Loading [MathJax]/extensions/tex2jax.js

0

2
2

文字

分享

0
2
2

破解五次方程式的公式解:阿貝爾誕辰│科學史上的今天:8/5

張瑞棋_96
・2015/08/05 ・1308字 ・閱讀時間約 2 分鐘 ・SR值 561 ・九年級

-----廣告,請繼續往下閱讀-----

最遲在西元九世紀,波斯數學家花喇子密就解出二次方程式的公式解,但三次與四次方程式直到十六世紀中期才破解。雖然相隔甚久,但這也代表人類的數學終於進展到一定程度,才接連破解三次與四次方程式。再來五次方程式的公式解也是指日可待吧?當時的數學界都如此相信。

不料將近三個世紀過去了,每個前來挑戰的數學家都鎩羽而歸,即使萊布尼茲、歐拉、拉格朗日、高斯等大師也都無功而返。誰也沒想到,最後竟會由一位遠在挪威這邊陲之地的後生小子解開這高懸兩百五十年的謎題;可嘆的是,其天才竟未獲賞識,26 歲就死於貧病交迫。

阿貝爾(Niels Henrik Abel, 1802-1829)13 歲之前都是由擔任牧師的父親在家親自教導,上了中學卻遇上脾氣暴烈的老師,學業成績岌岌可危,幸而 1818 年新來的年輕數學老師何姆波(Bernt Holmboe)循循善誘,阿貝爾迅速展露其數學天才,除了學校課程,還狼吞虎嚥歐拉、高斯、拉格朗日等大師的原著。

高中最後一年,初生之犢的阿貝爾竟大膽挑戰五次方程式,宣稱他已找出解法。何姆波找不出錯誤,轉寄給兩位大學教授確認,他們也挑不出毛病,於是寄給一位北歐頂尖的數學家,請他審閱無誤後發表於期刊。但畢竟一個高中生解出連偉大數學家都束手無策的難題也太匪夷所思,為求謹慎,他請阿貝爾以實例演示一遍。阿貝爾在構思範例時才發現其中有錯,但他並未因此受挫,反更挑起征服五次方程式的決心。

-----廣告,請繼續往下閱讀-----

然而就在他 1821 年就讀大學之前,就因父親過世而生活陷入困頓,所幸那兩位大學教授賞識其天分,不但資助他的學費,還幫助他於 1823 年到丹麥與其他數學家交流。結果最大的收穫是認識了後來的未婚妻克莉絲汀。

回到挪威後,阿貝爾以不同的角度審視五次方程式,他不再尋找解法,相反地,他要證明根本不存在簡單公式解,也就是不可能像二次、三次、四次方程式那樣,求出用四則運算與根號將係數加以組合的公式;這也是為什麼先賢前輩注定徒勞無功。

因經濟拮据,阿貝爾將論文濃縮印製成只有六頁的小冊子,寄給一些數學家。可能是過於精簡以致艱澀難懂,竟都石沉大海。

1825 年,阿貝爾再取得獎學金出國留學。他先在德國認識一位視他為天才的好朋友,再於 1826 年來到巴黎。他滿懷信心地將新完成的超越函數論文寄給法國科學院,以為將因此聲名大噪,覓得教職。不幸,分派到的審閱者一人老態龍鍾,無力了解;另一人則是自負的柯西,根本沒打開看。阿貝爾苦等幾月毫無消息,又得了肺結核健康惡化,只好返回家鄉,靠當家教掙錢;但他仍繼續埋首完成橢圓函數的重要論文,並投寄期刊發表。

-----廣告,請繼續往下閱讀-----

1829 年 4 月 6 日,數學天才阿貝爾病逝於床上;臨終前愧疚地要求大學好友照顧始終不離不棄的未婚妻。4 月 8 日,德國尚不知其死訊的朋友欣喜地寫信通知阿貝爾:教育部要給他工作。1830年6月,法國科學院宣布阿貝爾與雅可比共同獲頒數學成就大獎。可惜這些肯定與榮耀都來晚了一步。

  • 2002年,挪威政府為了紀念阿貝爾兩百年誕辰,設立阿貝爾獎,比照諾貝爾獎,每年頒獎鼓勵傑出的數學家。

 

