0

2
2

文字

分享

0
2
2

破解五次方程式的公式解:阿貝爾誕辰│科學史上的今天:8/5

張瑞棋_96
・2015/08/05 ・1308字 ・閱讀時間約 2 分鐘 ・SR值 561 ・九年級

最遲在西元九世紀,波斯數學家花喇子密就解出二次方程式的公式解,但三次與四次方程式直到十六世紀中期才破解。雖然相隔甚久,但這也代表人類的數學終於進展到一定程度,才接連破解三次與四次方程式。再來五次方程式的公式解也是指日可待吧?當時的數學界都如此相信。

不料將近三個世紀過去了,每個前來挑戰的數學家都鎩羽而歸,即使萊布尼茲、歐拉、拉格朗日、高斯等大師也都無功而返。誰也沒想到,最後竟會由一位遠在挪威這邊陲之地的後生小子解開這高懸兩百五十年的謎題;可嘆的是,其天才竟未獲賞識,26 歲就死於貧病交迫。

阿貝爾(Niels Henrik Abel, 1802-1829)13 歲之前都是由擔任牧師的父親在家親自教導,上了中學卻遇上脾氣暴烈的老師,學業成績岌岌可危,幸而 1818 年新來的年輕數學老師何姆波(Bernt Holmboe)循循善誘,阿貝爾迅速展露其數學天才,除了學校課程,還狼吞虎嚥歐拉、高斯、拉格朗日等大師的原著。

高中最後一年,初生之犢的阿貝爾竟大膽挑戰五次方程式,宣稱他已找出解法。何姆波找不出錯誤,轉寄給兩位大學教授確認,他們也挑不出毛病,於是寄給一位北歐頂尖的數學家,請他審閱無誤後發表於期刊。但畢竟一個高中生解出連偉大數學家都束手無策的難題也太匪夷所思,為求謹慎,他請阿貝爾以實例演示一遍。阿貝爾在構思範例時才發現其中有錯,但他並未因此受挫,反更挑起征服五次方程式的決心。

-----廣告,請繼續往下閱讀-----

然而就在他 1821 年就讀大學之前,就因父親過世而生活陷入困頓,所幸那兩位大學教授賞識其天分,不但資助他的學費,還幫助他於 1823 年到丹麥與其他數學家交流。結果最大的收穫是認識了後來的未婚妻克莉絲汀。

回到挪威後,阿貝爾以不同的角度審視五次方程式,他不再尋找解法,相反地,他要證明根本不存在簡單公式解,也就是不可能像二次、三次、四次方程式那樣,求出用四則運算與根號將係數加以組合的公式;這也是為什麼先賢前輩注定徒勞無功。

因經濟拮据,阿貝爾將論文濃縮印製成只有六頁的小冊子,寄給一些數學家。可能是過於精簡以致艱澀難懂,竟都石沉大海。

1825 年,阿貝爾再取得獎學金出國留學。他先在德國認識一位視他為天才的好朋友,再於 1826 年來到巴黎。他滿懷信心地將新完成的超越函數論文寄給法國科學院,以為將因此聲名大噪,覓得教職。不幸,分派到的審閱者一人老態龍鍾,無力了解;另一人則是自負的柯西,根本沒打開看。阿貝爾苦等幾月毫無消息,又得了肺結核健康惡化,只好返回家鄉,靠當家教掙錢;但他仍繼續埋首完成橢圓函數的重要論文,並投寄期刊發表。

-----廣告,請繼續往下閱讀-----

1829 年 4 月 6 日,數學天才阿貝爾病逝於床上;臨終前愧疚地要求大學好友照顧始終不離不棄的未婚妻。4 月 8 日,德國尚不知其死訊的朋友欣喜地寫信通知阿貝爾:教育部要給他工作。1830年6月,法國科學院宣布阿貝爾與雅可比共同獲頒數學成就大獎。可惜這些肯定與榮耀都來晚了一步。

  • 2002年,挪威政府為了紀念阿貝爾兩百年誕辰,設立阿貝爾獎,比照諾貝爾獎,每年頒獎鼓勵傑出的數學家。

 

本文同時收錄於《科學史上的今天:歷史的瞬間,改變世界的起點》,由究竟出版社出版。

-----廣告,請繼續往下閱讀-----
文章難易度
張瑞棋_96
423 篇文章 ・ 1016 位粉絲
1987年清華大學工業工程系畢業,1992年取得美國西北大學工業工程碩士。浮沉科技業近二十載後,退休賦閒在家,當了中年大叔才開始寫作,成為泛科學專欄作者。著有《科學史上的今天》一書;個人臉書粉絲頁《科學棋談》。

