1

2
0

文字

分享

1
2
0

新藥舊藥誰比較好?頭對頭臨床試驗 PK 解密

鳥苷三磷酸 (PanSci Promo)_96
・2023/01/05 ・2769字 ・閱讀時間約 5 分鐘

本文由 百濟神州(BeiGene) 委託,泛科學企劃執行。

當你走進藥局,或拿到醫生開的藥單時,你是否想過「到底哪種藥比較好?哪種藥對我的症狀才最有效?」這大概是很多人都想問的問題。

尤其當自己或在乎的人罹患的不是一般感冒或皮膚癢這類小病,而是糖尿病、心血管等慢性病,甚至是癌症時,問題就更是縈繞心頭,難以揮去了。

什麼樣的藥對你最有效?這問題藥廠們更想知道!因為每一款藥都有最適用的情境,藥品開發有各自的時空背景,舊藥也要面對新藥的競爭,加上藥廠每次開發新藥動輒就要花費 10 年、15 年的時間,就算燒掉幾十億美金,也不見得能成功。

頭對頭試驗(Head-to-Head),更提供清晰準確的臨床證據,說明新藥療效,目前許多新藥廠都嘗試使用此方法進行臨床試驗,到底頭對頭試驗有什麼魅力,讓新藥廠躍躍欲試?

要說明這個問題,就要從新藥開發的過程開始說起。

「到底哪種藥比較好?哪種藥對我的症狀才最有效?」 圖/envato.elements

新藥是怎麼煉成的?

新藥從開發到上市,可分為化學合成和篩選(選藥),臨床前試驗(活細胞和動物試驗),與臨床試驗(人體試驗)三個階段。

在化學合成和篩選階段,會從數千或數萬種化合物中篩選出有潛力的候選藥物,現在有很多研究團隊和企業利用人工智慧來加速這個過程。而臨床前試驗通常包括活細胞和動物試驗,目的是觀察藥物的有效性、安全性、給藥方式等。

人體臨床試驗階通常包括 Phase I、Phase II、Phase III 三個階段。Phase I 試驗是對少數健康志願者進行藥物試用,主要評估安全劑量範圍、確認有哪些副作用。Phase II 試驗則嚴選同質性較高的病患做測試,目的是確認藥物有沒有效,並取得療效的初步數據,也順帶繼續留意安全性。Phase III 試驗則是依據前兩期所得到的數據,制定出合理的給藥機制,並在大量志願者身上進行藥物試用,觀察藥物對所有人的效果,若 Phase III 試驗結果是正向的,就會批准藥物上市,整個過程通常需要 4-6 年。

新藥從開發到上市,總共需要三個階段。 圖/envato.elements

臨床試驗的兩難與醫師的困境

過往,三期臨床試驗多採雙盲臨床試驗設計,患者和試驗人員都不知道自己是在接受試驗用藥還是安慰劑治療,目的是通過排除心理和行為等因素的影響,降低偏見,以更精確地評估藥物的有效性和安全性。但這樣的方法是不是不公平呢?對於接受安慰劑治療的患者,可能會拖累他們的病程,這是藥物開發上一直難以解決的道德爭議。

另一方面,當市面上的藥物品項越來越多,醫師必須花很多時間精力去解讀哪種藥對他的病人最有幫助,缺乏橫向的比較來告訴他在哪種情況下、哪種藥是較好的選項。

因此,近年越來越多藥廠開始採用「頭對頭臨床試驗」來突破以上困境,藉以說服監管機構,加速新藥的通過。

頭對頭臨床試驗是什麼?(Head-to-Head trial)

頭對頭試驗(Head-to-Head trial)就是把候選藥物,和市面上已經在販售的幾款舊藥放上擂台,讓它們直接 PK,目的在於對藥物的療效或安全性進行更直接、細緻的研究與對比。像是如果要比較一款新藥和已上市舊藥物的效果,會將受試者隨機分成人數大約相同的 2 組,一組用新藥,一組用舊藥。如果新舊藥的使用頻率不同,例如新藥一天吃兩次,舊藥一天吃三次,就會在兩次那組加上安慰劑,讓受試者無法分辨出藥物的差異。透過頭對頭試驗,直接比較新舊藥,觀察受試者們身上顯現的反應,只要成效不劣於舊藥,那就有機會促使監管機構拍板同意這個新藥上市。

這邊說的成效,我們一般會著重在四個方面,療效、副作用、價格,以及使用情境。

「療效」是由「疾病無惡化存活期」、「總體生存期」、「疾病緩解率」等多個數據來定義。疾病無惡化存活期(Progression-free survival)指的是病人用藥後腫瘤受到控制,直到又發現惡化的時間。總體生存期則是受試病患們的平均存活時間有多長。

緩解(Remission)又分為「部分緩解」和「完全緩解」,大致來說,部分緩解是腫瘤縮小,完全緩解則是體內已檢測不到癌細胞,不過,因為現今的醫療技術不能 100% 肯定癌症不會復發,所以完全緩解並不等於痊癒。

