光,像下面影片中看到的模樣。[2] (畫面長寬比例差距過大,建議開全螢幕較方便觀賞。)

安裝了蠶繭電池和 LED 燈的熱水壺。來源:參考資料 2,Supplementary Video S1

蠶繭電池的原理

(a)蠶繭是一層內外結構不對稱的絲質薄膜。圖中黃色代表內面;褐色則為外側。[2]

(圖/參考資料 2,Figure 9a)

(b)此為蠶繭薄膜切面的局部放大圖。由內(黃色)而外(褐色),蠶繭上面細孔通道的尺寸逐漸變大。[2]這個結構平時的功能,是令水分子和二氧化碳得以快速地排出,但卻只能緩慢地滲入。前者確保蠶繭幾乎防水;後者則避免類溫室效應的發生。[3]

(圖/參考資料 2,Figure 9b)

(c)圓底瓶供應的水蒸氣,被困在細孔通道中。當吹風機為蠶繭加熱,水分子與蠶繭蛋白作用,H3O+ 等電荷載體應運而生。它們會因為通道內外寬窄帶來的水壓不對等,而朝單一方向運動。[2][註]

(圖/參考資料 2,Figure 9c)

(d)鋁和銅基於電負度(electronegativity)不同,也就是吸引電子的能力有所差異,更加劇了方向性移動的效果。[2, 4] 另外,食鹽水能增加電荷載體的濃度,促進蠶繭電池導電的效能。[2]

(圖/參考資料 2,Figure 9d)

吹風機的熱風與圓底瓶的水蒸氣,讓水分子迅速穿過蠶繭的細孔通道,也就是快速充電的意思。[2] 這個乾溼無限循環的靈感,源自蠶繭所處的自然環境。蠶繭通常吊在樹上,樹葉會給它滋潤的水氣,但陽光又導致水份蒸散,二者不斷改變溫度與濕度。然而,當蠶繭被放在攝氏 5 和 50 度的環境下,裏頭還能分別維持 25 與 34 度。[3] 在調節溫度的過程中,從溫差產生電能,便是熱電效應(thermoelectric effect)的展現。[2, 5] 當溫溼度都極高,充飽電的蠶繭就會用類似腦波的信號,通知蛾該退房了。[2, 3] 這也就是蛻變的現象,具有季節性的原因。[3]

(蠶的一生。圖/Internet Archive Book Images on Flickr(Public Domain))

蠶繭綠電建築

蠶繭電池製作起來雖然事倍功半,但是研究團隊寄予它極高的期望。充電靠水蒸氣;導電用食鹽,二者都是地球上容易採集的資源。因此,他們認為蠶繭電池的前景,必然優於目前市售的儲電或發電裝置。是不是純天然蠶絲不要緊,重點是希望未來能夠人工模仿蠶繭的結構,以生態友善的方式,建造會自體發電的生物聚合建築。如此一來,就能輕易滿足偏遠地區、戰略要地以及其他地方的用電需求。[2]

  

備註

原文專業的說法是,內外寬窄不對稱的細孔通道中,水壓梯度會導致電位差,進而使電荷載體出現方向性的運動。

參考資料

  1. Silk Mark – A Quality Assurance label (Silk Mark Organisation of India, 2017)
  2. Jangir H & Das M. (2022) ‘Designing water vapor fuelled brine-silk cocoon protein bio-battery for a self-lighting kettle and water-vapor panels’. Scientific Reports, 12, 13999.
  3. Tulachan B, Srivastava S, Kusurkar T, et al. (2016) ‘The role of photo-electric properties of silk cocoon membrane in pupal metamorphosis: A natural solar cell’. Scientific Reports, 6, 21915.
  4. 電負度(國立臺灣大學 科學Online,2010)
  5. Chandler DL. (2010) ‘Explained: Thermoelectricity’. Massachusetts Institute of Technology.
胡中行_96
66 篇文章 ・ 24 位粉絲
曾任澳洲臨床試驗研究護理師,以及臺、澳劇場工作者。 西澳大學護理碩士、國立台北藝術大學戲劇學士(主修編劇)。邀稿請洽臉書「荒誕遊牧」,謝謝。

1

2
1

文字

分享

1
2
1
來趟蕉心之旅?購買有產地履歷的香蕉好安心
鳥苷三磷酸 (PanSci Promo)_96
・2022/06/02 ・2160字 ・閱讀時間約 4 分鐘

立即填寫問卷,預約【課程開賣早鳥優惠】與送你【問卷專屬折扣碼】!