0

1
0

文字

分享

0
1
0
從認證到實踐:以智慧綠建築三大標章邁向淨零
鳥苷三磷酸 (PanSci Promo)_96
・2024/11/15 ・4487字 ・閱讀時間約 9 分鐘

本文由 建研所 委託,泛科學企劃執行。 


當你走進一棟建築,是否能感受到它對環境的友善?或許不是每個人都意識到,但現今建築不只提供我們居住和工作的空間,更是肩負著重要的永續節能責任。

綠建築標準的誕生,正是為了應對全球氣候變遷與資源匱乏問題,確保建築設計能夠減少資源浪費、降低污染,同時提升我們的生活品質。然而,要成為綠建築並非易事,每一棟建築都需要通過層層關卡,才能獲得標章認證。

為推動環保永續的建築環境,政府自 1999 年起便陸續著手推動「綠建築標章」、「智慧建築標章」以及「綠建材標章」的相關政策。這些標章的設立,旨在透過標準化的建築評估系統,鼓勵建築設計融入生態友善、能源高效及健康安全的原則。並且政府在政策推動時,為鼓勵業界在規劃設計階段即導入綠建築手法,自 2003 年特別辦理優良綠建築作品評選活動。截至 2024 年為止,已有 130 件優良綠建築、31 件優良智慧建築得獎作品,涵蓋學校、醫療機構、公共住宅等各類型建築,不僅提升建築物的整體性能,也彰顯了政府對綠色、智慧建築的重視。

-----廣告,請繼續往下閱讀-----

說這麼多,你可能還不明白建築要變「綠」、變「聰明」的過程,要經歷哪些標準與挑戰?

綠建築標章智慧建築標章綠建材標章
來源:內政部建築研究所

第一招:依循 EEWH 標準,打造綠建築典範

環境友善和高效率運用資源,是綠建築(green building)的核心理念,但這樣的概念不僅限於外觀或用材這麼簡單,而是涵蓋建築物的整個生命週期,也就是包括規劃、設計、施工、營運和維護階段在內,都要貼合綠建築的價值。

關於綠建築的標準,讓我們先回到 1990 年,當時英國建築研究機構(BRE)首次發布有關「建築研究發展環境評估工具(Building Research Establishment Environmental Assessment Method,BREEAM®)」,是世界上第一個建築永續評估方法。美國則在綠建築委員會成立後,於 1998 年推出「能源與環境設計領導認證」(Leadership in Energy and Environmental Design, LEED)這套評估系統,加速推動了全球綠建築行動。

臺灣在綠建築的制訂上不落人後。由於臺灣地處亞熱帶,氣溫高,濕度也高,得要有一套我們自己的評分規則——臺灣綠建築評估系統「EEWH」應運而生,四個英文字母分別為 Ecology(生態)、Energy saving(節能)、Waste reduction(減廢)以及 Health(健康),分成「合格、銅、銀、黃金和鑽石」共五個等級,設有九大評估指標。

-----廣告,請繼續往下閱讀-----

我們就以「台江國家公園」為例,看它如何躍過一道道指標,成為「鑽石級」綠建築的國家公園!

位於臺南市四草大橋旁的「台江國家公園」是臺灣第8座國家公園,也是臺灣唯一的濕地型的國家公園。同時,還是南部行政機關第一座鑽石級的綠建築,其外觀採白色系列,從高空俯瞰,就像在一座小島上座落了許多白色建築群的聚落;從地面看則有臺南鹽山的意象。

因其地形與地理位置的特殊,生物多樣性的保護則成了台江國家公園的首要考量。園區利用既有的魚塭結構,設計自然護岸,保留基地既有的雜木林和灌木草原,並種植原生與誘鳥誘蟲等多樣性植物,採用複層雜生混種綠化。以石籠作為擋土護坡與卵石回填增加了多孔隙,不僅強化了環境的保護力,也提供多樣的生物棲息環境,使這裡成為動植物共生的美好棲地。