本文同時收錄於《科學史上的今天:歷史的瞬間,改變世界的起點》,由究竟出版社出版。

-----廣告,請繼續往下閱讀-----
文章難易度
張瑞棋_96
423 篇文章 ・ 1028 位粉絲
1987年清華大學工業工程系畢業,1992年取得美國西北大學工業工程碩士。浮沉科技業近二十載後,退休賦閒在家,當了中年大叔才開始寫作,成為泛科學專欄作者。著有《科學史上的今天》一書;個人臉書粉絲頁《科學棋談》。

0

0
0

文字

分享

0
0
0
LDL-C 正常仍中風?揭開心血管疾病的隱形殺手 L5
鳥苷三磷酸 (PanSci Promo)_96
・2025/06/20 ・3659字 ・閱讀時間約 7 分鐘

本文與 美商德州博藝社科技 HEART 合作,泛科學企劃執行。

提到台灣令人焦慮的交通,多數人會想到都市裡的壅塞車潮,但真正致命的「塞車」,其實正悄悄發生在我們體內的動脈之中。

這場無聲的危機,主角是被稱為「壞膽固醇」的低密度脂蛋白( Low-Density Lipoprotein,簡稱 LDL )。它原本是血液中運送膽固醇的貨車角色,但當 LDL 顆粒數量失控,卻會開始在血管壁上「違規堆積」,讓「生命幹道」的血管日益狹窄,進而引發心肌梗塞或腦中風等嚴重後果。

科學家們還發現一個令人困惑的現象:即使 LDL 數值「看起來很漂亮」,心血管疾病卻依然找上門來!這究竟是怎麼一回事?沿用數十年的健康標準是否早已不敷使用?

膽固醇的「好壞」之分:一場體內的攻防戰

膽固醇是否越少越好?答案是否定的。事實上,我們體內攜帶膽固醇的脂蛋白主要分為兩種:高密度脂蛋白(High-Density Lipoprotein,簡稱 HDL)和低密度脂蛋白( LDL )。

-----廣告,請繼續往下閱讀-----

想像一下您的血管是一條高速公路。HDL 就像是「清潔車隊」,負責將壞膽固醇( LDL )運來的多餘油脂垃圾清走。而 LDL 則像是在血管裡亂丟垃圾的「破壞者」。如果您的 HDL 清潔車隊數量太少,清不過來,垃圾便會堆積如山,最終導致血管堵塞,甚至引發心臟病或中風。

我們體內攜帶膽固醇的脂蛋白主要分為兩種:高密度脂蛋白(HDL)和低密度脂蛋白(LDL)/ 圖片來源:shutterstock

因此,過去數十年來,醫生建議男性 HDL 數值至少應達到 40 mg/dL,女性則需更高,達到 50 mg/dL( mg/dL 是健檢報告上的標準單位,代表每 100 毫升血液中膽固醇的毫克數)。女性的標準較嚴格,是因為更年期後]pacg心血管保護力會大幅下降,需要更多的「清道夫」來維持血管健康。

相對地,LDL 則建議控制在 130 mg/dL 以下,以減緩垃圾堆積的速度。總膽固醇的理想數值則應控制在 200 mg/dL 以內。這些看似枯燥的數字,實則反映了體內一場血管清潔隊與垃圾山之間的攻防戰。

那麼,為何同為脂蛋白,HDL 被稱為「好」的,而 LDL 卻是「壞」的呢?這並非簡單的貼標籤。我們吃下肚或肝臟製造的脂肪,會透過血液運送到全身,這些在血液中流動的脂肪即為「血脂」,主要成分包含三酸甘油酯和膽固醇。三酸甘油酯是身體儲存能量的重要形式,而膽固醇更是細胞膜、荷爾蒙、維生素D和膽汁不可或缺的原料。

-----廣告,請繼續往下閱讀-----

這些血脂對身體運作至關重要,本身並非有害物質。然而,由於脂質是油溶性的,無法直接在血液裡自由流動。因此,在血管或淋巴管裡,脂質需要跟「載脂蛋白」這種特殊的蛋白質結合,變成可以親近水的「脂蛋白」,才能順利在全身循環運輸。

肝臟是生產這些「運輸用蛋白質」的主要工廠,製造出多種蛋白質來運載脂肪。其中,低密度脂蛋白載運大量膽固醇,將其精準送往各組織器官。這也是為什麼低密度脂蛋白膽固醇的縮寫是 LDL-C (全稱是 Low-Density Lipoprotein Cholesterol )。