 

本文由 家樂福食物轉型計畫 委託,泛科學企劃執行。

  • 文/陳彥諺

你喜歡吃香蕉嗎?香蕉是台灣人從小到大非常熟悉的水果,不僅方便攜帶、營養價值豐富,更符合現代的養生概念,很適合健身者、節食者。不過,你是從哪裡買到香蕉的呢?
你知道現在已經有專屬香蕉的「驗證」了嗎?

從以前到現在的台灣「蕉傲」

為什麼香蕉也有驗證?在談到驗證之前,首先讓我們聊聊過去。

作為常見的、隨手可得的水果,香蕉不只是台灣重要的水果產業之一,也是全球重要的經濟果樹及糧食作物。在巔峰時候,香蕉曾經是全球產量最多的水果,經濟價值非常高,僅次於蘋果、柑橘及葡萄,而糧食重要性也僅次於小麥、稻米和玉米。

而我們的台灣,曾經有「香蕉王國」美名,當時因爲產量大,加上風土及氣候適合栽種,台灣種植出來的香蕉特別好吃,價格和出口銷量的成績都非常亮眼。在香蕉的黃金年代中,台灣東西南北都有種植。

只是,雖然台灣是香蕉王國,外銷成績乍看亮眼,但蕉農的辛苦卻很少人知道。行話裡有種說法是「種蕉如賭」,因為種植香蕉必須靠天吃飯,將蕉苗種下之後,接著蕉農便得對賭著天氣氣候環境市場狀況——如果自然條件不佳,會導致收成慘澹,不過,若整體銷量過剩,也將造成價格大跌。又如果非常好運,成功撐過上述的局面,最終在進入市場銷售前,還將面臨到中盤、行口(台語)的層層轉手。作為一個蕉農,有太多變數不能掌控,收入也因此起伏不定。

吃好蕉!守護蕉農大行動!

台灣香蕉,從過去的出口黃金年代,邁入今天的另一個美好時代。如今,香甜軟糯的台灣香蕉,仍然是我們生活中的重要存在。

今天的台灣,因為經歷了多次爆發的食安問題,消費者越來越注重食品安全。與此同時,農民們仍然有收入穩定的需求。要如何平衡這兩點呢?

家樂福認為,比起讓蕉農單打獨鬥,有另一個能兼顧農民與消費者雙方利益的方法,那就是以賣場的力量,支持小農。家樂福賣場內,只販售通過驗證的香蕉,藉由驗證,不僅可以做到產地溯源、驗證履歷,鼓勵且支持小農轉型,讓蕉農可以專注栽種,不需擔心後端銷售問題,同時,顧客也能藉由驗證得知透明資訊,進而安心選購。

四大金蕉:履歷蕉、有機蕉、金蕉伯、石虎香蕉

家樂福的香蕉驗證共有四大種。家樂福的「履歷蕉」,是從雲林屏東產區中挑選出來當季的、品質最優良的香蕉,並且全產品都需具備「產銷履歷(TAP)標章」,也需要遵循「家樂福農藥規範」,履歷蕉的每一根香蕉,都有其栽種來源用藥是否符合歐盟標準的紀錄,且只有在經過政府委託的第三方驗證機構定期抽檢合格後才能販售。

家樂福 BIO 有機香蕉」則是來自全台最大的「有機驗證(Organic)」香蕉農園,位於屏東。「有機」的標章並不好取得,蕉農必須以全天然農法栽種,不施化肥不催生催熟,以人工除草代替除草劑,讓土壤是自然健康的狀態,健康的土壤所種植出來的香蕉,除了來源健康,口感香氣也特別好。

金蕉伯履歷香蕉」不是一個人,而是一群人!10 多年前,家樂福已開始在全台各地找尋志同道合的農友,終於在雲林遇到願意為食品安全環境永續共同努力的蕉農,後來更成為長期契作的對象。他們以友善農法耕種,呵護土地,種出好蕉。

石虎山蕉」則是南投中寮的一群農友。他們為了保育瀕臨絕種的台灣保育類動物石虎,不擴大農地面積、不使用化學肥料及除草劑,保留給石虎一塊乾淨安全友善的棲息地。

家樂福的 Act For Food 食物轉型計畫

家樂福與民生息息相關,通路可以單純只是販售點,也可以帶來改變、產生力量。因此,家樂福推動食物轉型計畫,希望建立起與農民、農民團體相互信賴的合作連結,藉由大量計畫性種植、保證收購降低平均成本,一來讓農民能獲得合理的農務所得,二來讓消費者能以合理價格買到安全的食物,三來,通路能成為穩定供貨的角色。