台江國家公園是南部行政機關第一座鑽石級的綠建築。圖/內政部建築研究所

第二招:想成綠建築,必用綠建材

要成為一幢優秀好棒棒的綠建築,使用在原料取得、產品製造、應用過程和使用後的再生利用循環中,對地球環境負荷最小、對人類身體健康無害的「綠建材」非常重要。

-----廣告,請繼續往下閱讀-----

這種建材最早是在 1988 年國際材料科學研究會上被提出,一路到今日,國際間對此一概念的共識主要包括再使用(reuse)、再循環(recycle)、廢棄物減量(reduce)和低污染(low emission materials)等特性,從而減少化學合成材料產生的生態負荷和能源消耗。同時,使用自然材料與低 VOC(Volatile Organic Compounds,揮發性有機化合物)建材,亦可避免對人體產生危害。

在綠建築標章後,內政部建築研究所也於 2004 年 7 月正式推行綠建材標章制度,以建材生命週期為主軸,提出「健康、生態、高性能、再生」四大方向。舉例來說,為確保室內環境品質,建材必須符合低逸散、低污染、低臭氣等條件;為了防溫室效應的影響,須使用本土材料以節省資源和能源;使用高性能與再生建材,不僅要經久耐用、具高度隔熱和防音等特性,也強調材料本身的再利用性。


在台江國家公園內,綠建材的應用是其獲得 EEWH 認證的重要部分。其不僅在設計結構上體現了生態理念,更在材料選擇上延續了對環境的關懷。園區步道以當地的蚵殼磚鋪設,並利用蚵殼作為建築格柵的填充材料,為鳥類和小生物營造棲息空間,讓「蚵殼磚」不再只是建材,而是與自然共生的橋樑。園區的內部裝修選用礦纖維天花板、矽酸鈣板、企口鋁板等符合綠建材標準的系統天花。牆面則粉刷乳膠漆,整體綠建材使用率為 52.8%。

被建築實體圍塑出的中庭廣場,牆面設計有蚵殼格柵。圖/內政部建築研究所

在日常節能方面,台江國家公園也做了相當細緻的設計。例如,引入樓板下的水面蒸散低溫外氣,屋頂下設置通風空氣層,高處設置排風窗讓熱空氣迅速排出,廊道還配備自動控制的微噴霧系統來降溫。屋頂採用蚵殼與漂流木創造生態棲地,創造空氣層及通風窗引入水面低溫外企,如此一來就能改善事內外氣溫及熱空氣的通風對流,不僅提升了隔熱效果,減少空調需求,讓建築如同「與海共舞」,在減廢與健康方面皆表現優異,展示出綠建築在地化的無限可能。

-----廣告,請繼續往下閱讀-----
島式建築群分割後所形成的巷道與水道。圖/內政部建築研究所

在綠建材的部分,另外補充獲選為 2023 年優良綠建築的臺南市立九份子國民中小學新建工程,其採用生產過程中二氧化碳排放量較低的建材,比方提高高爐水泥(具高強度、耐久、緻密等特性,重點是發熱量低)的量,並使用能提高混凝土晚期抗壓性、降低混凝土成本與建物碳足跡的「爐石粉」,還用再生透水磚做人行道鋪面。

2023 年優良綠建築的臺南市立九份子國民中小學。圖/內政部建築研究所
2023 年優良綠建築的臺南市立九份子國民中小學。圖/內政部建築研究所

同樣入選 2023 年綠建築的還有雲林豐泰文教基金會的綠園區,首先,他們捨棄金屬建材,讓高爐水泥使用率達 100%。別具心意的是,他們也將施工開挖的土方做回填,將有高地差的荒地恢復成平坦綠地,本來還有點「工業風」的房舍告別荒蕪,無痛轉綠。

雲林豐泰文教基金會的綠園區。圖/內政部建築研究所

等等,這樣看來建築夠不夠綠的命運,似乎在建材選擇跟設計環節就決定了,是這樣嗎?當然不是,建築是活的,需要持續管理–有智慧的管理。

第三招:智慧管理與科技應用

我們對生態的友善性與資源運用的效率,除了從建築設計與建材的使用等角度介入,也須適度融入「智慧建築」(intelligent buildings)的概念,即運用資通訊科技來提升建築物效能、舒適度與安全性,使空間更人性化。像是透過建築物佈建感測器,用於蒐集環境資料和使用行為,並作為空調、照明等設備、設施運轉操作之重要參考。