當血液中 LDL-C 過高時,部分 LDL 可能會被「氧化」變質。這些變質或過量的 LDL 容易在血管壁上引發一連串發炎反應,最終形成粥狀硬化斑塊,導致血管阻塞。因此,LDL-C 被冠上「壞膽固醇」的稱號,因為它與心腦血管疾病的風險密切相關。

高密度脂蛋白(HDL) 則恰好相反。其組成近半為蛋白質,膽固醇比例較少,因此有許多「空位」可供載運。HDL-C 就像血管裡的「清道夫」,負責清除血管壁上多餘的膽固醇,並將其運回肝臟代謝處理。正因為如此,HDL-C 被視為「好膽固醇」。

-----廣告,請繼續往下閱讀-----
為何同為脂蛋白,HDL 被稱為「好」的,而 LDL 卻是「壞」的呢?這並非簡單的貼標籤。/ 圖片來源:shutterstock

過去數十年來,醫學界主流觀點認為 LDL-C 越低越好。許多降血脂藥物,如史他汀類(Statins)以及近年發展的 PCSK9 抑制劑,其主要目標皆是降低血液中的 LDL-C 濃度。

然而,科學家們在臨床上發現,儘管許多人的 LDL-C 數值控制得很好,甚至很低,卻仍舊發生中風或心肌梗塞!難道我們對膽固醇的認知,一開始就抓錯了重點?

傳統判讀失準?LDL-C 達標仍難逃心血管危機

早在 2009 年,美國心臟協會與加州大學洛杉磯分校(UCLA)進行了一項大型的回溯性研究。研究團隊分析了 2000 年至 2006 年間,全美超過 13 萬名心臟病住院患者的數據,並記錄了他們入院時的血脂數值。

結果發現,在那些沒有心血管疾病或糖尿病史的患者中,竟有高達 72.1% 的人,其入院時的 LDL-C 數值低於當時建議的 130 mg/dL「安全標準」!即使對於已有心臟病史的患者,也有半數人的 LDL-C 數值低於 100 mg/dL。

-----廣告,請繼續往下閱讀-----

這項研究明確指出,依照當時的指引標準,絕大多數首次心臟病發作的患者,其 LDL-C 數值其實都在「可接受範圍」內。這意味著,單純依賴 LDL-C 數值,並無法有效預防心臟病發作。

科學家們為此感到相當棘手。傳統僅檢測 LDL-C 總量的方式,可能就像只計算路上有多少貨車,卻沒有注意到有些貨車的「駕駛行為」其實非常危險一樣,沒辦法完全揪出真正的問題根源!因此,科學家們決定進一步深入檢視這些「駕駛」,找出誰才是真正的麻煩製造者。

LDL 家族的「頭號戰犯」:L5 型低密度脂蛋白

為了精準揪出 LDL 裡,誰才是最危險的分子,科學家們投入大量心力。他們發現,LDL 這個「壞膽固醇」家族並非均質,其成員有大小、密度之分,甚至帶有不同的電荷,如同各式型號的貨車與脾性各異的「駕駛」。

為了精準揪出 LDL 裡,誰才是最危險的分子,科學家們投入大量心力。發現 LDL 這個「壞膽固醇」家族並非均質,其成員有大小、密度之分,甚至帶有不同的電荷。/ 圖片來源:shutterstock

早在 1979 年,已有科學家提出某些帶有較強「負電性」的 LDL 分子可能與動脈粥狀硬化有關。這些帶負電的 LDL 就像特別容易「黏」在血管壁上的頑固污漬。

-----廣告,請繼續往下閱讀-----

台灣留美科學家陳珠璜教授、楊朝諭教授及其團隊在這方面取得突破性的貢獻。他們利用一種叫做「陰離子交換層析法」的精密技術,像是用一個特殊的「電荷篩子」,依照 LDL 粒子所帶負電荷的多寡,成功將 LDL 分離成 L1 到 L5 五個主要的亞群。其中 L1 帶負電荷最少,相對溫和;而 L5 則帶有最多負電荷,電負性最強,最容易在血管中暴衝的「路怒症駕駛」。

2003 年,陳教授團隊首次從心肌梗塞患者血液中,分離並確認了 L5 的存在。他們後續多年的研究進一步證實,在急性心肌梗塞或糖尿病等高風險族群的血液中,L5 的濃度會顯著升高。

