0

0
0

文字

分享

0
0
0

供應鏈中的甲烷外洩,抵銷了天然氣的減碳效益

廖英凱
・2018/07/21 ・2033字 ・閱讀時間約 4 分鐘 ・SR值 588 ・九年級

2018 年 6 月,非營利組織「環境保衛基金(Environmental Defense Fund)」與來自 15 個研究機關的研究者,於《科學(Science)》期刊上發表美國石油與天然氣供應鏈甲烷外洩狀況的研究。該研究認為由於石油與天然氣供應鏈中相當數量(每年約 1300 萬噸)的甲烷外洩,且由於甲烷所造成的溫室效應遠大於二氧化碳,導致天然氣實際的減碳效益明顯不如預期。

天然氣:後化石能源時代的減碳要角

台中第二火力發電廠因為燃燒煤炭成為世界碳排放量第二名的高汙染源。 圖/Chongkian [CC BY-SA 3.0] via wikipedia

對化石能源的依賴,是處理氣候變遷的最大阻礙。而在各種減碳的路徑之中,「燃料轉換」是一種在短期即能見效的方式。所謂的燃料轉換,指的是將高排碳的化石燃料,轉換為低排碳的化石燃料,或是非化石燃料的生質能源。例如,在獲得相同的燃燒熱量之下,將燃燒煤礦改為燃燒天然氣,即可以減少二分之一的排碳量[1]。

煤礦與天然氣排碳量不同的原因,源於其主成分的差異。煤礦的主成分為碳(C),而天然氣的主成分則為甲烷CH4,甲烷的燃燒反應如下:

CH4 + 2O2 → CO2 + 2H2O

在這之中有部分燃燒熱量,是來自於氫原子因氧化反應而產生水分子。又因環境中水分子循環時間遠小於碳分子,且大氣中水的含量容易達到動態平衡,不會像二氧化碳會因人類工業活動而不斷增加。因此,以燃燒天然氣取代燃燒煤礦或石油,便被認為是在不改變人類社會與生活型態,也無須新型科技的研發突破,就能有效減緩大氣中二氧化碳增加速率的好方法。

甲烷外洩抵銷了天然氣的減碳效益

然而,天然氣從開採到使用過程中甲烷的外洩,卻可能會加劇溫室效應。甲烷的全球暖化潛勢(Globoal warming potenrial, GWP),以二十年為評估時間時,為二氧化碳的 72 倍;以一百年為評估時間時,則為二氧化碳的 25 倍[2]。導致低比例的甲烷外洩,也能大幅減少因燃料轉換所帶來的減碳效益。

研究估計,美國的石油與天然氣產業,每年約有1300萬噸的甲烷外洩。這不僅浪費了有限的天然資源(估值約為每年20億美元),也抵銷了一直以來使用天然氣所創造的大部分的減碳效益。

減少甲烷外洩:延緩氣候變遷最迅速實惠的方式

雖然研究結果證實過去數年來美國對天然氣的使用,因甲烷外洩而無助於減緩溫室效應。但研究者仍主張,若能減少石油與天然氣供應鏈上的甲烷外洩,燃燒天然氣仍能比燃燒煤炭對氣候變遷有更小的影響。

若能減少石油與天然氣供應鏈上的甲烷外洩,燃燒天然氣仍能比燃燒煤炭對氣候變遷有更小的影響。圖 / U.S. Air Force

研究建議對於供應鏈上的業者或管理者,可透過光學氣體成像技術進行氣體洩漏調查;在各設施或地面工作車布署被動氣體感測器;利用塔式網路(tower networks)、飛機與衛星建置遙測系統。藉由持續性的反覆監測、取樣,釐清異常外洩的原因,並重新設計或改善與天然氣相關的系統或零組件,以達到有效抑制甲烷外洩。該研究的部分成員也主張, 減少油氣供應鏈中的甲烷外洩,是延緩氣候變遷最迅速也最實惠的方式。

那麼正在擴大天然氣使用的台灣呢?

當然,本則研究是針對美國的情境,相較起台灣,美國有更為蓬勃的化石能源產業以及頁岩氣的開發工作。其供應鏈的龐大繁複,也遠比台灣僅有天然氣的接收、降壓、儲存、與運送來得複雜許多。因此,姑且可假設台灣天然氣的外洩狀況,應低於美國。但就碳足跡與氣候變遷所影響的全球尺度來看,身為天然氣進口國的我們來說,也無法迴避甲烷外洩的環境責任。

天然氣是台灣民眾常接觸的燃料之一。 圖/Magnascan @Pixabay

此外,考量到既有發電規劃中,對天然氣運用量的增加,將使天然氣發電佔比從目前的3成,於 2025 年時提升至 5 成。又從 2014 年高雄氣爆事件,也顯示可能存在因不當施工及欠缺管理與監測機制,而有風險的老舊管線。對於本研究所建議的監測方法,我國又是否已有相應作為,而能優於美國現狀?