-----廣告,請繼續往下閱讀-----

為了推動建築與資通訊產業的整合,內政部建築研究所於 2004 年建立了「智慧建築標章」制度,為消費者提供判斷建築物是否善用資通訊感知技術的標準。評估指標經多次修訂,目前是以「基礎設施、維運管理、安全防災、節能管理、健康舒適、智慧創新」等六大項指標作為評估基準。
以節能管理指標為例,為了掌握建築物生命週期中的能耗,需透過系統設備和技術的主動控制來達成低耗與節能的目標,評估重點包含設備效率、節能技術和能源管理三大面向。在健康舒適方面,則在空間整體環境、光環境、溫熱環境、空氣品質、水資源等物理環境,以及健康管理系統和便利服務上進行評估。

樹林藝文綜合大樓在設計與施工過程中,充分展現智慧建築應用綜合佈線、資訊通信、系統整合、設施管理、安全防災、節能管理、健康舒適及智慧創新 8 大指標先進技術,來達成兼顧環保和永續發展的理念,也是利用建築資訊模型(BIM)技術打造的指標性建築,受到國際矚目。

樹林藝文綜合大樓。圖/內政部建築研究所「111年優良智慧建築專輯」(新北市政府提供)

在興建階段,為了保留基地內 4 棵原有老樹,團隊透過測量儀器對老樹外觀進行精細掃描,並將大小等比例匯入 BIM 模型中,讓建築師能清晰掌握樹木與建築物之間的距離,確保施工過程不影響樹木健康。此外,在大樓啟用後,BIM 技術被運用於「電子維護管理系統」,透過 3D 建築資訊模型,提供大樓內設備位置及履歷資料的即時讀取。系統可進行設備的監測和維護,包括保養計畫、異常修繕及耗材管理,讓整棟大樓的全生命週期狀況都能得到妥善管理。

智慧建築導入 BIM 技術的應用,從建造設計擴展至施工和日常管理,使建築生命周期的管理更加智慧化。以 FM 系統 ( Facility Management,簡稱 FM ) 為例,該系統可在雲端進行遠端控制,根據會議室的使用時段靈活調節空調風門,會議期間開啟通往會議室的風門以加強換氣,而非使用時段則可根據二氧化碳濃度調整外氣空調箱的運轉頻率,保持低頻運作,實現節能效果。透過智慧管理提升了節能效益、建築物的維護效率和公共安全管理。

-----廣告,請繼續往下閱讀-----

總結

綠建築、綠建材與智慧建築這三大標章共同構建了邁向淨零碳排、居住健康和環境永續的基礎。綠建築標章強調設計與施工的生態友善與節能表現,從源頭減少碳足跡;綠建材標章則確保建材從生產到廢棄的全生命週期中對環境影響最小,並保障居民的健康;智慧建築標章運用科技應用,實現能源的高效管理和室內環境的精準調控,增強了居住的舒適性與安全性。這些標章的綜合應用,讓建築不僅是滿足基本居住需求,更成為實現淨零、促進健康和支持永續的具體實踐。

建築物於魚塭之上,採高腳屋的構造形式,尊重自然地貌。圖/內政部建築研究所

-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

鳥苷三磷酸 (PanSci Promo)_96
211 篇文章 ・ 312 位粉絲
充滿能量的泛科學品牌合作帳號!相關行銷合作請洽:contact@pansci.asia

0

38
3

文字

分享

0
38
3
【快訊】數學與計算機科學的交織──2021 阿貝爾獎
Yi-Hsuan Lee_96
・2021/04/08 ・3202字 ・閱讀時間約 6 分鐘 ・SR值 534 ・七年級

  • 作者/李奕萱

阿貝爾獎(Abel Prize)自2003年開始由挪威國王頒發給傑出數學家的獎項。阿貝爾獎的歷史可以追溯到1899年,當時挪威數學家索菲斯·李(Sophus Lie)得知阿佛烈·諾貝爾(Alfred Nobel)計劃設立的諾貝爾獎將不包括數學獎,又剛好正逢數學家尼爾斯·亨里克·阿貝爾(Niels Henrik Abel)誕辰100週年紀念,便提出設立阿貝爾獎。 不幸的是,索菲斯·李不久後逝世、提供資金的奧斯卡二世國王也因為瑞典和挪威聯合王國解散而下台,阿貝爾獎這件事也就不了了之。