L5 的蛋白質結構很不一樣,不僅天生帶有超強負電性,還可能與其他不同的蛋白質結合,或經過「醣基化」修飾,就像在自己外面額外裝上了一些醣類分子。這些特殊的結構和性質,使 L5 成為血管中的「頭號戰犯」。

當 L5 出現時,它並非僅僅路過,而是會直接「搞破壞」:首先,L5 會直接損傷內皮細胞,讓細胞凋亡,甚至讓血管壁的通透性增加,如同在血管壁上鑿洞。接著,L5 會刺激血管壁產生發炎反應。血管壁受傷、發炎後,血液中的免疫細胞便會前來「救災」。

-----廣告,請繼續往下閱讀-----

然而,這些免疫細胞在吞噬過多包括 L5 在內的壞東西後,會堆積在血管壁上,逐漸形成硬化斑塊,使血管日益狹窄,這便是我們常聽到的「動脈粥狀硬化」。若這些不穩定的斑塊破裂,可能引發急性血栓,直接堵死血管!若發生在供應心臟血液的冠狀動脈,就會造成心肌梗塞;若發生在腦部血管,則會導致腦中風。

L5:心血管風險評估新指標

現在,我們已明確指出 L5 才是 LDL 家族中真正的「破壞之王」。因此,是時候調整我們對膽固醇數值的看法了。現在,除了關注 LDL-C 的「總量」,我們更應該留意血液中 L5 佔所有 LDL 的「百分比」,即 L5%。

陳珠璜教授也將這項 L5 檢測觀念,從世界知名的德州心臟中心帶回台灣,並創辦了美商德州博藝社科技(HEART)。HEART 在台灣研發出嶄新科技,並在美國、歐盟、英國、加拿大、台灣取得專利許可,日本也正在申請中,希望能讓更多台灣民眾受惠於這項更精準的檢測服務。

一般來說,如果您的 L5% 數值小於 2%,通常代表心血管風險較低。但若 L5% 大於 5%,您就屬於高風險族群,建議進一步進行影像學檢查。特別是當 L5% 大於 8% 時,務必提高警覺,這可能預示著心血管疾病即將發作,或已在悄悄進展中。

-----廣告,請繼續往下閱讀-----

對於已有心肌梗塞或中風病史的患者,定期監測 L5% 更是評估疾病復發風險的重要指標。此外,糖尿病、高血壓、高血脂、代謝症候群,以及長期吸菸者,L5% 檢測也能提供額外且有價值的風險評估參考。

隨著醫療科技逐步邁向「精準醫療」的時代,無論是癌症還是心血管疾病的防治,都不再只是單純依賴傳統的身高、體重等指標,而是進一步透過更精密的生物標記,例如特定的蛋白質或代謝物,來更準確地捕捉疾病發生前的徵兆。

您是否曾檢測過 L5% 數值,或是對這項新興的健康指標感到好奇呢?

-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

0

38
3

文字

分享

0
38
3
【快訊】數學與計算機科學的交織──2021 阿貝爾獎
Yi-Hsuan Lee_96
・2021/04/08 ・3202字 ・閱讀時間約 6 分鐘 ・SR值 534 ・七年級

-----廣告,請繼續往下閱讀-----

  • 作者/李奕萱

阿貝爾獎(Abel Prize)自2003年開始由挪威國王頒發給傑出數學家的獎項。阿貝爾獎的歷史可以追溯到1899年,當時挪威數學家索菲斯·李(Sophus Lie)得知阿佛烈·諾貝爾(Alfred Nobel)計劃設立的諾貝爾獎將不包括數學獎,又剛好正逢數學家尼爾斯·亨里克·阿貝爾(Niels Henrik Abel)誕辰100週年紀念,便提出設立阿貝爾獎。 不幸的是,索菲斯·李不久後逝世、提供資金的奧斯卡二世國王也因為瑞典和挪威聯合王國解散而下台,阿貝爾獎這件事也就不了了之。

2001年,人們覺得應該給數學家一個相當於諾貝爾獎的獎項,便再次將阿貝爾獎提案給挪威總理。隔年挪威政府便宣佈撥款2億挪威克朗在數學家阿貝爾誕辰200週年時正式設立阿貝爾獎,並由挪威自然科學與文學院成立阿貝爾委員會負責審理。