總體來說,療效主要會參考「治療後病情不再惡化或者延緩惡化的持續時間」、「確診後到死亡的持續時間」,以及「病人接收治療後病情得到改善的比例」這三項指標。

除了療效,有些新藥則是標榜藥物安全性、副作用比較少、或是研發過程中更重視研發成本效益,使新藥更容易負擔。另外使用情境也是很重要的成效之一,像是更容易使用,例如從靜脈注射變成口服,幫忙病人更願意配合醫囑按時吃藥,就有機會說服監管機關放行。當然最理想的狀況是兼具其中的 2 個或更多個好處。

新藥成效,最理想的狀況當然是兼具多個好處。圖/envato.elements

頭對頭開發制度 擴大新藥開發動力

頭對頭試驗的最大優點,透過直接對照,能夠爲醫生和病患提供清晰準確的臨床數據。就是醫師可以直截了當看到,當市面上有好幾種藥物同時存在,哪一種治療可能對病患最有幫助,並且造成傷害的風險在可接受範圍內。另一方面,患者也能更容易理解藥物彼此間的差異。

相對地,頭對頭試驗的結果是「一翻兩瞪眼」,萬一沒過關,新藥的弱點也會暴露無遺,之前的投入可能全數付諸流水,因為誰也不想當第二名。因此藥廠通常要對新藥相當有自信,才會採用頭對頭試驗。

儘管如此,越來越多新藥廠為了證實自身研發藥物的能力,而願意投入頭對頭試驗。他們前仆後繼的嘗試也顯示製藥公司和研發單位不斷以新知識、新技術、創新研發藥物,以提高病患的治療、生活品質與用藥安全,面對大環境變化,與醫療現場的挑戰,迎頭而上。

本篇科普內容由百濟神州(BeiGene)支持。
BeiGene——全球前 50 大新一代的生物科技公司,亦為全球前 14 大專注於癌症新藥開發的企業,擁有全球最大腫瘤醫學研發團隊,其首款自主研發新藥 BTK 抑制劑即是以頭對頭臨床試驗成果,證實在同類藥品中其疾病無惡化,疾病緩解率,總體生存期等指標上更具優勢,能提高病人治療品質和用藥安全,目前已在全球超過 60 個國家/地區獲得批准上市。

文章難易度
所有討論 1

0

3
3

文字

分享

0
3
3
圖形處理單元與人工智慧
賴昭正_96
・2024/06/24 ・6944字 ・閱讀時間約 14 分鐘

  • 作者/賴昭正|前清大化學系教授、系主任、所長;合創科學月刊

我擔心人工智慧可能會完全取代人類。如果人們能設計電腦病毒,那麼就會有人設計出能夠自我改進和複製的人工智慧。 這將是一種超越人類的新生命形式。

——史蒂芬.霍金(Stephen Hawking) 英國理論物理學家

大約在八十年前,當第一台數位計算機出現時,一些電腦科學家便一直致力於讓機器具有像人類一樣的智慧;但七十年後,還是沒有機器能夠可靠地提供人類程度的語言或影像辨識功能。誰又想到「人工智慧」(Artificial Intelligent,簡稱 AI)的能力最近十年突然起飛,在許多(所有?)領域的測試中擊敗了人類,正在改變各個領域——包括假新聞的製造與散佈——的生態。

圖形處理單元(graphic process unit,簡稱 GPU)是這場「人工智慧」革命中的最大助手。它的興起使得九年前還是個小公司的 Nvidia(英偉達)股票從每股不到 $5,上升到今天(5 月 24 日)每股超過 $1000(註一)的全世界第三大公司,其創辦人(之一)兼首席執行官、出生於台南的黃仁勳(Jenson Huang)也一躍成為全世界排名 20 內的大富豪、台灣家喻戶曉的名人!可是多少人了解圖形處理單元是什麼嗎?到底是時勢造英雄,還是英雄造時勢?

黃仁勳出席2016年台北國際電腦展
Nvidia 的崛起究竟是時勢造英雄,還是英雄造時勢?圖/wikimedia

在回答這問題之前,筆者得先聲明筆者不是學電腦的,因此在這裡所能談的只是與電腦設計細節無關的基本原理。筆者認為將原理轉成實用工具是專家的事,不是我們外行人需要了解的;但作為一位現在的知識分子或公民,了解基本原理則是必備的條件:例如了解「能量不滅定律」就可以不用仔細分析,即可判斷永動機是騙人的;又如現在可攜帶型冷氣機充斥市面上,它們不用往室外排廢熱氣,就可以提供屋內冷氣,讀者買嗎?

