0

0
0

文字

分享

0
0
0

還記得今年那超火熱的五月天?難得一遇的特例或是氣候變遷下的慣例

活躍星系核_96
・2018/08/07 ・3294字 ・閱讀時間約 6 分鐘 ・SR值 553 ・八年級

立即填寫問卷,預約【課程開賣早鳥優惠】與送你【問卷專屬折扣碼】!

 

  • 文/孫天祥

恭喜大家一同見證臺北測站三項 122 年來的 5 月新紀錄:月最高溫紀錄、最高月平均溫度紀錄與極端高溫天數。

「已經夏天了嗎?不是才五月嗎?怎麼還沒有端午節就這麼熱?」這大概是許多人今年五月的心聲。以臺北為例,2018 年 5 月 27 日上午 11 時 17 分,中央氣象局臺北測站量測到氣溫 38.2℃,不僅一舉打破了自 1991 年起高懸 27 年的五月最高溫紀錄,也寫下臺北測站自 1897 年開站以來,122 年間五月的最高溫紀錄(見下圖 1)[1]。且今年五月均溫來到 28.2℃ 也是歷史新高(下圖 2)[1]。

在極端高溫天數方面:2018 年五月臺北測站出現 8 天,也打破了原 2016 年的紀錄(5 天)。筆者在此恭喜大家,一同見證這歷史的一刻;但又不得不納悶:難道,臺灣的五月已經算夏天了嗎?

臺北測站 1897-2018 年歷年五月最高溫紀錄。(點圖放大)資料來源:中央氣象局,TCCIP重繪製

春夏秋冬、四季分明是臺灣的氣候特色,然而 2018 年的五月天似乎已悄悄發出求救訊號。

在回答這個問題之前,筆者想先問問大家:「你覺得春天何時結束?夏天又是何時開始呢?」你的答案決定了你是哪一種人!

  • 老一輩的人喜歡用二十四節氣來劃分:以立夏(5 月 5 日)這天象徵夏季的到來,一直到立秋(8 月 7 日)結束。
  • 天文學家對夏季的定義則是則是從夏至(6 月 21 日)到秋分(9 月 23 日)之間,長度一樣,均為94天。
  • 務農人家行事以農曆為基準,春季是農曆正月到三月;夏季始於農曆四月初一(2018/5 /15),終於農曆六月廿九(2018/08/10),歷時約 87 天。

然而,臺灣民眾大多使用國曆,普遍認為春季是國曆三、四、五月;夏季則是六、七、八月。

倘若使用一般民眾普遍認知的標準,今年五月明明熱到像夏天,還熱到破紀錄,卻被歸類在春天,怎麼說都好像有點不合理呀,到底 2018 年的五月是不是單一年度的個案例外呢?

為了解決這個問題,我們必須回顧過去一百多年五月的月均溫紀錄[1]。透過臺北測站自 1897 年起的五月均溫度觀測資料暨趨勢線(圖 2),我們可以看出:

臺北測站過去 122 年來,五月平均氣溫有逐漸上升的趨勢,升溫趨勢約為每年0.016℃。隨著時間越近,從過去長期 122 年增溫趨勢:每年 0.016℃;50 年增溫趨勢:每年 0.037℃,到近十年增溫趨勢:每年 0.233℃。可見增溫趨勢有明顯加快的現象。

看到這裡,大家心裡所想的應該與筆者同:原來臺北五月平均氣溫已經慢慢地成長這麼多,那麼季節分佈是否會有所改變?而這些高溫紀錄會不會也是一個臺灣氣候變遷的求救訊號呢?

臺北測站歷年五月平均溫度紀錄暨升溫趨勢圖。資料來源:中央氣象局,TCCIP重繪製)

以多年溫度資料計算「氣候季節」

氣候變遷的其中一個變化是平均溫度升高,那你可曾想過:溫度的變化是否會對季節的時序造成影響呢?科學家與專家們通常並非使用上述「固定日期」的方式來定義季節的起始,他們使用的是「氣候季節」[2],這是一種以多年溫度資料的年循環週期作為基礎的分季方法,通常依照下列四個步驟來定義氣候季節(夏季與冬季)。