面對氣候變遷的嚴峻挑戰,若想實踐「以氣代煤」的減碳策略,仍奠基於我國的天然氣供應鏈上,是否已有能有效抑制甲烷外洩的工程基礎。

注解:

[1]:環保署環保新聞專區〈能源轉型 減污減碳

[2]:Piers Forster, Venkatachalam Ramaswamy, et al. Changes in Atmospheric Constituents and in Radiative Forcing.

參考資料:

文章難易度
廖英凱
30 篇文章 ・ 248 位粉絲
非典型的不務正業者,對資訊與真相有詭異的渴望與執著,夢想能做出鋼鐵人或心靈史學。 https://www.ykliao.tw/

4

31
4

文字

分享

4
31
4
別用愛了,用冰發電吧!——可燃冰的發現、應用及油氣能源的未來
Chih-Chen Huang_96
・2022/02/23 ・6224字 ・閱讀時間約 12 分鐘

立即填寫問卷,預約【課程開賣早鳥優惠】與送你【問卷專屬折扣碼】!

能源與環保間的平衡在全球一直都是十分火熱的議題。火力發電、核分裂發電等高效率的發電方式,或許會對環境及生物造成永久危害;風力發電、大陽能電池等綠能,受限於天候而無法廣泛應用;乾淨又有效率的核融合發電仍在開發階段,還不到可以商用的程度。那麼,通往乾淨能源的這條路,是否就這樣被插上此路不通的標示牌呢?當然不!因為可燃冰為我們另闢了一條蹊徑。

圖一 :正在燃燒的可燃冰。圖/參考文獻 1

那麼,可燃冰究竟是什麼呢?是否如同字面上,是一種可以燃燒的冰?如果是,是何種機制會使冰能被點燃;如果不是,那麼它是怎麼形成冰晶狀態的呢?若你好奇的話,請讀下去吧!本篇會從可燃冰本身、其應用與開採問題,全面地介紹這種新能源。

可燃冰的性質

可燃冰又稱為「天然氣水合物」,其中,甲烷氣體若佔總天然氣的 99%,則稱為「甲烷水合物」。直接觀察它被點燃的樣子,就像是一塊能燃起火焰的冰塊,這也是「可燃冰」一稱的由來。然而,確切來說,這顆「冰塊」其實是水和甲烷氣體在低溫高壓下混合形成的類冰物質。也就是說,可燃冰其實不是冰,而是由水分子組成的一個個「水籠」。如圖二,籠中包含大量的甲烷氣體,因此便不難理解它被稱為「甲烷水合物」的原因。或許你十分好奇水籠的模樣,不過在那之前,我們必須先談談組成水籠的柵欄——氫鍵。

圖二:可燃冰是由水分子組成的一個個「水籠」。圖/參考文獻 2

(一)、氫鍵

氫鍵為組成可燃冰結構舉足輕重之角色,而為介紹水籠及避免混淆重點,氫鍵概念皆舉水(簡式 H2O)為例。顧名思義,氫鍵是一種以「已結合 1 個氧原子的氫原子」為中心,與另一個氧原子所形成的「作用力」。沒錯,氫鍵並沒有產生實際的鍵結,本質上反而是一種電磁力。這個概念或許有點抽象,不過我們可以用小朋友吃蛋糕的例子來理解。

現在,老師分蛋糕給一群小朋友,高年級的小朋友可以分到比較多塊且口味不同的蛋糕,而低年級的小朋友則只有一塊蛋糕。分完蛋糕後,低年級的小朋友會跑去坐在大哥哥旁邊吃蛋糕,因為當他拿出一半的蛋糕分享時,大哥哥也會分享一半的蛋糕給他,如此一來,他們都能吃到 2 種口味的蛋糕。若低年級的小朋友還想再和別人分享一次,他就必須擁有第二塊蛋糕。然而,我們都知道他已經沒有多的蛋糕了,所以他會跑到另一個擁有蛋糕的大哥哥旁邊看著他,希望這個大哥哥能和他分享蛋糕。

看完這個故事,我們可以把蛋糕替換成電子、低年級生替換成氫(價電子數為 1),而擁有很多蛋糕的大哥哥即為擁有許多電子的氧(價電子數為 6)。因此,如圖三(A)所示,當氫和氧各提供 1 個電子時,便會形成共價鍵。同時,已將電子用光的氫,會與另一顆帶有 2 個多餘電子——或稱作「孤電子對」(lone pair)——的氧形成氫鍵。