2001年,人們覺得應該給數學家一個相當於諾貝爾獎的獎項,便再次將阿貝爾獎提案給挪威總理。隔年挪威政府便宣佈撥款2億挪威克朗在數學家阿貝爾誕辰200週年時正式設立阿貝爾獎,並由挪威自然科學與文學院成立阿貝爾委員會負責審理。

阿貝爾獎的獎金高達750萬挪威克朗,是國際數學獎中的最高金額。圖/wikipedia

雖然說阿貝爾獎被譽為數學界的諾貝爾獎,但表彰方向卻和諾貝爾獎不盡相同。舉例來說,諾貝爾物理學獎主要是頒發給對物理作出重要發現或發明的人,像是2020年的諾貝爾獎得主就是成功觀察到銀河系中心的超大質量緻密天體,並發現黑洞的形成是廣義相對論的確鑿預測,因而得獎。阿爾貝獎則是大多頒獎給在數學領域發展中的重要推手,也就是引領數學界的人。

今年挪威科學院將2021年的阿貝爾獎頒給匈牙利羅蘭大學(Eötvös Loránd University)的洛瓦茲·拉茲洛(László Lovász)和美國普林斯頓大學的以色列數學家阿維·威格森(Avi Wigderson),表彰他們對理論計算機科學與離散數學的貢獻,以及將兩者塑造成現代數學的重要領域

“for their foundational contributions to theoretical computer science and discrete mathematics, and their leading role in shaping them into central fields of modern mathematics”

剪不斷理還亂的計算機科學和數學

1970年代,理論計算機科學和純數學是沒什麼關係的兩個學術領域。經過幾十年的發展,這兩個學科之間早已變得極為密切,在現代數學,我們甚至很難分清它們之間的界限。其中,洛瓦斯和威格森就是在最前線開疆闢土的人。

阿貝爾委員會主席漢斯·蒙特·卡斯(Hans Munthe-Kaas)表示:「在過去的幾十年中,洛瓦茲(圖中左)和威格森(圖中右)一直是這一發展的領導力量。他們的工作以多種方式交織在一起,尤其是它們都為理解計算中的隨機性和探索有效計算的邊界做出了根本性貢獻。」圖/The Abel Prize

計算複雜性理論 (Computational complexity theory)是數學和計算機科學領域的一個重要分支。從小我們就知道算數學要快、狠、準,如何更快、更輕鬆地解決問題一直是人類追求的目標。計算複雜性理論通過引入數學計算模型計算各個演算法的資源使用情形,像是時間(透過幾個步驟產出結果)、空間(需要佔用多少記憶體),再進一步進行複雜性分類、聯絡。洛瓦茲設計的LLL演算法、威格森的去隨機化研究對拓寬和深化這個領域的貢獻無疑是最重要的領導者。

-----廣告,請繼續往下閱讀-----

從數學到計算機科學──拉茲洛·洛瓦斯

圖/wikipedia

洛瓦茲於1948年出生在布達佩斯,從小就對數學有濃厚的天份,22歲便拿到博士學位,他的早期靈感大部分來自數學家艾狄胥·帕爾(Erdős Pál)。艾狄胥的成就集中在離散關係的數學,而不是典型的連續變量上,也就是組合學、圖論等領域。

組合學(Combinatorics)、圖論(Graph theory)都是離散數學的範疇。前者主要解決組合模型中的存在、計數以及構造等方面的問題;後者作為組合學的分支,將對象之間的關係通過邊和節點組成數學結構圖。拉斯洛·洛瓦茲作為新一代數學家自然不會將離散數學侷限在純數學的理論研究中,他意識到離散數學在計算機科學中非常具有發展潛力,並著手研究離散數學可以解決計算機科學問題的方法。

圖論中的經典七橋問題:在所有橋都只能走一遍的前提下,如何才能把這個地方所有的橋都走遍呢?圖/wikipedia

最著名的研究是由洛瓦茲(Lovász)以及荷蘭數學家阿爾揚·倫斯特拉(Arjen Lenstra)和亨德里克·倫斯特拉(Hendrik Lenstra)的名字命名的LLL演算法(LLL lattice)。這種稱為LLL的算法將由整數組成的大向量分解為各種類型的最短向量的總和,也就是可以計算出空間中的點集與原點的距離。

最初的LLL演算法被應用將多項式時間(Polynomial time,P)以有理係數多項式表示,來找出他的實數近似值來解決固定維數的整數線性規劃問題。LLL演算法在數論、密碼學和通訊計算等領域也都具有顯著的應用,更是現今可以抵禦量子計算機攻擊的加密系統之一。