步驟一:計算出長週期(週期一年以上)的每日均溫資料。

步驟二:將日均溫資料以總體經驗模態分解,得到一組濾波後的長期日均溫資料,波峰(最高溫)與波谷(最低溫)分別代表夏季峰值與冬季峰值。以長期日均溫資料中溫度最高的連續 90 日,其頭尾兩日的平均溫度作為夏季閥值;反之,溫度最低的連續 90 日,頭尾兩日的平均即為冬季閥值。

步驟三:以 1961-1990 年為氣候基期,將其平均值定為氣候季節之夏季與冬季的閥值。

步驟四:透過夏(冬)季閥值的給定,以閥值與長期日均溫資料所交會之點,便可決定夏季起始、夏季結束、冬季起始與冬季結束等四個時間點。

以溫度定義冬夏兩季的方法與步驟。(點圖放大)圖/作者提供

透過「氣候季節」一窺臺灣的季節時序變化

臺灣研究氣候變遷的學者專家們,整理了臺北、臺中、臺南、恆春、臺東以及花蓮等六個具有 100 年觀測資料的氣象局溫度測站長期變遷資料(表 1),以氣候季節的定義方式,分析六個測站在 1957 至 2006 年約 50 年期間的冬季與夏季日期與峰值溫度[3]。發現除恆春站較無明顯變化,其他各測站均有夏季日數增加的情形。此現象以臺中站最為明顯(每十年增加 8.41 天),其餘四站約每十年增加 5~6天。冬季日數方面:仍是恆春站較無明顯變化,其他站則是以每十年 5~8 天的速率減少。看到這裡不得不說:恆春真不愧是恆春,果然是「四季恆春」。

總和而言,在這 50 年期間,臺灣夏季已經增長近一個月,而冬季則縮短近一個月[3],此結果也顯示臺灣的季節時序已明顯改變。

表 1:臺灣季節變化趨勢,六測站夏冬兩季日數的長期變化趨勢統計。正值表日數增加、反之則代表日數減少(單位:日/十年);以及峰值溫度趨勢(單位:℃/十年),正值表溫度上升。(資料年份:1957~2006 年)

一窺明日世界:未來五月高溫日數恐增加

除了研究過去氣候的變化之外,科學家更使用全球氣候模式推估未來氣候。針對大家關心的「極端高溫」現象,他們使用了德國 Max Plank Institute 發展的 ECHAM5/MPI-OM(以下簡稱 ECHAM5),以及日本氣象廳發展的 MRI-JMA(以下簡稱 MRI)兩種氣候模擬結果進行推估[3],同時比較兩模式模擬 20 世紀末(1979-2003 年)與 21 世紀末(2075~2099 年)的極端高溫天數之差異,藉此了解極端高溫變化趨勢。

首先,在極端高溫日的溫度增幅方面,與 20 世紀末相比,21 世紀末全台極端高溫日的溫度增加可能超過 0.7℃。極端高溫日數改變部分,與 20 世紀末相比,21 世紀末全台可能增加超過 90 日。兩項指標依北中南東等四分區略有不同,但可以發現兩個模式在兩項指標均呈現成長趨勢(圖4)[4]。

臺灣極端高溫未來推估:高溫日的平均溫度改變量(左)與高溫日數改變量(右)。藍色表ECHAM5模式推估;綠色表MRI模式推估。
圖片來源:《臺灣氣候的過去與未來》,TCCIP。

研究團隊亦分析兩個模式對於未來極端高溫日的時間分佈的推估,發現原本在 20 世紀末,極端高溫日多集中在 6、7、8 月,佔全年度高溫事件的九成,這的確符合一般民眾對於夏季時間就是 6 月到 8 月的期望。然而,未來極端高溫日的推估,恐怕就沒這麼樂觀了。推估結果顯示,在 21 世紀末,極端高溫日發生機率將大幅提高,不只是發生在 6、7、8 月,而是從 4 月到 10 月都有機會發生,其中以 5 月與 9 月增加最為明顯,代表高溫五月天有可能成為新常態(圖5)[4]

圖 5:臺灣極端高溫未來推估:月份與天數。藍色為使用 ECHAM5 動力降尺度模式進行推估、右側橘色則是使用 MRI 動力降尺度模式進行推估。 圖片來源/臺灣氣候的過去與未來,TCCIP。

走筆至此,我們可以得到一些結論:在氣候變遷的影響之下,平均溫度與最高溫度皆有增加的趨勢,這也連動影響「季節變遷」。人們傳統對「夏季」的起始時間定義可能已經改變,夏天不但變會得更熱,也將會變得更長,今年五月出現破紀錄的高溫,以及像夏天的天氣型態,並非偶然,未來將可能是常態!