阿貝爾獎的獎金高達750萬挪威克朗,是國際數學獎中的最高金額。圖/wikipedia

雖然說阿貝爾獎被譽為數學界的諾貝爾獎,但表彰方向卻和諾貝爾獎不盡相同。舉例來說,諾貝爾物理學獎主要是頒發給對物理作出重要發現或發明的人,像是2020年的諾貝爾獎得主就是成功觀察到銀河系中心的超大質量緻密天體,並發現黑洞的形成是廣義相對論的確鑿預測,因而得獎。阿爾貝獎則是大多頒獎給在數學領域發展中的重要推手,也就是引領數學界的人。

今年挪威科學院將2021年的阿貝爾獎頒給匈牙利羅蘭大學(Eötvös Loránd University)的洛瓦茲·拉茲洛(László Lovász)和美國普林斯頓大學的以色列數學家阿維·威格森(Avi Wigderson),表彰他們對理論計算機科學與離散數學的貢獻,以及將兩者塑造成現代數學的重要領域

“for their foundational contributions to theoretical computer science and discrete mathematics, and their leading role in shaping them into central fields of modern mathematics”

剪不斷理還亂的計算機科學和數學

1970年代,理論計算機科學和純數學是沒什麼關係的兩個學術領域。經過幾十年的發展,這兩個學科之間早已變得極為密切,在現代數學,我們甚至很難分清它們之間的界限。其中,洛瓦斯和威格森就是在最前線開疆闢土的人。

阿貝爾委員會主席漢斯·蒙特·卡斯(Hans Munthe-Kaas)表示:「在過去的幾十年中,洛瓦茲(圖中左)和威格森(圖中右)一直是這一發展的領導力量。他們的工作以多種方式交織在一起,尤其是它們都為理解計算中的隨機性和探索有效計算的邊界做出了根本性貢獻。」圖/The Abel Prize

計算複雜性理論 (Computational complexity theory)是數學和計算機科學領域的一個重要分支。從小我們就知道算數學要快、狠、準,如何更快、更輕鬆地解決問題一直是人類追求的目標。計算複雜性理論通過引入數學計算模型計算各個演算法的資源使用情形,像是時間(透過幾個步驟產出結果)、空間(需要佔用多少記憶體),再進一步進行複雜性分類、聯絡。洛瓦茲設計的LLL演算法、威格森的去隨機化研究對拓寬和深化這個領域的貢獻無疑是最重要的領導者。

-----廣告,請繼續往下閱讀-----

從數學到計算機科學──拉茲洛·洛瓦斯

圖/wikipedia

洛瓦茲於1948年出生在布達佩斯,從小就對數學有濃厚的天份,22歲便拿到博士學位,他的早期靈感大部分來自數學家艾狄胥·帕爾(Erdős Pál)。艾狄胥的成就集中在離散關係的數學,而不是典型的連續變量上,也就是組合學、圖論等領域。

組合學(Combinatorics)、圖論(Graph theory)都是離散數學的範疇。前者主要解決組合模型中的存在、計數以及構造等方面的問題;後者作為組合學的分支,將對象之間的關係通過邊和節點組成數學結構圖。拉斯洛·洛瓦茲作為新一代數學家自然不會將離散數學侷限在純數學的理論研究中,他意識到離散數學在計算機科學中非常具有發展潛力,並著手研究離散數學可以解決計算機科學問題的方法。

圖論中的經典七橋問題:在所有橋都只能走一遍的前提下,如何才能把這個地方所有的橋都走遍呢?圖/wikipedia

最著名的研究是由洛瓦茲(Lovász)以及荷蘭數學家阿爾揚·倫斯特拉(Arjen Lenstra)和亨德里克·倫斯特拉(Hendrik Lenstra)的名字命名的LLL演算法(LLL lattice)。這種稱為LLL的算法將由整數組成的大向量分解為各種類型的最短向量的總和,也就是可以計算出空間中的點集與原點的距離。

最初的LLL演算法被應用將多項式時間(Polynomial time,P)以有理係數多項式表示,來找出他的實數近似值來解決固定維數的整數線性規劃問題。LLL演算法在數論、密碼學和通訊計算等領域也都具有顯著的應用,更是現今可以抵禦量子計算機攻擊的加密系統之一。