-----廣告,請繼續往下閱讀-----

從計算機科學到數學──阿維·威格森

威格森對他的研究領域一直都充滿熱情,常常感染身旁的同事一起參與研究。圖/Wikipedia

威格森於1956年出生於以色列海法。威格森最著名的成就之一就是闡明了隨機性在計算中的作用。在聊隨機性之前,我們先來聊聊什麼是P, NP:

P和NP是複雜性的類別,P問題是可以快速計算出來的問題,NP問題則是可以快速驗證的問題。

當問你17乘以19是多少時,你可能沒辦法馬上心算出來,但按一按計算機就一定能得出答案,那麼這個問題就是屬於P問題,包含了所有容易解決的計算問題。現在,問你323的所有質因數有哪些呢?問題複雜了許多吧!我們必須從2、3、5……開始慢慢找,正著找質因數很困難,如果我們反著找呢?先告訴你17、19是323的質因數,是不是只要把它們乘在一起就能驗證答案對不對了?這個例子就是屬於NP問題,包含了可能是很難解決的計算問題,但只要有答案就很容易被驗證正確與否。

科學家便提出了一個看法:「會不會其實P=NP?」也就是說NP問題有可能可以被簡單解決。威格森的主要研究就是將複雜性類別一一歸位,將多項式時間演算法完全去隨機化,更快速的得到結果,並把隨機演算法和複雜性理論結合,提出P = BPP(bounded-error probabilistic polynomial time),回答了多年來對P/NP問題的疑問,大大拓寬了資訊界的未來視野。

P/NP問題是一個在理論資訊學中計算複雜度理論領域裡至今未被解決的問題,也是克雷數學研究所七個千禧年大獎難題之一。圖/wikipedia

威格森對貨幣加密的零知識證明也很有貢獻,零知識證明簡單來講就是在不透露任何資訊的情況下驗證正確性的方法。最初是在保護個資方面,像是我們想要申請某個購物網站的會員,我們就必須提供姓名、電話、出生年月日等各種資料來驗證我們的真實身份,但在零知識證明之下我們可以選擇提供「零密碼證明」、隱藏真實密碼,達到完全保護個資的目的。

有些人可能會有疑問說數學有用嗎?數學不是只能拿來算錢嗎?那你就錯了!數學一直扮演著承載科學的角色,躲在背後支持著科學發展,不難發現每一門科學都或多或少跟數學交織在一起,每一年頒發的阿貝爾獎、菲爾茲獎、諾貝爾獎都顯現出這些數學家、科學家正將科學這個巨網越織越堅固。一起為今年的得獎者送上掌聲吧!

-----廣告,請繼續往下閱讀-----
圖/Giphy

參考資料

-----廣告,請繼續往下閱讀-----
Yi-Hsuan Lee_96
3 篇文章 ・ 1 位粉絲
Science Communicator | 數學系畢業,跑到心理系當了一年間諜,現在是應用科學研究生。喜歡文學、古典戲劇和薏仁。立志在台灣創造一個老人小孩都能樂在其中的科普空間。

0

0
0

文字

分享

0
0
0
阿貝爾獎首次頒給女數學家:凱倫・烏倫貝克曲折又幸運的數學人生
活躍星系核_96
・2019/05/29 ・3014字 ・閱讀時間約 6 分鐘 ・SR值 539 ・八年級

2019 年阿貝爾獎,首位女性得主

3 月 19 日,美國數學家凱倫・烏倫貝克( Karen Uhlenbeck )摘下學界最高榮譽之一—— 2019 年阿貝爾獎( Abel prize )。這項常被譽為「數學界諾貝爾」的獎項,終於迎來了首位女性獲獎者

阿貝爾獎從 2003 年開始,獎金為 600 萬挪威克朗(約合 2610 萬新台幣),歷屆獲獎得主包括《美麗心靈》主角的原型約翰・納許( John Nash )、今年剛剛去世的著名數學家邁克爾・阿蒂亞爵士( Sir Michael Atiyah )等。該獎項在數學界擁有崇高地位,與四年一度的菲爾茲獎齊名。而菲爾茲獎迄今為止也只有一位女性獲獎者:伊朗數學家瑪利亞姆・米爾扎哈尼( Maryam Mirzakhani )。