圖三(A):氫鍵結構。圖/黃之辰繪

其形成原因則如圖三(B),當氫用掉唯一的電子後,部分氫原子相對帶正電,會與另一個擁有孤電子對的原子互相吸引,故部分原子帶負電的氧原子互相吸引。這個吸引力就是氫鍵,並且由於其成因,我們可以說氫鍵就是一種電磁力。

圖三(B):氫鍵形成原理。圖/黃之辰繪

(二)、水籠

當許多個水分子以氫鍵結合時,水籠便形成了。

圖四:水分子間的氫鍵。圖/參考文獻 3

事實上,水籠分為許多種類,有結構 Ⅰ 型水合物、結構 Ⅱ 型水合物以及結構 H 型水合物。如下方圖五,在以單位晶格的尺度下觀察,結構 Ⅰ 型為的水合物是以 2 個五角十二面體(512)的小籠,和 6 個十四面體(51262)的大籠所組成。

這時,你可能會好奇:為什麼是這個組合呢?讓我們來想想拼圖。當我們拿起一塊拼圖,會發現它會有凸出、凹陷,或是平平的不凸出也不凹陷等 3 種樣式的「邊」,或許是 4 個凸出、3 個凸出 1 個凹陷、2 個凸出 2 個凹陷,或是 1 個平平的邊加上 3 個凹陷……。這時,如果我們拿起一塊有「4 個凸出」的拼圖,那麼我們能把另外一塊也是 4 個凸出的拼圖拼在原本的那塊上嗎?

顯然無法。因此,如果我們要將拼圖拼起來,就需要拿出另外 4 片有凹陷的拼圖,各接在原本那塊拼圖上,才能逐漸將這副拼圖拼完。這個「拼拼圖」的概念也就是為什麼水籠結構會需要不同的立體形狀組成了,因為這些不同的形狀負責「鑲嵌」彼此,從而形成一個完整的、沒有空隙的拼圖,也就是這個堅固的水籠。

接下來讓我們繼續介紹另外 2 種結構。結構 Ⅱ 型則以 16 個五角十二面體,加上另一種十六面體(51264)的大籠結合而成;結構 H 型則分別由 2 種小籠—— 3 個五角十二面體,及 2 個十二面體(435663)——與二十面體(51268)大籠組成。其中,不論是大籠或小籠,每個籠中皆包含 1 個甲烷分子。

值得注意的是,甲烷水合物屬於結構 Ⅰ 型水合物,且其分子式為 CH4·8H20。理論上來說,一單位晶格內應含有 8 個甲烷分子與 64 個水分子。然而,由於可燃冰晶體中的水可與鄰近的 2 個水籠共用,因此一單位晶格內實際上只有 46 個水分子,而這也是當我們將可燃冰轉化後,可以產生大量天然氣的原因。

圖五:各類水籠結構及組成。圖/參考文獻 4

二、可燃冰的誕生

上文有提到水和甲烷能在低溫高壓之下生成可燃冰。那麼,是什麼環境才會包含大量的水、足夠的天然氣,同時又有低溫高壓的特性呢?沒錯,就是海洋!現在,我們已經有足夠多的水了,但要如何在海中找到大量的甲烷呢?以大西洋的布雷克海脊(Blake Ridge)為例,含有甲烷的沉積物稱為「氣水化合物穩定帶」(GHSZ,GasHydrate Stability Zone),大約厚 300 至 500 公尺,且位於約 190 公尺至 450 公尺的中深度範圍海域[參考文獻 5]。在這些沉積物的孔隙中,有許多以溶解狀態存在的甲烷。那麼,問題又來了,這些深海礦床是怎麼產生甲烷的呢?答案就是——細菌!

在深海中存在著 2 種細菌:好氧細菌和厭氧細菌。從他們各自的名字來看,很明顯可以知道好氧細菌會進行有氧呼吸,也就是它們會以氧的化學反應來獲得能量。反之,厭氧細菌不用以有氧呼吸來生存,意即它們可以生存在沒有氧的環境中。

在深海礦床中,沉積物孔隙中的水在幾公分的深度便是缺氧狀態的,且由於這個區域的水域包含了沉澱率高、有機碳含量豐富、環境酸鹼值適中等條件,厭氧細菌便會開始作用在這些沉積物的有機碳物質上,並產生甲烷。 

事實上,大陸地區也可以生成可燃冰,但是蘊含量極少,大約只有 1% 的可燃冰儲存在陸域[參考文獻 9]。其原因或許和組成陸地的砂石成分有關,因為科學家採樣之後的結果顯示,這些生成於陸域的甲烷水合物僅會存在於深度 800 公尺以下的砂岩或粉沙岩岩床中。同時,存在於砂石縫隙中的化合物,會被熱力或微生物分解;然而,重量較重的烴類——也就是組成天然氣的原料,卻會在較輕的化合物被分解完之後,才有機會被分解[參考文獻5]。可以看出大陸生成甲烷水合物的條件極為苛刻,因此,以這種方式形成的可燃冰,目前只存在於西伯利亞和阿拉斯加的永凍土中。

三、能源議題的救世主?