-----廣告,請繼續往下閱讀-----

從計算機科學到數學──阿維·威格森

威格森對他的研究領域一直都充滿熱情,常常感染身旁的同事一起參與研究。圖/Wikipedia

威格森於1956年出生於以色列海法。威格森最著名的成就之一就是闡明了隨機性在計算中的作用。在聊隨機性之前,我們先來聊聊什麼是P, NP:

P和NP是複雜性的類別,P問題是可以快速計算出來的問題,NP問題則是可以快速驗證的問題。

當問你17乘以19是多少時,你可能沒辦法馬上心算出來,但按一按計算機就一定能得出答案,那麼這個問題就是屬於P問題,包含了所有容易解決的計算問題。現在,問你323的所有質因數有哪些呢?問題複雜了許多吧!我們必須從2、3、5……開始慢慢找,正著找質因數很困難,如果我們反著找呢?先告訴你17、19是323的質因數,是不是只要把它們乘在一起就能驗證答案對不對了?這個例子就是屬於NP問題,包含了可能是很難解決的計算問題,但只要有答案就很容易被驗證正確與否。

科學家便提出了一個看法:「會不會其實P=NP?」也就是說NP問題有可能可以被簡單解決。威格森的主要研究就是將複雜性類別一一歸位,將多項式時間演算法完全去隨機化,更快速的得到結果,並把隨機演算法和複雜性理論結合,提出P = BPP(bounded-error probabilistic polynomial time),回答了多年來對P/NP問題的疑問,大大拓寬了資訊界的未來視野。

P/NP問題是一個在理論資訊學中計算複雜度理論領域裡至今未被解決的問題,也是克雷數學研究所七個千禧年大獎難題之一。圖/wikipedia

威格森對貨幣加密的零知識證明也很有貢獻,零知識證明簡單來講就是在不透露任何資訊的情況下驗證正確性的方法。最初是在保護個資方面,像是我們想要申請某個購物網站的會員,我們就必須提供姓名、電話、出生年月日等各種資料來驗證我們的真實身份,但在零知識證明之下我們可以選擇提供「零密碼證明」、隱藏真實密碼,達到完全保護個資的目的。

有些人可能會有疑問說數學有用嗎?數學不是只能拿來算錢嗎?那你就錯了!數學一直扮演著承載科學的角色,躲在背後支持著科學發展,不難發現每一門科學都或多或少跟數學交織在一起,每一年頒發的阿貝爾獎、菲爾茲獎、諾貝爾獎都顯現出這些數學家、科學家正將科學這個巨網越織越堅固。一起為今年的得獎者送上掌聲吧!

-----廣告,請繼續往下閱讀-----
圖/Giphy

參考資料

-----廣告,請繼續往下閱讀-----
Yi-Hsuan Lee_96
3 篇文章 ・ 1 位粉絲
Science Communicator | 數學系畢業,跑到心理系當了一年間諜,現在是應用科學研究生。喜歡文學、古典戲劇和薏仁。立志在台灣創造一個老人小孩都能樂在其中的科普空間。

0

0
0

文字

分享

0
0
0
阿貝爾獎首次頒給女數學家:凱倫・烏倫貝克曲折又幸運的數學人生
活躍星系核_96
・2019/05/29 ・3014字 ・閱讀時間約 6 分鐘 ・SR值 539 ・八年級

2019 年阿貝爾獎,首位女性得主

3 月 19 日,美國數學家凱倫・烏倫貝克( Karen Uhlenbeck )摘下學界最高榮譽之一—— 2019 年阿貝爾獎( Abel prize )。這項常被譽為「數學界諾貝爾」的獎項,終於迎來了首位女性獲獎者

阿貝爾獎從 2003 年開始,獎金為 600 萬挪威克朗(約合 2610 萬新台幣),歷屆獲獎得主包括《美麗心靈》主角的原型約翰・納許( John Nash )、今年剛剛去世的著名數學家邁克爾・阿蒂亞爵士( Sir Michael Atiyah )等。該獎項在數學界擁有崇高地位,與四年一度的菲爾茲獎齊名。而菲爾茲獎迄今為止也只有一位女性獲獎者:伊朗數學家瑪利亞姆・米爾扎哈尼( Maryam Mirzakhani )。