最後置入性行銷一下,文中提到的氣候變遷研究學者,不是別人,正是科技部臺灣氣候變遷推估資訊與調適知識平台計畫團隊(Taiwan climate change projection information and adaptation knowledge platform),又簡稱 TCCIP 計畫團隊 [5]。此計畫主要任務在提供可靠、客觀且在地化的氣候變遷資料,因此,除了本文提到的溫度與季節變遷之外,更研究了其他氣候變遷課題,例如:降雨變遷、颱風變遷等等。

 

最後,就用 TCCIP 推出的上面這支短片:《一分鐘看懂臺灣氣候變遷科學報告2017》,來做個結尾。想知道更多、瞭解更多,也歡迎參觀臺灣氣候變遷推估資訊與調適知識平台粉絲專頁

參考資料:

  1. 中央氣象局觀測資料查詢系統
  2. Yan, Z., J. Xia, C. Qian, and W. Zhou, 2011: Changes in Seasonal Cycle and Extremes in China during the Period 1960-2008. Adv. Atmos. Sci., 28 (2), 269-283.
  3. 周佳、李明安、許晃雄、洪志誠、盧孟明、陳正達等,2017:《臺灣氣候變遷科學報告2017 第一冊 物理現象與機制》
  4. 國家災害防救科技中心、中央研究院環境變遷研究中心、科技部「臺灣氣候變遷推估資訊與調適知識平台計畫」,2018:《臺灣氣候的過去與未來》
  5. 臺灣氣候變遷推估資訊與調適知識平台
文章難易度
活躍星系核_96
752 篇文章 ・ 96 位粉絲
活躍星系核(active galactic nucleus, AGN)是一類中央核區活動性很強的河外星系。這些星系比普通星系活躍,在從無線電波到伽瑪射線的全波段裡都發出很強的電磁輻射。 本帳號發表來自各方的投稿。附有資料出處的科學好文,都歡迎你來投稿喔。 Email: contact@pansci.asia

1

2
0

文字

分享

1
2
0
金魚的記憶才不只 7 秒!記憶力怎麼回事?好想要超大記憶容量
鳥苷三磷酸 (PanSci Promo)_96
・2022/12/01 ・2720字 ・閱讀時間約 5 分鐘

立即填寫問卷,預約【課程開賣早鳥優惠】與送你【問卷專屬折扣碼】!

 

本文由 美光科技 委託,泛科學企劃執行。

你是不是也有過這樣的經驗?本來想上樓到房間拿個東西,進到房間之後卻忘了上樓的原因,還完全想不起來;到超巿想著要買三四樣東西回家,最後只記得其中兩樣,結果還把重要的一樣給漏了;手機 Line 群組裡發的訊息,看過一轉身回頭做事轉眼就忘了。

發生這種情況,是不是覺得很懊惱:明明才想好要幹嘛,才不過幾秒鐘的時間就全部忘記了?吼呦!我根本是金魚腦袋嘛!記憶力到底是怎麼回事啊?要是能擁有更好的記憶力就好了!

明明才想好要幹嘛,一轉眼卻又都忘記了。 圖/GIPHY

金魚的記憶才不只 7 秒!

忘東忘西,我是金魚腦?!無辜地的金魚躺著也中槍!被網路流傳的「魚只有 7 秒記憶」的說法牽累,老是被拖下水,被貼上「記憶力不好、健忘」的標籤,金魚恐怕要大大地舉「鰭」抗議了!魚的記憶只有 7 秒嗎?

根據研究顯示,魚類的記憶可以保持一到三個月,某些洄游的魚類都還記得小時候住過的地方的氣味,甚至記憶力可以維持到好幾年,相當於他們的一輩子。

還有科學家發現斑馬魚在經過訓練之後,可以很快學會如何走迷宮,根據聲音信號尋找食物。但是當牠們壓力過大時會記不住東西,注意力分散也會降低學習效率,而且記憶力也會隨著衰老而逐漸衰退。如此看來,斑馬魚的記憶特點是不是跟人類有相似之處。

記憶力到底是怎麼回事?