CPU 與 GPU

不管是大型電腦或個人電腦都需具有「中央處理單元」(central process unit,簡稱 CPU)。CPU 是電腦的「腦」,其電子電路負責處理所有軟體正確運作所需的所有任務,如算術、邏輯、控制、輸入和輸出操作等等。雖然早期的設計即可以讓一個指令同時做兩、三件不同的工作;但為了簡單化,我們在這裡所談的工作將只是執行算術和邏輯運算的工作(arithmetic and logic unit,簡稱 ALU),如將兩個數加在一起。在這一簡化的定義下,CPU 在任何一個時刻均只能執行一件工作而已。

在個人電腦剛出現只能用於一般事物的處理時,CPU 均能非常勝任地完成任務。但電腦圖形和動畫的出現帶來了第一批運算密集型工作負載後,CPU 開始顯示心有餘而力不足:例如電玩動畫需要應用程式處理數以萬計的像素(pixel),每個像素都有自己的顏色、光強度、和運動等, 使得 CPU 根本沒辦法在短時間內完成這些工作。於是出現了主機板上之「顯示插卡」來支援補助 CPU。

1999 年,英偉達將其一「具有集成變換、照明、三角形設定/裁剪、和透過應用程式從模型產生二維或三維影像的單晶片處理器」(註二)定位為「世界上第一款 GPU」,「GPU」這一名詞於焉誕生。不像 CPU,GPU 可以在同一個時刻執行許多算術和邏輯運算的工作,快速地完成圖形和動畫的變化。

依序計算和平行計算

一部電腦 CPU 如何計算 7×5+6/3 呢?因每一時刻只能做一件事,所以其步驟為:

  • 計算 7×5;
  • 計算 6/3;
  • 將結果相加。

總共需要 3 個運算時間。但如果我們有兩個 CPU 呢?很多工作便可以同時(平行)進行:

  • 同時計算 7×5 及 6/3;
  • 將結果相加。

只需要 2 個運算時間,比單獨的 CPU 減少了一個。這看起來好像沒節省多少時間,但如果我們有 16 對 a×b 要相加呢?單獨的 CPU 需要 31 個運算的時間(16 個 × 的運算時間及 15 個 + 的運算時間),而有 16 個小 CPU 的 GPU 則只需要 5 個運算的時間(1 個 × 的運算時間及 4 個 + 的運算時間)!

現在就讓我們來看看為什麼稱 GPU 為「圖形」處理單元。圖一左圖《我愛科學》一書擺斜了,如何將它擺正成右圖呢? 一句話:「將整個圖逆時針方向旋轉 θ 即可」。但因為左圖是由上百萬個像素點(座標 x, y)組成的,所以這句簡單的話可讓 CPU 忙得不亦樂乎了:每一點的座標都必須做如下的轉換

x’ = x cosθ + y sinθ

y’ = -x sinθ+ y cosθ

即每一點均需要做四個 × 及兩個 + 的運算!如果每一運算需要 10-6 秒,那麼讓《我愛科學》一書做個簡單的角度旋轉,便需要 6 秒,這豈是電動玩具畫面變化所能接受的?

圖形處理的例子

人類的許多發明都是基於需要的關係,因此電腦硬件設計家便開始思考:這些點轉換都是獨立的,為什麼我們不讓它們同時進行(平行運算,parallel processing)呢?於是專門用來處理「圖形」的處理單元出現了——就是我們現在所知的 GPU。如果一個 GPU 可以同時處理 106 運算,那上圖的轉換只需 10-6 秒鐘!

GPU 的興起

GPU 可分成兩種:

  • 整合式圖形「卡」(integrated graphics)是內建於 CPU 中的 GPU,所以不是插卡,它與 CPU 共享系統記憶體,沒有單獨的記憶體組來儲存圖形/視訊,主要用於大部分的個人電腦及筆記型電腦上;早期英特爾(Intel)因為不讓插卡 GPU 侵蝕主機的地盤,在這方面的研發佔領先的地位,約佔 68% 的市場。
  • 獨立顯示卡(discrete graphics)有不與 CPU 共享的自己專用內存;由於與處理器晶片分離,它會消耗更多電量並產生大量熱量;然而,也正是因為有自己的記憶體來源和電源,它可以比整合式顯示卡提供更高的效能。

2007 年,英偉達發布了可以在獨立 GPU 上進行平行處理的軟體層後,科學家發現獨立 GPU 不但能夠快速處理圖形變化,在需要大量計算才能實現特定結果的任務上也非常有效,因此開啟了為計算密集型的實用題目編寫 GPU 程式的領域。如今獨立 GPU 的應用範圍已遠遠超出當初圖形處理,不但擴大到醫學影像和地震成像等之複雜圖像和影片編輯及視覺化,也應用於駕駛、導航、天氣預報、大資料庫分析、機器學習、人工智慧、加密貨幣挖礦、及分子動力學模擬(註三)等其它領域。獨立 GPU 已成為人工智慧生態系統中不可或缺的一部分,正在改變我們的生活方式及許多行業的遊戲規則。英特爾在這方面發展較遲,遠遠落在英偉達(80%)及超微半導體公司(Advance Micro Devices Inc.,19%,註四)之後,大約只有 1% 的市場。

典型的CPU與GPU架構

事實上現在的中央處理單元也不再是真正的「單元」,而是如圖二可含有多個可以同時處理運算的核心(core)單元。GPU 犧牲大量快取和控制單元以獲得更多的處理核心,因此其核心功能不如 CPU 核心強大,但它們能同時高速執行大量相同的指令,在平行運算中發揮強大作用。現在電腦通常具有 2 到 64 個核心;GPU 則具有上千、甚至上萬的核心。