凱倫・烏倫貝克( Karen Uhlenbeck )。圖/women you should know

現年 76 歲的凱倫・烏倫貝克,是美國得克薩斯大學( University of Texas )榮譽教授,並擔任普林斯頓大學( Princeton University )資深訪問學者、普林斯頓高等研究院( Institute for Advanced Study )客座教授。作為幾何分析( geometric analysis )領域的先驅之一,烏倫貝克在幾何偏微分方程、規範理論和可積系統等領域作出了重要貢獻,她提出的數學方法已經被今天的數學家廣泛使用。和年少成名又英年早逝的菲爾茲獎得主瑪利亞姆·米爾扎哈尼不同,凱倫·烏倫貝克擁有一個曲折又幸運的數學人生。

-----廣告,請繼續往下閱讀-----

孤僻的少女

凱倫 1942 年出生於一個由工程師和藝術教師組成的美國家庭。這一個小時候喜歡和男孩子們在街上踢足球的女孩,進入學校後也顯得有些與眾不同——她最喜歡的事情就是偷偷閱讀藏在課桌下的科普書籍。

儘管還是個孩子,但是那時凱倫就已經展現出了一些孤獨科學家的特質:她喜歡漫無目的的在鄉間閒逛,將自己埋頭在文字的世界中,並夢想著能夠找到一份可以讓自己獨處的工作。凱倫後來在一本名為 《 Women in Mathematic 》的書中回憶道:

「我當時覺得自己將來不是當個護理師,不然就是成為研究學者,我就是對那些東西感興趣。但是我不想當老師,我覺得一切需要跟人打交道的工作都極其可怕。」

凱倫・烏倫貝克中學最喜歡沈浸在科學的世界。圖/torange

「女性學不了數學,因為從生物學角度上來說她們比男性更喜歡社交,所以這種需要單獨進行、與孤獨為伴的工作會讓女性無法適應」這是當時社會給婦女打上的標籤(這種刻板印象至今依然存在)。凱倫最開始在密歇根大學學物理,但是發現數學更契合她的特點和興趣,於是轉到了數學領域。不過她選擇開啟數學家生涯並不全是因為對智力的自信,而是周圍人的影響。凱倫甚至不確定自己是否適合進入研究所攻讀博士,但身邊認識的親友(包括她的男朋友)幾乎都決定繼續深造。她的擔心並非沒有道理:為了避免名校數學系男性研究者的絕對權威,她選擇避開普林斯頓或者哈佛大學,希望找到一個能夠讓自己不分心地研究數學的地方。最終,她先在紐約大學的庫朗研究所( Courant Institute )拿到了碩士學位,然後在布蘭迪斯大學( Brandeis University )獲得了博士學位。

-----廣告,請繼續往下閱讀-----

迷惘與掙扎

和所有剛獲得博士學位的年輕人一樣,凱倫開始尋找能夠讓自己獲得長期動力和發展的研究課題。與此同時,她和男朋友奧爾克·烏倫貝克( Olke Uhlenbeck )結了婚,從凱倫·凱斯庫拉( Karen Keskulla )變成了凱倫·烏倫貝克( Karen Uhlenbeck )。這不僅意味著一段人生新旅程的開始,也為她帶來了另一個職業生涯上的障礙。奧爾克是一位生物物理學家,拿到了斯坦福和普林斯頓的 offer 。

但是這些學校拒絕給凱倫提供正式職位,只因為她是女性。

令人欣慰的是,奧爾克站在了妻子這邊。他拒絕了所有不願接受凱倫的學校,兩人最終加入了伊利諾伊大學香檳分校( University of Illinois at Urbana-Champaign )。

但這並不是故事的美滿結局。凱倫是香檳分校的數學教師,可是他們只把她當成教職員的家屬,並且希望她以一位家屬的身份行事。在那裡她被排除在教職人員的職業發展系統之外,沒人能為她當時十分特殊的職位提供任何指導和幫助。她的學術生涯也不怎麼順利,她不喜歡課堂教學工作,同時苦苦掙扎著尋找研究方向,還要面臨外界對於自己地位和能力的質疑——1976 年,她選擇離開香檳分校,去了位於芝加哥的伊利諾伊大學( University of Illinois )。

我們不清楚離開香檳分校是否是凱倫和奧爾克出現裂痕的原因。但是,她確實和丈夫分手了。面對新環境,她能依靠的只有自己。幸運的是,芝加哥的氣氛和香檳分校截然不同。校園裡不僅有幾位女教授可以為她提供職業發展上的支持,她的同事們也認可她作為一名數學家的價值——她終於找到了能夠為自己的學術研究提供反饋意見的環境。