可燃冰在近幾十年突然出現在人們的面前,一躍成為炙手可熱的能源議題新寵兒。事實上,人類早在 1810 年就已經於實驗室中發現天然氣水合物這種物質,只不過受限於當時的時空背景以及科學發展進程,1934 年才在美國的輸氣管道中,發現天然的甲烷水合物這種「可以燃燒的冰塊」。直到 1968 年,蘇聯科學家才終於在西伯利亞發現了天然氣水合物礦藏[參考文獻 6],而在此期間,人們普遍認為天然氣水合物大多只會出現在太陽系外圍的低溫區[參考文獻5]

那麼,這種神祕的、甚至連科學家都還沒完全搞清楚生成機制的化合物,究竟是怎麼在這場能源大賽中「殺出重圍」的呢?這和可燃冰的轉化率、蘊藏量、能源危機,甚至人類環保意識的提升都有不可或缺的關係,可謂是天時地利人和的結果。

然而,目前可燃冰離完全商用仍有很長的一段路要走。先不提這個,我們來談談轉化率,顧名思義就是「可燃冰轉換成天然氣的效率」。前面有提到,當可燃冰轉化後,即可產生大量天然氣,而若我們精確地看數字,就可以發現 1 立方公尺的可燃冰分解後,可釋放出大約 164 立方公尺的天然氣[參考文獻 6]

這個轉化率著實驚人,因為若拿同等體積的天然氣和可燃冰相比,可燃冰能產出的能量是天然氣的 150 至 180 倍!所以,若可燃冰能順利轉為商用,無疑能使「運輸天然氣加蓋地下管線」、「天然氣存量減少以致價格上漲」等問題迎刃而解。 

不過,某種能源能是否能順利轉為商用,還有一個重要的條件——蘊藏量。目前,人類就正在面臨石化燃料存量枯竭的問題,然而人們的生活早已和石化燃料密不可分,小至織品原料,大至交通工具,或許都會面臨一場重大的革新,而這些無疑會造成經濟動盪,故這是十分棘手且嚴峻的狀況。

那麼,可燃冰的蘊藏量究竟能供人類使用多久呢?根據美國的天然氣需求量來看,僅開發美國本土外海的天然氣水合物,就足以供美國人使用 2000 年[參考文獻 9]!而台灣在西南海域發現的存量,可以供台灣使用約 40 年[參考文獻 10]!科學家也預估,可燃冰的天然存量大約是天然氣的 2 至 10 倍[參考文獻 5]

由於可燃冰驚人的轉化率、龐大的蘊藏量,再加上燃燒後不會產生殘渣等特性,造成的汙染相較於現今正在使用的各種燃料來說減少許多。在人類盡力追求經濟產能與環保平衡的今天,無疑是救世主一般的存在。

四、如何開採可燃冰

可燃冰看似是目前能源議題的最佳解,但我們對它的瞭解仍遠遠不夠,因為我們還不知道如何快速、安全且大量開採。自 40 年前第一次發現礦藏至今,科學家不斷探索、採集並分析可燃冰這種新興燃料,即使瞭解仍十分有限,但也已經發展出一些鑑別以及開採的方法。除了以前傳統、直觀(但是相對來說更低效且粗魯)的加熱法及減壓法以外,甚至有了更新型的開採方法。不過,在介紹新型方法前,我們可以先從較傳統的方法開始,以便更加瞭解開採可燃冰最基本的模型與原理。由於此種方法較為直觀,篇幅會較為簡短。

以下分別介紹 3 種傳統與新型開採方法:

(一)、傳統——加熱法與減壓法

加熱法,顧名思義就是將可燃冰層以對流法、電磁加熱法[參考文獻 6]等直接升溫,將可燃冰分解為天然氣與水,並且直接以管線收集天然氣。減壓法則是以管線導出可燃冰層下方的氣體或流體,使可燃冰層的壓力變小。此時,可燃冰中的「冰」就會因為壓力下降而液化成為水,使得天然氣被釋放。

(二)、新型——二氧化碳置換開採法

這個方法可說是傳統加熱法的進化型態,兩者都是以同樣的原理運作,即:使可燃冰升溫,讓水合物中的天然氣釋放出來,並加以收集。那麼,二氧化碳置換法為什麼是進階版的加熱法呢?原因就在於這種方法能在開採可燃冰的同時,將一部份的二氧化碳轉為水合物,封存在海底。以環保的角度來說,簡直可以稱得上是高收益。