結論

我們一看到《我愛科學》這本書,不需要一點一點地從左上到右下慢慢掃描,即可瞬間知道它上面有書名、出版社等,也知道它擺斜了。這種「平行運作」的能力不僅限於視覺,它也延伸到其它感官和認知功能。例如筆者在清華大學授課時常犯的一個毛病是:嘴巴在講,腦筋思考已經不知往前跑了多少公里,常常為了追趕而越講越快,將不少學生拋到腦後!這不表示筆者聰明,因為研究人員發現我們的大腦具有同時處理和解釋大量感官輸入的能力。

人工智慧是一種讓電腦或機器能夠模擬人類智慧和解決問題能力的科技,因此必須如人腦一樣能同時並行地處理許多資料。學過矩陣(matrix)的讀者應該知道,如果用矩陣和向量(vector)表達,上面所談到之座標轉換將是非常簡潔的(註五)。而矩陣和向量計算正是機器學習(machine learning)演算法的基礎!也正是獨立圖形處理單元最強大的功能所在!因此我們可以了解為什麼 GPU 會成為人工智慧開發的基石:它們的架構就是充分利用並行處理,來快速執行多個操作,進行訓練電腦或機器以人腦之思考與學習的方式處理資料——稱為「深度學習」(deep learning)。

黃仁勳在 5 月 22 日的發布業績新聞上謂:「下一次工業革命已經開始了:企業界和各國正與英偉達合作,將價值數萬億美元的傳統資料中心轉變為加速運算及新型資料中心——人工智慧工廠——以生產新商品『人工智慧』。人工智慧將為每個產業帶來顯著的生產力提升,幫助企業降低成本和提高能源效率,同時擴大收入機會。」

附錄

人工智慧的實用例子:下面一段是微軟的「copilot」代書、谷歌的「translate」代譯之「one paragraph summary of GPU and AI」。讀完後,讀者是不是認為筆者該退休了?

GPU(圖形處理單元)和 AI(人工智慧)之間的協同作用徹底改變了高效能運算領域。GPU 具有平行處理能力,特別適合人工智慧和機器學習所需的複雜資料密集運算。這導致了影像和視訊處理等領域的重大進步,使自動駕駛和臉部辨識等技術變得更加高效和可靠。NVIDIA 開發的平行運算平台 CUDA 進一步提高了 GPU 的效率,使開發人員能夠透過將人工智慧問題分解為更小的、可管理的、可同時處理的任務來解決這些問題。這不僅加快了人工智慧研究的步伐,而且使其更具成本效益,因為 GPU 可以在很短的時間內執行與多個 CPU 相同的任務。隨著人工智慧的不斷發展,GPU 的角色可能會變得更加不可或缺,推動各產業的創新和新的可能性。大腦透過神經元網路實現這一目標,這些神經元網路可以獨立但有凝聚力地工作,使我們能夠執行複雜的任務,例如駕駛、導航、觀察交通信號、聽音樂並同時規劃我們的路線。此外,研究表明,與非人類動物相比,人類大腦具有更多平行通路,這表明我們的神經處理具有更高的複雜性。這個複雜的系統證明了我們認知功能的卓越適應性和效率。我們可以一邊和朋友聊天一邊走在街上,一邊聽音樂一邊做飯,或一邊聽講座一邊做筆記。人工智慧是模擬人類腦神經網路的科技,因此必須能同時並行地來處理許多資料。研究人員發現了人腦通訊網路具有一個在獼猴或小鼠中未觀察獨特特徵:透過多個並行路徑傳輸訊息,因此具有令人難以置信的多任務處理能力。

註解

(註一)當讀者看到此篇文章時,其股票已一股換十股,現在每一股約在 $100 左右。

(註二)組裝或升級過個人電腦的讀者或許還記得「英偉達精視 256」(GeForce 256)插卡吧?

(註三)筆者於 1984 年離開清華大學到 IBM 時,就是參加了被認為全世界使用電腦時間最多的量子化學家、IBM「院士(fellow)」Enrico Clementi 的團隊:因為當時英偉達還未有可以在 GPU 上進行平行處理的軟體層,我們只能自己寫軟體將 8 台中型電腦(非 IBM 品牌!)與一大型電腦連接來做平行運算,進行分子動力學模擬等的科學研究。如果晚生 30 年或許就不會那麼辛苦了?

(註四)補助個人電腦用的 GPU 品牌到 2000 年時只剩下兩大主導廠商:英偉達及 ATI(Array Technology Inc.)。後者是出生於香港之四位中國人於 1985 年在加拿大安大略省成立,2006 年被超微半導體公司收購,品牌於 2010 年被淘汰。超微半導體公司於 2014 年 10 月提升台南出生之蘇姿豐(Lisa Tzwu-Fang Su)博士為執行長後,股票從每股 $4 左右,上升到今天每股超過 $160,其市值已經是英特爾的兩倍,完全擺脫了在後者陰影下求生存的小眾玩家角色,正在挑戰英偉達的 GPU 市場。順便一題:超微半導體公司現任總裁(兼 AI 策略負責人)為出生於台北的彭明博(Victor Peng);與黃仁勳及蘇姿豐一樣,也是小時候就隨父母親移居到美國。

(註五)