凱倫・烏倫貝克( Karen Uhlenbeck )。圖/women you should know

現年 76 歲的凱倫・烏倫貝克,是美國得克薩斯大學( University of Texas )榮譽教授,並擔任普林斯頓大學( Princeton University )資深訪問學者、普林斯頓高等研究院( Institute for Advanced Study )客座教授。作為幾何分析( geometric analysis )領域的先驅之一,烏倫貝克在幾何偏微分方程、規範理論和可積系統等領域作出了重要貢獻,她提出的數學方法已經被今天的數學家廣泛使用。和年少成名又英年早逝的菲爾茲獎得主瑪利亞姆·米爾扎哈尼不同,凱倫·烏倫貝克擁有一個曲折又幸運的數學人生。

-----廣告,請繼續往下閱讀-----

孤僻的少女

凱倫 1942 年出生於一個由工程師和藝術教師組成的美國家庭。這一個小時候喜歡和男孩子們在街上踢足球的女孩,進入學校後也顯得有些與眾不同——她最喜歡的事情就是偷偷閱讀藏在課桌下的科普書籍。

儘管還是個孩子,但是那時凱倫就已經展現出了一些孤獨科學家的特質:她喜歡漫無目的的在鄉間閒逛,將自己埋頭在文字的世界中,並夢想著能夠找到一份可以讓自己獨處的工作。凱倫後來在一本名為 《 Women in Mathematic 》的書中回憶道:

「我當時覺得自己將來不是當個護理師,不然就是成為研究學者,我就是對那些東西感興趣。但是我不想當老師,我覺得一切需要跟人打交道的工作都極其可怕。」

凱倫・烏倫貝克中學最喜歡沈浸在科學的世界。圖/torange

「女性學不了數學,因為從生物學角度上來說她們比男性更喜歡社交,所以這種需要單獨進行、與孤獨為伴的工作會讓女性無法適應」這是當時社會給婦女打上的標籤(這種刻板印象至今依然存在)。凱倫最開始在密歇根大學學物理,但是發現數學更契合她的特點和興趣,於是轉到了數學領域。不過她選擇開啟數學家生涯並不全是因為對智力的自信,而是周圍人的影響。凱倫甚至不確定自己是否適合進入研究所攻讀博士,但身邊認識的親友(包括她的男朋友)幾乎都決定繼續深造。她的擔心並非沒有道理:為了避免名校數學系男性研究者的絕對權威,她選擇避開普林斯頓或者哈佛大學,希望找到一個能夠讓自己不分心地研究數學的地方。最終,她先在紐約大學的庫朗研究所( Courant Institute )拿到了碩士學位,然後在布蘭迪斯大學( Brandeis University )獲得了博士學位。

-----廣告,請繼續往下閱讀-----

迷惘與掙扎

和所有剛獲得博士學位的年輕人一樣,凱倫開始尋找能夠讓自己獲得長期動力和發展的研究課題。與此同時,她和男朋友奧爾克·烏倫貝克( Olke Uhlenbeck )結了婚,從凱倫·凱斯庫拉( Karen Keskulla )變成了凱倫·烏倫貝克( Karen Uhlenbeck )。這不僅意味著一段人生新旅程的開始,也為她帶來了另一個職業生涯上的障礙。奧爾克是一位生物物理學家,拿到了斯坦福和普林斯頓的 offer 。

但是這些學校拒絕給凱倫提供正式職位,只因為她是女性。

令人欣慰的是,奧爾克站在了妻子這邊。他拒絕了所有不願接受凱倫的學校,兩人最終加入了伊利諾伊大學香檳分校( University of Illinois at Urbana-Champaign )。

但這並不是故事的美滿結局。凱倫是香檳分校的數學教師,可是他們只把她當成教職員的家屬,並且希望她以一位家屬的身份行事。在那裡她被排除在教職人員的職業發展系統之外,沒人能為她當時十分特殊的職位提供任何指導和幫助。她的學術生涯也不怎麼順利,她不喜歡課堂教學工作,同時苦苦掙扎著尋找研究方向,還要面臨外界對於自己地位和能力的質疑——1976 年,她選擇離開香檳分校,去了位於芝加哥的伊利諾伊大學( University of Illinois )。