此方法的核心概念是利用天然氣水合物和二氧化碳水合物保持穩定時的壓力差進行開採,意思就是,當我們把壓力控制在特定範圍下,天然氣水合物就會分解,而適合這個壓力的二氧化碳水合物就會形成[參考文獻 6]。圖六是二氧化碳置換法的示意圖,圖六(A)是開發前蘊藏可燃冰礦藏的海床。開採時,如圖六(B)所示,我們需要在可燃冰礦層的上方及下方都注入二氧化碳,下方那一層是主要運作的區域,而上方則用以阻隔並穩定海床。

接著,因為壓力被控制在適合二氧化碳水合物生成的範圍,因此當這種水合物逐漸生成並放熱時,最靠近底層的可燃冰就會被這些熱量分解,轉化出大量甲烷。此時如圖六(C),這些甲烷會被導管收集,所以下方的二氧化碳就會上移、填補空缺,然後持續生成二氧化碳水合物,使更多的可燃冰分解、釋放甲烷。在這種連鎖反應下,我們就可以達到在不斷釋放可燃冰中甲烷的同時,不斷(以水合物的形式)封存注入至海床中的二氧化碳[參考文獻 11]

圖六:以二氧化碳封存置換甲烷氣示意圖。圖/參考文獻 11

(三)、新型——固體開採法

最初的固體開採法是直接採集可燃冰固體,並將可燃冰固體移至淺水海域後加以分解,因為若是以物理或化學方法就地分解,會產生消耗能源,而且經費昂貴。之後,固體開採法也衍生出了另一種更進階的方式,稱為「混合開採法」。這種方法是將可燃冰就地轉為固體、液體混合的狀態,再將包含了可燃冰固體、液體及氣體的「泥漿」以導管傳輸至海平面上作業,藉此取得天然氣[參考文獻 6]。這種不用再將礦產運送至淺水區的方式顯然更加方便操作,且以導管運輸的方式能進一步減少可燃冰的損耗。

五、台灣的可燃冰及各式能源之比較

相對於其他科技、科學競賽來說,台灣在可燃冰的發展上,雖然起步較晚,仍然有相當亮眼的成績。2018 年,科技部的第二期能源國家型科技計畫(NEP-II)就在臺灣西南外海採集到天然氣水合物。而誠如主導計畫的中央大學地科系許樹坤教授所說:「台灣因沒有自主能源,更顯珍貴。」教授說:「台灣是一個能源缺乏的島嶼,99% 的能源都仰賴進口。科學的新發現,若能配合工程技術開發,就能帶來新契機。台灣西南海域蘊藏豐富,預估可用上 40-50 年,目前日本和中國大陸都已試開採[參考文獻 17]。」若是台灣能成功開採並使用可燃冰,或許便能在這場白熱化的能源議題中,找到一線生機。

各式能源之比較表。資料來源/參考文獻 16

參考文獻

  1. Frozen Heat: Exploring the Potential of Natural Gas Hydrates.(2017, May).Office of Fossil Energy and Carbon Management.
  2. Sara E. Harrison. Natural Gas Hydrates. Physics 240, Stanford University, Fall 2010.
  3. Model of hydrogen bonds (1) between molecules of water. Wikipedia.
  4. Juwon Lee and John W. Kenney III. Clathrate Hydrates. IntechOpen.
  5. 甲烷水合物,維基百科。
  6. 可燃冰,百度百科。
  7. Kenneth C. Janda. Gas Hydrate Structure.
  8. 冰與火戰歌,經濟部石化產業高值化推動辦公室簡報。
  9. 解開可燃冰封印,科學人雜誌。
  10. 西南海域可燃冰若開採學者:可供台灣使用逾40年,國立中央大學。
  11. 以二氧化碳封存置換甲烷氣示意圖,中央地質調查所。
  12. 超流體,維基百科。
  13. 固液共存,百度百科。
  14. Coal – Types, Uses and Formation
  15. Table 8.2. Average Tested Heat Rates by Prime Mover and Energy Source, 2010 – 2020,SAS Output (eia.gov)
  16. 各式發電比較,國立交通大學。
  17. 重大突破!中大地科團隊首次在台灣海域鑽獲「可燃冰」,國立中央大學。
所有討論 4
Chih-Chen Huang_96
1 篇文章 ・ 3 位粉絲
目前就讀中央大學光電系。喜歡閱讀,還有邊境牧羊犬。

2

10
1

文字

分享

2
10
1
地球在 20 年間「亮度」變低了!——地球暖化讓陽光反照率直直落
Mia_96
・2021/10/23 ・2760字 ・閱讀時間約 5 分鐘

地球暖化會造成溫度升高?不稀奇!地球暖化會造成人類生活環境越來越嚴峻?也不稀奇!但你有聽過,因為地球暖化,讓我們的亮度竟然逐年遞減,地球變得越來越暗嗎?