延伸閱讀

  • 熱力學與能源利用」,《科學月刊》,1982 年 3 月號;收集於《我愛科學》(華騰文化有限公司,2017 年 12 月出版),轉載於「嘉義市政府全球資訊網」。
  • 網路安全技術與比特幣」,《科學月刊》,2020 年 11 月號;轉載於「善科教育基金會」的《科技大補帖》專欄。
文章難易度

討論功能關閉中。

賴昭正_96
43 篇文章 ・ 56 位粉絲
成功大學化學工程系學士,芝加哥大學化學物理博士。在芝大時與一群留學生合創「科學月刊」。一直想回國貢獻所學,因此畢業後不久即回清大化學系任教。自認平易近人,但教學嚴謹,因此穫有「賴大刀」之惡名!於1982年時當選爲 清大化學系新一代的年青首任系主任兼所長;但壯志難酬,兩年後即辭職到美留浪。晚期曾回台蓋工廠及創業,均應「水土不服」而鎩羽而歸。正式退休後,除了開始又爲科學月刊寫文章外,全職帶小孫女(半歲起);現已成七歲之小孫女的BFF(2015)。首先接觸到泛科學是因爲科學月刊將我的一篇文章「愛因斯坦的最大的錯誤一宇宙論常數」推薦到泛科學重登。

0

1
1

文字

分享

0
1
1
以科學為本!從 DNA 探索大未來——百濟神州(BeiGene)Kids Science 生物科學營,為小小醫生科學家鋪路!
鳥苷三磷酸 (PanSci Promo)_96
・2022/12/27 ・3734字 ・閱讀時間約 7 分鐘

本文由 百濟神州(BeiGene) 委託,泛科學企劃執行。

「小朋友們,當爸媽或家人生病時,你的心情如何?擔心、焦慮、想辦法讓他們好過一點?」

「希望家人最好不要生病」、「吃藥看醫生才能快快恢復」這是來自孩子們最純真直接的回應。

全球前 50 大生技製藥大廠百濟神州(BeiGene)副總裁暨細胞治療研發中心負責人黃士銘,日前率近 20 位企業志工和家人們一起至坪林國小,在泛科學協助下,舉辦「Kids Science 小小生物科學營」。課堂上,身為生物科學家的他,首次擔綱一日業師,在活動一開始即拋出了上述這個情境題,引導孩子們思考生物科學,其實是一門很有意義的學問,不僅貼近日常所需、更能真實地幫助許多人。

黃士銘表示:「BeiGene 是一家以科學為本,專注於創新癌症藥物研發,我們與全球各地科學家及醫師緊密合作,以病人至上的精神,致力為全世界患者帶來可近性及可負擔的高品質藥物。」身為一位科學家,我們相信『改變治癒未來』(Change is the Cure)。先進科學改變人類生活,而醫療科學為人類帶來治癒的力量。因此,在台灣,我們與這塊土地最頂尖的科學人才共同努力,專注於細胞治療在癌症醫學領域的研發,也因為台灣向來是生技產業人才搖籃,這更讓我們重視到,科學教育從小紮根的重要性,讓小朋友從早期開始培養科學核心素養,豐富孩子們的知識和視野,希望啟發他們對於生物科學的興趣。我們很期待透過 BeiGene 「Kids Science 小小生物科學營」,拋磚引玉,讓更多人重視科學教育的環境,挹注多元教學資源,發揮共好影響力,為台灣培育更多優秀的生技人才。

BeiGene 副總裁暨細胞治療研發中心負責人黃士銘,率近 20 位企業志工和家人們前進坪林國小,讓偏鄉小朋友從小開始培養科學核心素養。圖/BeiGene

有鑑於此,秉持以科學為本、病人至上的 BeiGene,致力「培育未來生物科學人才」作為品牌 ESG 關鍵的當責行動。於是乎,當觀察到台灣偏鄉科學教育資源與師資分配不均的狀況,便與全台最大科學知識社群–「泛科學」聯手,舉辦「 Kids Science 小小生物科學營」,BeiGene 企業志工於假日帶著家人們,前進新北市坪林國小進行教學活動,為偏鄉學童種下科學教育種子,希望藉由對生物科學的體驗與實驗過程,提升偏鄉學童對於環境觀察的敏感度與科學的認識基礎。

BeiGene 「Kids Science 小小生物科學營」,為學童打造出「適齡、適性」、結合理論與手作的生物科學探索課程活動。圖/BeiGene

生物科學樂趣多! 啟發學童對科學創造的想像

小學階段是最適合紮根科學教育的時期,但偏遠地區的學校由於交通不便與地理人文環境特殊,造成師資、設備、資源不足等情況。若能引進多元的教學資源,開啟偏鄉孩子們不一樣的視野,便能在科學的啟蒙之路上,燃起他們的學習熱情、啟發學童對科學創造的想像!