買香蕉選擇家樂福香蕉驗證,不僅食得安心,更是以行動支持在地農民。家樂福相信每個人都值得最好的,以家樂福 AFF 食物轉型作為領航,一同創造友善農民、土地、消費者的共好模式。

家樂福以行動,開創對所有人與土地共生共好的食物轉型模式,也邀請大家一同參與支持。

所有討論 1

0

4
3

文字

分享

0
4
3
如果可以簡單,誰想要複雜?2021 諾貝爾化學獎得獎的是……讓合成變簡單的「不對稱有機催化劑」! ft. 陳榮傑博士【科科聊聊 EP62】
PanSci_96
・2021/10/26 ・3026字 ・閱讀時間約 6 分鐘

立即填寫問卷,預約【課程開賣早鳥優惠】與送你【問卷專屬折扣碼】!

 

2021 年諾貝爾化學獎得主 Benjamin List 和 David MacMillan。圖/TheNobelPrize

化學反應中,能夠加快反應過程的物品就叫做「催化劑」。我們的生活處處都有催化劑,據估計,世界上大概有 35% 的 GDP ,是和某種化學催化有關的。但想想看,如果能讓催化劑的效率提升,是不是更能讓省去繁雜的製程,提高工作效率呢?

今年的諾貝爾化學獎,就是頒發給革新催化劑的 Benjamin List 和 David MacMillan!他們開發出「不對稱有機催化劑」,不只改善催化效率,也克服了「不對稱金屬催化劑」的缺點。說到這,什麼是「不對稱催化劑」?不對稱「有機」催化劑和不對稱「金屬」催化劑又有什麼差別?

為了解答這個問題,這次泛泛泛科學請到中央研究院化學研究所的陳榮傑老師,來替我們解說本屆獲獎的「不對稱催化劑」到底是什麼?另外,陳榮傑老師還說出 2020 年僅用兩週就做出轟動全台的「瑞德西韋」背後小故事!就讓我們一起來了解本次諾貝爾化學獎的內容吧!

本次專訪感謝 台灣科技媒體中心 的協助。

  • 00:57 陳榮傑老師的研究

中央研究院化學研究所的陳榮傑老師主要研究「有機合成」,包括天然物的全合成、不對稱有機催化反應。有時他的實驗室也會運用合成能力協助開發藥物,最著名的即是在 2020 年,他們僅用兩週就合成出可以協助治療新冠肺炎的「瑞德西韋(Remdesivir)」藥物,純度還高達 97%。

延伸閱讀:武漢肺炎/中研院7人團隊2週合成瑞德西韋 純度達97%

  • 03:39 2021 諾貝爾化學獎得獎研究

李斯特(Benjamin List)在研究催化性抗體時,雖然以前就有人以脯氨酸(proline)做催化劑,但卻因為當時沒有系統性發展,所以研究後繼無人。結果在他簡單的測試下,不僅證明脯氨酸是有效的催化劑,也證明它能驅動不對稱催化。

麥克米倫(David MacMillan)則是為了能夠讓不對稱催化劑能夠大規模工業生產,所以開始改良不對稱催化劑,最後他利用胺基酸的衍生物合成,開發出以他命名的催化劑 MacMillan catalyst。

延伸閱讀:

The Nobel Prize in Chemistry 2021

【2021諾貝爾化學獎】更高效率且環保的化學合成——「不對稱有機催化劑」

2021諾貝爾化學獎記者會 會後新聞稿

  • 06:33 想了解「不對稱催化劑」要先知道「鏡像異構物」

不對稱合成也可以稱為手性合成、掌性合成、鏡像異構物合成。有些分子會產生鏡像異構物(enantiomer),宛如一個分子照了鏡子,結構左右互換,又好似人的左右手雖然對稱但算是兩種不同的結構。同一組鏡像異構物的沸點、熔點、光譜都一樣,兩者唯一不同的是用偏極光照射時,正常分子是順時鐘旋轉(右旋),但鏡像異構物則會產生逆時鐘旋轉(左旋)。

延伸閱讀:左旋還是右旋?化學對稱跟你我的身體有關!