地球亮度的改變並不是近期才出現的新興議題,關於地球亮度的變化,科學家早在 1990 年代前後便提出一種現象「全球黯化」(global dimming)去解釋為何地表獲得的太陽光能量越來越低。

當時透過資料指出,進到地球的太陽能量大幅降低,從 1950 到 1990 年入射至地表的太陽光能量,竟然平均減少 4%! 也就是身處在地球上的人類會覺得地表的亮度似乎逐漸地降低。

但入射地表能量降低的原因並非是太陽發出能量的變化,而是因為近幾年我們最常耳聞的,空污現象! (圖/pixabay

當人類使用石油、煤炭等非再生能源發電時,會在環境中產生許多氣膠微粒,而這些氣膠微粒進入大氣,微粒可以吸收、反射入射到地球的太陽光,使太陽之能量無法進到地球表面,進而造成地球亮度降低。

而全球黯化同時也影響著人們過去對於全球暖化的理解,當全球黯化造成入射到地表的太陽光減少時,代表著地球所獲得的能量並不如過往我們所想像的這麼多。換句話說,全球黯化所造成的冷卻效應竟比不上人們所造成的暖化速度!

知曉地球改變亮度的方法——地照!

近期最新研究更是顯示,1998 年到 2017 年近十年內,地球的反照率逐年下降!除全球黯化造成地表獲得太陽能量減少外,當從外太空看著地球時,地球竟然也越來越暗了!

反照率是一種常用於亮度表示的方式之一,其指的是太陽電磁波段入射至地表的總量質,除以被地表反射的量值所得出的數字。不同的地表特性即有不一樣的反射量質。因此,透過反照率的升降,科學家也可以推估氣候變遷對環境所產生的變化與影響。

計算反照率的方式十分特別,在科學中我們將其稱為「地照」!

地照現象指的為當太陽光照射到地表,地表會反射部分太陽光,而當地表反射太陽光至月球未被太陽照到的地方時,月球又會將地表所反射至月面的光線反射回地球。

看似應該沒有被太陽光照射到的月球表面,其實也會因為地球反射之陽光而產生微弱的光。而最適合觀測地照的時間通常為弦月時分。 (圖/Wikipedia

地照的變化與地表的改變息息相關。例如冰雪的反射率較高,當地表溫度較低,累積較多冰雪時,地照數據便可能會上升;而洋面的反照率較低,當地表溫度較高,造成冰雪融化成海洋,則地照數據便可能會下降。

透過地照反射的光線強弱,可以推測地球反照率的變化,進而推測地表本身變化。 (圖/Wikipedia

除了利用地照觀測地球反照率外,為使觀測更加精確,科學家利用於 2000 年發射的 CERES 儀器(Clouds and the Earth’s Radiant Energy System)觀測大氣至地表的太陽光輻射與地表放出之輻射,並進一步分析對影響地球溫度的重要因子──雲,和太陽輻射的交互關係。

CERES 主要希望可以解答雲在氣候變遷中所扮演的角色與造成的影響,是美國國家航空暨太空總署地球觀測系統(EOS)計畫中的一部分。 圖/Wikipedia

研究結果分析發現,從 2000 年到 2015 年,地球反照率曲線一直維持接近平坦的狀態,但近年,地球反照率的衰退卻日益明顯,如下圖表示:

(圖/參考資料 1

橫軸座標為年度,縱軸座標為地照反照率之異常改變(單位為每瓦/平方公尺),黑色為地照異常之數據,藍色為 CERES 觀測到異常之數據,而灰色陰影區域則為誤差範圍。從圖中可以看出,地照反照率在這幾年下降約 0.5 W/m2,而 CERES 之數據則是下降約 1.5 W/m2

十年一變──太平洋年季震盪

科學家推測,改變反照率的原因,是週期性發生在太平洋的氣候變化──太平洋年季震盪。

太平洋年季震盪指的為太平洋的海水溫度會以十年為週期尺度產生變化:當北太平洋和熱帶太平洋間的海水溫度較高時,稱作暖相位;而當北太平洋和熱帶太平洋間海水溫度較低時,稱作冷相位。

而地球亮度改變的原因,正是因為太平洋年季震盪到了暖相位,造成海面低雲減少,反照率降低!