引導孩子們思考生物科學,其實是一門很有意義的學問,不僅貼近日常所需、更能真實地幫助許多人。圖/BeiGene

坪林國小校長王珮君表示:「科學是生活,舉凡食、衣、住、行都隱含著許多科學知識與原理,非常感謝 BeiGene,看見偏鄉孩子在專科教育學習資源的需求,舉辦『Kids Science 小小生物科學營』, 讓孩子從做中學習。藉由豐富有趣的課程,帶領學校的孩子不僅能從學習中獲得更多與醫學相關的科學知識,同時也能啟發他們擁有像『科學家』一樣地邏輯思考,像『醫師』一樣地解決問題!永保好奇心,持續不斷的創新與探索。」

坪林國小校長王珮君致力提供學生更好的學習資源,感謝 BeiGene 帶來豐富多彩的 STEM 教育課程。圖/BeiGene

親子共學玩實驗夯: 水果DNA切切樂、手作仿生鳥

身為全台最大科學知識社群——「泛科學」知識長鄭國威表示,孩子學習科學的目的,除了開拓視野外,更重要的是培養科學思辨的精神與態度!在這個以社群力=影響力的時代,泛科學希望與各界企業一起『加乘、共好』,透過彼此的核心職能,讓下一代對科學產生興趣。

孩子學習科學的目的,除了開拓視野外,更重要的是培養科學思辨的精神與態度。圖/BeiGene
利用簡單易操作的實驗一窺水果 DNA 的樣貌。圖/BeiGene

這次的課程,特別邀請到曾獲教育部殊榮的生物老師──簡志祥「阿簡老師」,帶領學童認識水果 DNA,利用簡單易操作的實驗一窺 DNA 的樣貌,了解生命細胞最初始的模樣;也體驗了解仿生科技在醫療上及生活上的應用,透過「仿生鳥手作實驗」引導學童思考有哪些生活用品是從仿生科學啟發而得來,並從手作實驗中獲得更多靈感與樂趣,最後的「仿生鳥飛行競賽」,讓學童用自己親手做的成品互相比拚,進一步體驗空氣動力原理,邊玩邊學、小朋友無一不感到新奇與有趣。

透過生活周邊常見產品實例,了解仿生科技在醫療上及生活上的應用。圖/BeiGene
透過「仿生鳥手作實驗」引導學童思考有哪些生活用品是從仿生科學啟發而得來。圖/BeiGene
「仿生鳥飛行競賽」,讓學童用自己親手做的成品互相比拚,進一步體驗空氣動力原理,邊玩邊學、小朋友無一不感到新奇與有趣。圖/BeiGene

本次課程活動獲得很好的迴響,孩子們邊玩邊學,不僅輕鬆提升專注力,同時對生物科學產生興趣。各位家長們,想要帶著孩子自己動手體驗 Kids Science 科學課程嗎? 以下分享 DIY 簡單步驟跟著做,親子共學樂趣多: 

【水果切切樂】

藉此實驗了解細胞各構造的特性,如清潔劑可溶解細胞膜的脂質,破壞細胞膜。 高濃度食鹽水可使 DNA 溶解在溶液中,DNA 不溶於酒精中,所以使用酒精萃取出 DNA。由於實驗材料簡單,且方法易操作,對生物科技有興趣的學習者也可以自行操作實驗不同水果的差異性。

教學影片。影/Youtube

材料:
萃取液(食鹽、水、清潔劑)冰棒棍、牙籤、離心管、塑膠杯、塑膠袋、紗布、竹籤、切塊水果、酒精

方法:
準備萃取液,內容是 1/3 杯的水、1/2 匙鹽和 1 匙的清潔劑混合。把切塊水果放進塑膠杯裡,倒進萃取液,能夠蓋住水果的量就夠了,用冰棒棍把水果攪爛。
把紗布鋪在另一個塑膠杯上,將攪爛的水果倒入紗布上,收集濾下的液體。
把酒精倒入液體中,過幾分鐘就會在上層的酒精裡看到白色的絲狀物。恭喜你,你拿到了這些水果的 DNA 了。拿牙籤輕輕攪拌這些 DNA,把它們收集到離心管裡頭吧。

原理:
為什麼這些材料就可以萃取出 DNA 呢?當你把水果攪爛和萃取液混合時,會破壞水果的細胞,清潔劑可以破壞水果細胞的細胞膜和核膜,而加入鹽則可以讓 DNA 溶解在萃取液內。最後加入的冰酒精,則會讓 DNA 從溶解的狀態被析出來,就成了你看到的白色絲狀物。

【手作仿生鳥】

結構仿生設計學主要研究生物體和自然界物質存在的內部結構原理在設計中的應用問題,適用與產品設計和建築設計。研究最多的是植物的莖、葉以及動物形體、肌肉、骨骼的結構。本課程從生活中引導小朋友去思考有哪些生活用品是從「仿生科學」啟發得來的。並從手作實驗中得到更多靈感與啟發!