-----廣告,請繼續往下閱讀-----

獲得新生

事情開始步入正軌,凱倫為研究找到了經費支持,將自己從充滿著挫折與失望的泥潭中拯救出來。在獲得了穩定的資助和工作環境後,凱倫在 40 歲左右時終於開始嶄露頭角。在 1982 年前後發表的數篇論文是她在規範理論研究中做出的突破性貢獻:從四維分析楊-米爾斯方程式( Yang-Mills equations ),為現代物理學中如標準模型、量子引力理論等眾多最令人興奮的研究,奠定了一定的分析基礎。

總結來說,她的這項工作可以看作為 1919 年由著名數學家赫爾曼・威爾( Hermann Weyl )提出、能讓愛因斯坦的廣義相對論更進一步的數學理論「續集」。愛因斯坦在他的廣義相對論中已經證明瞭如何比較兩個觀察者在引力場中不同位置所做的測量。在狹義相對論中,不同觀察者所做的測量可以很簡單地通過洛倫茲變換( Lorentz transformation )相互作用中找出關聯性,但是當測量者在引力場中的位置產生顯著差異時,對比較的測量結果會變得更加棘手。愛因斯坦的廣義相對論通過在時空幾何中使用觀察者之間的聯繫來解決這個問題。

赫爾曼・威爾。圖/wikipedia

威爾想知道他是否可以在電磁學領域做同樣的事情,因此開始了規範理論的研究,希望這項理論能在電磁領域找到上述的關聯。然而這一想法過於超前,三十多年後揚和米爾斯( Yang and Mills )進一步推動了這個模型的發展,但是也遇到了可能需要十年甚至更長時間才能解決的困難。

-----廣告,請繼續往下閱讀-----

現在,凱倫接過了規範理論的交接棒,她最著名的研究是將規範理論應用於四維流形。她和  C. H .陶布斯( C.H. Taubes )從四維角度分析了楊 – 米爾斯方程,為西蒙·唐納森( Simon Donaldson )的理論奠定了基礎,後者在 1986 年獲得了著名的菲爾茲獎。

雖然錯過了菲爾茲獎,但是凱倫在 1985 年成為了美國藝術與科學院院士,2000 年獲得了美國國家科學獎章,並在2007 年獲得了美國數學學會的 Leroy P Steele 獎,還入選了20世紀美國最重要數學研究者的短名單,如今又收穫了與菲爾茲獎齊名的阿貝爾獎。

凱倫·烏倫貝克的近照。圖/CNN.COM

現在看來這是個令人讚嘆的故事,但是組成這個故事的每個字都凝聚了女性在科學界艱難前進的汗水與淚水。

-----廣告,請繼續往下閱讀-----

這個曾經希望能遠離他人的孤僻女孩,意識到了離群索居只會在漫長的人生中給自己造成傷害,最終毀掉的是職業生涯和與家人朋友的感情。

她不再迴避教學,並開始用自己的經歷去幫助年輕人:她向學生強調學術支持系統的重要性,告誡他們不要成為那種閉門不出、獨自埋頭苦算的老派數學家——和同事們建立聯繫能幫你更好地克服職業生涯中可能遇到的困難。

凱倫·烏倫貝克成為了現代數學領域中性別多元化的標杆人物,但她也坦白地表示過這給自己帶來的挑戰性:「因為我需要做的其實是告訴學生,不完美的人也能成功……我在他們眼中可能是個有名的數學家,但是,我也是個普通人。

數學成就了她,數學也改變了她。

本文轉載自领研网,原文〈“数学界最高奖”阿贝尔奖首次颁给一位女性,她的人生曲折又幸运

-----廣告,請繼續往下閱讀-----
-----廣告,請繼續往下閱讀-----
活躍星系核_96
778 篇文章 ・ 128 位粉絲
活躍星系核(active galactic nucleus, AGN)是一類中央核區活動性很強的河外星系。這些星系比普通星系活躍,在從無線電波到伽瑪射線的全波段裡都發出很強的電磁輻射。 本帳號發表來自各方的投稿。附有資料出處的科學好文,都歡迎你來投稿喔。 Email: contact@pansci.asia