低雲較為溫暖,其主要成分是由水滴組成,當太陽輻射照射水滴時,較多太陽反射至太空,地球的反照率較高,也造成地表溫度降低;而高雲主要成分由冰晶組成,透光性較佳,再加上高雲通常體積較低雲薄,故太陽輻射可以順利進入地表,地球反照率相對降低。

當北太平洋與熱帶太平洋間海水溫度升高時,洋面上空氣需達到飽和的水氣量相對增加,氣塊達到飽和條件較高,低層雲較難生成。(其實背後原因極其複雜,作者僅是以最簡單的方式嘗試解釋。)當低層雲減少時,反射率降低,造成較少太陽輻射至太空,地球亮度因此變得越來越暗。

雲在地球輻射能量中一直扮演著重要的角色,低雲反射太陽輻射的能力較強,高雲吸收地球輻射的能力較強,因此較多的低雲往往造成地表降溫,而較多的高雲則會造成地表增溫。 (圖/pixabay

交織纏繞的反饋機制

看完整篇文章也別急著下結論!其實地球上的現象不僅環環相扣,影響因素更是族繁不及備載,從海溫改變的原因、高低雲量多寡的變化、反照率升降的主因……,我們都很難用單純或是絕對的一段話去完整解釋自然界的現象。

科學家所能做到的,是透過原因推導、盡力的去解釋現象,所以關於地球反照率下降的趨勢原因,除了太平洋年季震盪、海溫升高、低雲變化等,或許也還有科學家尚未清楚的其他可能性。

但同時,令科學家擔心的事情是,因全球暖化造成地表的反照率降低,代表地表接收到的能量、進到地表之能量相對增加,而吸收的能量又加速全球暖化的速度,地球或許會因為這樣的回饋機制持續升溫,造成更加嚴重的溫室效應。如何去因應溫度上升造成的種種問題,也將會是我們需要不斷去思考問題。

參考資料

  1. AGU AdvancesEarth’s Albedo 1998–2017 as Measured From Earthshine
  2. science alert,《Two Decades of Data Show That Earth Is ‘Dimming’ as The Planet Warms Up
  3. Wikipedia,《Clouds and the Earth’s Radiant Energy System
  4. Wikipedia,《行星照
所有討論 2
Mia_96
15 篇文章 ・ 20 位粉絲
喜歡教育又喜歡地科,最後變成文理科混雜出生的地科老師

0

15
3

文字

分享

0
15
3
如何幫畜牧業減排溫室氣體?——教會小奶牛上廁所,可有效降低「一氧化二氮」排放!
阿咏_96
・2021/10/17 ・2615字 ・閱讀時間約 5 分鐘

立即填寫問卷,預約【課程開賣早鳥優惠】與送你【問卷專屬折扣碼】!

近年來,大眾對於「氣候變遷」這個詞越來越不陌生,國際間也會簽訂不同協議與政策,來減緩溫室氣體的排放,講到這邊,我們通常會想到化石燃料的使用,但較少被人們注意到的是,畜牧業也是排放甲烷、二氧化碳、一氧化二氮等溫室氣體的大宗,甚至會造成水污染及空氣污染。

最近由心理學家團隊發表的研究,提出一種可能的解決方案,以減少畜牧業對環境的影響,也就是——「教小奶牛上廁所」!

看到這邊一定頭上冒出好幾個問號,為什麼畜牧業會對氣候變遷造成影響?是哪方面的影響?為什麼教奶牛尿尿可能可以減緩對環境的衝擊呢?要怎麼教?

圖/Pixabay

畜牧業和氣候變遷到底有什麼關係?

首先,根據聯合國糧食與農業組織 (FAO) 的報告,全球畜牧業每年約排放 7.1 兆噸的二氧化碳,大約是人為排放溫室氣體的 14.5%,其中,牛是排放量最大的物種,佔畜牧業排放量的 65 %,而大約來自於腸道發酵、糞便儲存與加工、飼料生產過程、其他能源使用等活動,FAO 也提出了目前評估可實行的減緩方案,其中一項便是提高奶牛的飼料開發以及飼養技術,來減少消化過程中和分解糞便時產生的甲烷 (CH4) 與一氧化二氮 (N2O) 。

而這篇研究的主角之一就是一氧化二氮 (N2O) ,雖然它只佔全球溫室氣體總排放量的 5% ,但它把熱留在地球的能力卻將近是二氧化碳的 300 倍!除此之外,每次排放的一氧化二氮 (N2O) 都會停留在大氣中超過一世紀,可以說是一種「長壽」的溫室氣體。從 1990 年起,紐西蘭的一氧化二氮排放量增加了五成,主要是來自乳製品業擴展以及氮肥使用,因此紐西蘭政府制定了一個目標,要在 2050 年之前將一氧化二氮的排放減少到淨零。

但這和牛有什麼關係呢?