仿生學小知識:

仿生學是模仿生物特殊本領的科學,目的在了解生物的結構和功能原理,來研發新的機械和技術,將大自然的智慧轉化成人類可操控的技術,可以說是「向大自然學習」的一門科學,例如達文西的「撲翼機手稿」就是藉由研究鳥類與昆蟲飛行所設計出來的。

像是出淤泥而不染的「蓮花葉」,除了表面上有蠟等物質可以防水,也發現葉面上有奈米等級的絨毛結構,這些結構使得水滴不易被戳破,讓水滴能在葉面上自由滾動,正是屬於仿生學的範疇,而這個發現也運用在現在的防水塗料上。此外,模仿蜘蛛絲做成的線非常強韌,可以拿來做防彈衣,這些都屬於仿生學的研究成果。

教學影片。影/Youtube

方法:
確認你的配件,包括翅膀、尾巴、木條、三條橡皮筋,將翅膀配件靠內的桿子套上右邊鐵鉤,靠外的桿子套上左邊鐵鉤,將木條插入翅膀的孔,另一端插入尾巴的孔,接著將橡皮筋套進兩端的掛勾,最後一步驟只要扭轉橡皮筋就可以飛行了。

鳥苷三磷酸 (PanSci Promo)_96
200 篇文章 ・ 308 位粉絲
充滿能量的泛科學品牌合作帳號!相關行銷合作請洽:contact@pansci.asia

0

1
0

文字

分享

0
1
0
「如果我們有能力製造疫苗,為什麼要等待其他人?」——《光速計畫》
天下文化_96
・2022/05/27 ・3383字 ・閱讀時間約 7 分鐘

  • 作者/米勒(Joe Miller)、吳沙忻(Ugur Sahin)、圖雷西(Özlem Türeci)
  • 譯者/陸維濃

光速計畫

通常,藥物開發的過程有點像是穿越花園迷宮,在走過幾次死路以後,終究會重見光明。面對迫在眉睫的全球大流行病,吳沙忻說道,BioNTech 要加快速度。他們會把好幾項設計同時送進臨床前試驗研究這座迷宮裡,然後帶著第一個走出迷宮的設計繼續前進。

這一系列的候選疫苗將在實驗室、受試動物,最終在人類身上接受嚴格的試驗。在任何一個階段,安全性或效力不足的參賽疫苗將被捨棄,由最後的贏家勝出。BioNTech 沒有時間改善那些令人失望的候選疫苗,或者等待進度落後但有前途的候選疫苗迎頭趕上。第一個闖出迷宮的就會是最終的疫苗。

藥物開發的過程有點像是穿越花園迷宮。圖/Pixabay

此時距離世界衛生組織宣布冠狀病毒疫情進入全球大流行還有六週,距離川普的白宮啟動名為「曲速行動」(Operation Warp Speed)的疫苗開發計畫還有四個月。截至此時,還沒有任何報導指出有中國以外的死亡病例。

但就在這個星期一即將結束前,BioNTech 已然展開一項為期十一個月,打破現代所有製藥紀錄的行動。在吳沙忻的驅策之下,這間公司將會在「符合物理定律的條件下盡快前進」。憑藉超級英雄電影影迷所具備的戲劇感,吳沙忻早已為這次歷史級的任務想好名稱。「我們就稱之為⋯⋯」他站在白板前,一邊說一邊寫下——「光速計畫」。

以前,每週一早上的會議,吳沙忻不需要花太多心力說服這些科學夥伴。但接下來這天,當吳沙忻把這項大膽的計畫告訴董事會成員後,他感覺到自己尚未贏得辦公室裡的民心。雖然公司的醫療長圖雷西認真看待吳沙忻的預測,但在 2012 年時以首位外人身分加入 BioNTech 的英國籍商務長馬雷特(Sean Marett),對於擔心遠在八千公里外的病原體一事感到質疑。

圖非 BioNTech 團隊。董事會成員起初並不擔心遠在八千公里外的病原體。圖/Pixabay

「我的回應是:『這發生在中國,為什麼你會認為這是個問題?』」馬雷特如此說道:「這病毒看起來離我們很遙遠,只是曇花一現罷了。」BioNTech 財務長、一頭蓬髮的波伊廷(Sierk Poetting),以及幾週前晉升策略長的美國投資銀行家李察森(Ryan Richardson),也對這件事有所保留。

顯然,吳沙忻得做點說服的工作。他不願被迫秀出屍體堆疊如山的照片來說服其他董事會成員接受他的論點。但吳沙忻需要他們瞭解,在最好的狀況下,這樣的末日場景也會在幾週後到來。如果要像波普爾那樣等著現實來驗證他的說法,那就為時已晚了。

致命曲線

考慮到這一點,吳沙忻走向白板,開始概略的畫了一張圖,這張圖很快就成為世界各地政府簡報中熟悉的畫面,圖中顯示感染人數沿著一條陡峭的曲線呈指數型增長。「我記得他說:『到處都會是這樣』,」李察森回憶道:「他說:『這將會成為歐洲、美國以及我們公司的問題。』意思就是公司員工要面對的問題。我心想,天啊!這真是具體。」

吳沙忻透過一張圖解釋感染人數將快速增長。將會成為公司的問題。圖/Pixabay

吳沙忻繼續給大家上了有關全球大流行病傳播速度和傳播軌跡的歷史課。他強調,即使此時事態看起來還不算太糟,但情況很有可能在短時間內急轉直下。

他說,1918 年 4 月,第一波西班牙流感的致命程度,不會比季節性流感來得高。儘管它確實以令人擔心的速度在第一次世界大戰戰場上的軍隊裡流傳,但大部分死亡的個體都是年長、體虛或非常年幼的人。接著,在同年的 10 月到 12 月,掀起了一波更致命的浪潮,起因是那些在醫院接受治療的重症患者,把疾病傳染給醫生和其他病人。據估計,這三個月內的死亡人數為兩千萬人,其中包括大量二十五至三十五歲的青年。