  • 09:37 不對稱合成

生物體內組成的基本單位如氨基酸、醣類,很容易會產生鏡像異構物,這些鏡像異構物也需要不同的酵素去辨認,如同你的左右手只能分別套上左右手的手套。在製藥上無可避免的須要只合成其中一種鏡像異構物才會有效果,而用化學的方式選擇性合成單一的鏡像異構物,這就叫做「不對稱合成」。

另外如有兩種鏡像異構物也需要分別測試,陳榮傑老師舉例 1960 年代的沙利竇邁(Thalidomide)事件就是不清楚沙利竇邁的右旋結構可以抑制孕婦害喜症狀,左旋結構卻會導致新生兒畸形,才會造成畸形兒比例異常升高。

2001 年時就有另一組人馬(William S. Knowles, Ryoji Noyori, K. Barry Sharpless)以不對稱催化獲得當年諾貝爾化學獎,不過當年開發的催化劑含有金屬成份,今年獲獎的催化劑研究則不含金屬,避免了金屬造成的問題。

延伸閱讀:鏡像異構物的分離方法(上)

  • 15:47 為什麼需要「不對稱催化劑」?

要達成不對稱合成,最好的方式是透過催化劑,讓反應活化能降低,加速反應進行。如果不採用不對稱催化劑加以控制,合成出的化合物會是各佔一半含量的異構物。

延伸閱讀:不對稱催化(Asymmetric Catalysis)(一)─ 不對稱氫化反應(Catalytic Asymmetric Hydrogenation)

  • 17:47 催化的重要性

根據估計,世界上有 35% 的 GDP,都在某種程度上涉及到化學催化 。因為催化劑可以降低反應活化能,原來需要高溫或高壓的反應,有了催化劑就可以在較低的條件下進行,節省了大量能量。諾貝爾化學獎至今頒發過七組關於催化的研究,不只是製藥,石油產業、高分子材料等等也都是催化研究的受益者,可見催化對我們的生活有著巨大的影響力。

  • 20:22 2001年也有不對稱催化劑的研究獲得諾貝爾化學獎,與今年的差別是?

2001 的諾貝爾化學獎由 William S. Knowles、Ryoji Noyori、K. Barry Sharpless 三位獲得,他們的不對稱催化劑含有金屬成份,有些還是貴金屬或重金屬,合成過程中需要特別去除重金屬污染,會有殘留的風險。而今年得獎的 Benjamin List 與 David  MacMillan 開發的「不對稱有機催化劑」屏除金屬,使用更精細的方式設計分子的立體結構。用量只要原來金屬催化劑的百分之一,還能維持效用與不對稱的選擇性,而且沒有重金屬的污染問題。比起許多酵素必須在人體內作用還有過往的金屬催化劑,不對稱有機催化劑能做的事情更多,未來延續性更加廣泛!

延伸閱讀:

The Nobel Prize in Chemistry 2001

【2001諾貝爾化學獎】催化性的不對稱合成

  • 25:32 Benjamin List 與 David MacMillan 的得獎關鍵

早在 1970 年代就有人在研究以脯氨酸(proline)用做催化劑,但卻沒有人繼續研究下去,Benjamin 認為可能是其效果不甚理想。抱著先試試的態度,Benjamin 測試了是否能夠催化讓兩個碳原子結合的羥醛反應(aldol reaction)。令他驚訝的是結果相當的有效。透過實驗,Benjamin 不僅證明脯氨酸是一種有效的催化劑,也證明了這種氨基酸可以驅動不對稱催化。

MacMillan 早年投身在天然物全合成領域,接受紮實的有機合成訓練。在研究有機金屬不對稱催化的過程中產生了避免使用金屬成分的想法,後來發展出與 Benjamin List 基底不太一樣但殊途同歸的研究結果。

  • 31:51 陳榮傑老師在「天然物全合成」的研究歷程

「天然物全合成」就是要動用所有可能的方法合成標的化合物,由於天然物的結構複雜,合成的方法也是非常紮實的訓練。

  • 35:07 科學家為了化繁為簡研究催化劑

可以簡單,誰想要複雜?為了把工作過程簡單化,並更有效率地完成工作,科學家們才願意研究催化劑。此外,化學反應的步驟越多,最後的產率可能會變低,所以如果能夠簡化步驟,就不會白白浪費物質與時間成本。

  • 42:39 2020 年轟動全台的瑞德西韋
  • 54:13 每個研究的背後,都有一個為社會付出的科學家

在每個領域,都有人在做很基礎的事情。希望能藉這次的化學獎,讓大家知道基礎研究的重要;大家也要想到,在這些受獎人的光環之下,其實背後也是有許多基礎研究在支撐的。