紐西蘭的一氧化二氮排放量增加與乳製品業擴展有關。 圖/Pixabay

從「牛尿尿」開始的氮旅程

原因是牛尿液中氮含量很高,而動物尿液中的氮來源主要是尿素  (CH₄N₂O),在紐西蘭和澳洲,通常將牛飼養在戶外,牠們排尿之後,就開始一趟名為「氮循環」的旅程,首先尿素會迅速在土壤裡被水解成銨鹽 (NH4+) ,再經過微生物「亞硝化菌」氧化成亞硝酸根 (No2),接著,另外一群微生物「硝化菌」,將亞硝酸鹽 (No2) 再氧化成硝酸根 (NO3),以上的過程稱為「硝化作用 (Nitrification) 」。

當然,旅程還沒有結束,另一群稱作「脱硝菌」或「脫氮菌」的微生物會將硝酸鹽還原成氮氣 (N2),叫做「去硝化作用」或「脫氮作用」,而一氧化二氮 (N2O) 是反應的中間產物,會直接被釋放到大氣中。

難道把牛飼養在牛舍裡就沒有問題了嗎?

代誌不是憨人想得這麼簡單!當牛尿液中的氮和地板上的糞便混在一起時,會產生另一種空氣污染物——氨 (NH4)。

File:Nitrogen Cycle 2.svg
生態環境中的氮循環系統。細菌在其中扮演了關鍵角色,將氮源轉換為各種化合物,能夠被生物利用。圖/WIKIPEDIA

所以,如果牛的尿液可以被收集處理,裡面所含的氮就可以被轉換,減緩對環境的衝擊,但是要怎麼收集牛的尿液呢?

最直接的方式就是,教小牛到「廁所」裡尿尿。

要怎麼教會小牛尿尿?獎勵和拆解步驟是關鍵

研究團隊利用行為心理學的原理,訓練小牛到特定的地方排尿,這個原理便稱為「操作制約 (Operant Conditioning)」,由美國哈佛大學心理學教授史金納 (B.F. Skinner) 於 1938 年提出,當時有個著名的動物實驗稱為「史金納箱 (Skinner Box)」,將飢餓的小白鼠放在箱子裡,內有電動裝置紀錄動物的正確反應次數和頻率,因飢餓不安而活動的小白鼠,偶然壓到槓桿就會得到少量食物,當以後小白鼠看到槓桿,再去壓桿的頻率就會比以前高。對小白鼠來說,因反應而出現的食物是「強化物」,對壓桿這個「操作性反應」產生了強化作用。

除此之外,他們還運用訓練小孩上廁所,一種叫做「反向鏈接技術 (Backward Chaining Technique) 」的方式,將目標拆解成小步驟,從最後一步開始訓練到第一步。

首先,小牛被限制在圍欄設置成的廁所區域裡,當小牛排尿後再給予牠們喜歡的食物進行強化。然後,把小牛帶到圍欄外的一條走廊上,並再次強化進去廁所裡尿尿的行為,如果小牛在走廊上就排尿,便會用讓牠稍微不開心的噴水阻止牠。

經過幾次強化訓練,他們訓練的八頭小牛中,有七隻學會了在廁所尿尿,而且學習的速度和人類小孩差不多快!牠們大約只受了 15 天的訓練,大部分的小牛在 20 至 25 次排尿後學會了整套,比三到四歲的人類小孩還快。

小奶牛在廁所尿尿的影片。資料來源/參考資料 1

由此,研究團隊得到了兩個結論,第一是牛能夠學會注意自己的排尿反射,在準備尿尿時會移動到廁所裡;第二,在可以得到獎勵的情況下,牠們學會先憋尿,除非到了正確的地方。

牛牛學會了,然後呢?

在知道可以訓練牛牛到廁所排尿後,下一步要怎麼做才能夠離減排溫室氣體的目標越來越近呢?

作者認為希望未來可以優化廁所裝置,自動檢測排尿以及給予獎勵,就像是放大版的史金納箱一樣。除技術層面外,像是紐西蘭、澳洲等地的畜牧業,大多將牛飼養在開放的圍場,應該要把廁所設在哪裡,或者牛願意走多遠過來上廁所,都是需要進一步了解的問題,也才能夠將這項技術真正運用在不同國家的畜牧業,實際做到減緩畜牧業對氣候變遷的影響。

參考資料

  1. Dirksen, N., Langbein, J., Schrader, L., Puppe, B., Elliffe, D., Siebert, K., … & Matthews, L. (2021). Learned control of urinary reflexes in cattle to help reduce greenhouse gas emissions. Current Biology, 31(17), R1033-R1034.
  2. Gerber, P. J., Steinfeld, H., Henderson, B., Mottet, A., Opio, C., Dijkman, J., … & Tempio, G. (2013). Tackling climate change through livestock: a global assessment of emissions and mitigation opportunities. Food and Agriculture Organization of the United Nations (FAO).
  3. 張春興(民80)。教育心理學:三化取向的理論與實踐。台灣東華書局。
  4. Backward Chaining Technique
  5. 全國法規資料庫:空氣污染防治法施行細則
  6. The science of nitrous oxide
阿咏_96
11 篇文章 ・ 348 位粉絲
You can be the change you want to see in the world.