幸運的是,截至此時還沒有明顯的跡象指出武漢病毒對健康的年輕人有威脅。在中國的少數幾十例死亡病例,絕大部分都是超過六十五歲的年長者,其中有許多本來就患有糖尿病或高血壓的症狀。

但就在幾天前,湖北當局透露,一名原本身強體健的三十六歲男性,在入院兩週後死亡,在醫院時接受過抗病毒藥物和抗生素的治療。吳沙忻警告這可能就是大難來臨的前兆。在病毒和人類宿主之間的演化軍備賽,病原體持續改變軍隊配置的方式,想要閃躲人體既有的抗病毒防禦機制。此時,這個冠狀病毒的破壞力並不算特別大,但它有可能突然發生突變,感染年輕人和身體強壯的人。

圖非當事人。吳沙忻說明病毒為了閃躲人體既有的防禦機制,有可能不斷突變。圖/Pixabay

另一種可怕的劇情發展是,病毒的感染率可能提升,用更快的時間感染更多人。「一切會在短短三個月內結束,」吳沙忻說道,停屍間大爆滿,全球人口早在實驗室製造出疫苗前就已大量減少,更別提疫苗的生產和分配了。每一天都很重要。

如果這次冠狀病毒爆發的疫情發生在兩年前,BioNTech 的董事不會考慮接受製造疫苗的想法。但多虧近年來公司的技術平台有所提升,吳沙忻深信公司具備可以回應這場大流行病的工具。現在看來,透過他們專有的平台製造 mRNA 疫苗是相對單純的做法,如果能夠及時交付,mRNA 冠狀病毒疫苗提供救援的時間點,會比傳統疫苗早上許多。「我認為,」吳沙忻說道:「我們應該全力以赴。

突破的風險

然而,BioNTech 已經不再是新興公司。在 10 月上市之後,BioNTech 就必須考慮外界如何看待它在業界的樞紐位置。優先處理冠狀病毒疫苗無疑會推遲它們正在進行的癌症計畫。「那間辦公室裡有些人抱持著懷疑態度,」李察森談到吳沙忻的提議時這麼說:「他們認為那會分散公司的注意力。」

在這位美國基金經理人的眼裡,BioNTech 不是一間跟傳染病有關的企業。「我們的股價動能非常好,」李察森擔心宣布一項昂貴的新計畫來對付一個沒有人太認真看待的威脅,會嚇壞公司股東。他表示:「投資者認為我們是一間致力於腫瘤的公司。」BioNTech 在十一年內累積了超過四億歐元的債務,他們需要盡快籌措資金。未能實現既定的目標將會讓一切變得更加困難。

如果公司倉促魯莽地投入冠狀病毒疫苗的開發計畫,而且最後沒有成功。「那有可能就是 BioNTech 的末日,」同為董事會成員的馬雷特這麼說。自從公司 10 月在紐約那斯達克股票交易所掛牌上市以來,董事會有義務製作會議紀錄,以便在公司治理遭遇挑戰時,可以回顧會議紀錄。在德國的法律制度下,如果公司做出代價高昂的錯誤決策,所有董事會成員都要負起相同責任。

BioNTech 當時累積了超過四億歐元的債務,做出錯誤決策可能導致公司倒閉。圖/Pixabay

另外,還有聲譽受損的風險。BioNTech 是靠著自身的技術潛力走到這一步。對這間幾乎可說沒沒無名的公司而言,開發冠狀病毒疫苗的計畫固然會引起一陣轟動,但失敗以終或開發時間過長的機會也很大。許多橫陳在眼前的關鍵任務,例如從進行大型臨床試驗,到製造大量藥物,都是這間公司從未嘗試過的任務,更別說要以擊敗大流行病的速度和規模來進行。

如果光速計畫效果不彰,「很有可能會讓公司陷入困境,」圖雷西在董事會議上如此承認。「另一方面,」但她補充道:「一場火力全開的大流行病無論如何都會對公司和我們的員工構成威脅。」如果 BioNTech 有能力自己製造疫苗,為什麼要等待其他人來引導世界擺脫這個迫在眉睫的危機?圖雷西問道:「我們難道不應該至少做點努力嗎?」

辦公室裡沉默了幾秒。雖然需要信心的提升才有辦法做決定,但面對圖雷西提問,三人最終都同意了,因為他們都相信圖雷西和吳沙忻的直覺。他們不是為了拒絕宏大的想法而加入 BioNTech 的。

——本文摘自《光速計畫:BioNTech疫苗研發之路》,2022 年 3 月,天下文化
天下文化_96
139 篇文章 ・ 621 位粉絲
天下文化成立於1982年。一直堅持「傳播進步觀念,豐富閱讀世界」,已出版超過2,500種書籍,涵括財經企管、心理勵志、社會人文、科學文化、文學人生、健康生活、親子教養等領域。每一本書都帶給讀者知識、啟發、創意、以及實用的多重收穫,也持續引領台灣社會與國際重要管理潮流同步接軌。