我們不清楚離開香檳分校是否是凱倫和奧爾克出現裂痕的原因。但是,她確實和丈夫分手了。面對新環境,她能依靠的只有自己。幸運的是,芝加哥的氣氛和香檳分校截然不同。校園裡不僅有幾位女教授可以為她提供職業發展上的支持,她的同事們也認可她作為一名數學家的價值——她終於找到了能夠為自己的學術研究提供反饋意見的環境。

-----廣告,請繼續往下閱讀-----

獲得新生

事情開始步入正軌,凱倫為研究找到了經費支持,將自己從充滿著挫折與失望的泥潭中拯救出來。在獲得了穩定的資助和工作環境後,凱倫在 40 歲左右時終於開始嶄露頭角。在 1982 年前後發表的數篇論文是她在規範理論研究中做出的突破性貢獻:從四維分析楊-米爾斯方程式( Yang-Mills equations ),為現代物理學中如標準模型、量子引力理論等眾多最令人興奮的研究,奠定了一定的分析基礎。

總結來說,她的這項工作可以看作為 1919 年由著名數學家赫爾曼・威爾( Hermann Weyl )提出、能讓愛因斯坦的廣義相對論更進一步的數學理論「續集」。愛因斯坦在他的廣義相對論中已經證明瞭如何比較兩個觀察者在引力場中不同位置所做的測量。在狹義相對論中,不同觀察者所做的測量可以很簡單地通過洛倫茲變換( Lorentz transformation )相互作用中找出關聯性,但是當測量者在引力場中的位置產生顯著差異時,對比較的測量結果會變得更加棘手。愛因斯坦的廣義相對論通過在時空幾何中使用觀察者之間的聯繫來解決這個問題。

赫爾曼・威爾。圖/wikipedia

威爾想知道他是否可以在電磁學領域做同樣的事情,因此開始了規範理論的研究,希望這項理論能在電磁領域找到上述的關聯。然而這一想法過於超前,三十多年後揚和米爾斯( Yang and Mills )進一步推動了這個模型的發展,但是也遇到了可能需要十年甚至更長時間才能解決的困難。

-----廣告,請繼續往下閱讀-----

現在,凱倫接過了規範理論的交接棒,她最著名的研究是將規範理論應用於四維流形。她和  C. H .陶布斯( C.H. Taubes )從四維角度分析了楊 – 米爾斯方程,為西蒙·唐納森( Simon Donaldson )的理論奠定了基礎,後者在 1986 年獲得了著名的菲爾茲獎。

雖然錯過了菲爾茲獎,但是凱倫在 1985 年成為了美國藝術與科學院院士,2000 年獲得了美國國家科學獎章,並在2007 年獲得了美國數學學會的 Leroy P Steele 獎,還入選了20世紀美國最重要數學研究者的短名單,如今又收穫了與菲爾茲獎齊名的阿貝爾獎。

凱倫·烏倫貝克的近照。圖/CNN.COM

現在看來這是個令人讚嘆的故事,但是組成這個故事的每個字都凝聚了女性在科學界艱難前進的汗水與淚水。

-----廣告,請繼續往下閱讀-----

這個曾經希望能遠離他人的孤僻女孩,意識到了離群索居只會在漫長的人生中給自己造成傷害,最終毀掉的是職業生涯和與家人朋友的感情。

她不再迴避教學,並開始用自己的經歷去幫助年輕人:她向學生強調學術支持系統的重要性,告誡他們不要成為那種閉門不出、獨自埋頭苦算的老派數學家——和同事們建立聯繫能幫你更好地克服職業生涯中可能遇到的困難。

凱倫·烏倫貝克成為了現代數學領域中性別多元化的標杆人物,但她也坦白地表示過這給自己帶來的挑戰性:「因為我需要做的其實是告訴學生,不完美的人也能成功……我在他們眼中可能是個有名的數學家,但是,我也是個普通人。

數學成就了她,數學也改變了她。

本文轉載自领研网,原文〈“数学界最高奖”阿贝尔奖首次颁给一位女性,她的人生曲折又幸运

-----廣告,請繼續往下閱讀-----
-----廣告,請繼續往下閱讀-----
活躍星系核_96
778 篇文章 ・ 127 位粉絲
活躍星系核(active galactic nucleus, AGN)是一類中央核區活動性很強的河外星系。這些星系比普通星系活躍,在從無線電波到伽瑪射線的全波段裡都發出很強的電磁輻射。 本帳號發表來自各方的投稿。附有資料出處的科學好文,都歡迎你來投稿喔。 Email: contact@pansci.asia