為什麼魚會有記憶?為什麼人會有記憶?記憶力跟腦袋好不好、聰不聰明有關係嗎?這個就要探究記憶歷程的形成源頭了。

依照訊息處理的過程,外界的訊息經由我們的感覺受器(個體感官)接收到此訊息刺激形成神經電位後,被大腦轉譯成可以被前額葉解讀的資訊,最終會在我們的前額葉進行處理,如果前額處理後認為是有意義的內容就有可能被記住。

在問記憶好不好之前,先了解記憶形成的過程。圖/GIPHY

根據英國神經心理學家巴德利 Alan Baddeley 提出的工作記憶模式,前額葉處理資訊的能力稱為「短期工作記憶」,而處理完有意義、能被記住的內容則是「長期記憶」。

你可能會好奇「那記憶能被延長嗎」?只要透過反覆背誦、重覆操作等練習,我們就有機會將短期記憶轉化為長期記憶了。

要是能有超大記憶容量就好了!

比如當我們在接聽客戶電話時,對方報出電話號碼、交辦待辦事項,從接收訊息、形成短暫記憶到資訊篩選方便後續處理,整個大腦記憶組織海馬迴區的運作,如果用電腦儲存區來類比,「短期記憶」就像隨機存取記憶體 RAM,能有效且短暫的儲存資訊,而「長期記憶」就是硬碟等儲存裝置。

從上一段記憶的形成過程,可以得出記憶與認知、注意力有關,甚至可以透過刻意練習、習慣養成和一些利用大腦特性的記憶法來輔助學習,並強化和延長記憶力。

雖然人的記憶可以被延長、認知可以被提高,但當日常生活和工作上,需要被運算處理以及被記憶理解的事物越來越多、越來越複雜,並且需要被快速、大量地提取使用時,那就不只是記憶力的問題,而是與資訊取用速度、條理梳理、記憶容量有關了!

日常生活中需要處理的事務越來越多,那就不只是記憶力的問題,而是有關記憶力容量的問題了……。圖/GIPHY

再加上短期記憶會隨著年齡增加明顯衰減,這時我們更需要借助一些外部「儲存裝置」來幫我們記住、保存更多更複雜的資訊!

美光推出高規格新一代快閃記憶體,滿足以數據為中心的工作負載

4K 影片、高清晰品質照片、大量數據、程式代碼、工作報告……在這個數據量大爆炸的時代,誰能解決消費者最大的儲存困擾,並滿足最快的資料存取速度,就能佔有這塊前景看好的市場!

全球第四大半導體公司—美光科技又領先群雄一步!除了推出 232 層 3D NAND 外,業界先進的 1α DRAM 製程節點可是正港 MIT,在台灣一條龍進行研發、製造、封裝。日前更宣布推出業界最先進的 1β DRAM,並預計明年於台灣量產喔! 

美光不久前宣布量產具備業界多層數、高儲存密度、高性能且小尺寸的 232 層 3D NAND Flash,能提供從終端使用者到雲端間大部分數據密集型應用最佳支援。 

美光技術與產品執行副總裁 Scott DeBoer 表示,美光 232 層 3D NAND Flash 快閃記憶體為儲存裝置創新的分水嶺,涵蓋諸多層面創新,像是使用最新六平面技術,讓高達 232 層的 3D NAND 就像立體停車場,能多層垂直堆疊記憶體顆粒,解決 2D NAND 快閃記憶體帶來的限制;如同一個收納達人,能在最小的空間裡,收納最多的東西。

藉由提高密度,縮小封裝尺寸,美光 232 層 3D NAND 只要 1.1 x 1.3 的大小,就能把資料盡收其中。此外,美光 232 層 NAND 存取速度達業界最快的 2.4GB/s,搭配每個平面數條獨立字元線,好比六層樓高的高速公路又擁有多條獨立運行的車道,能緩解雍塞,減少讀寫壽命間的衝突,提高系統服務品質。

結語

等真正能在大腦植入像伊隆‧馬斯克提出的「Neuralink」腦機介面晶片,讓大腦與虛擬世界溝通,屆時世界對資訊讀取、儲存方式可能又會有所不同了。

但在這之前,我們可以更靈活地的運用現有的電腦設備,搭配高密度、高性能、小尺寸的美光 232 層 NAND 來協助、應付日常生活上多功需求和高效能作業。

快搜尋美光官方網站,了解業界最先進的技術,並追蹤美光Facebook粉絲專頁獲取最新消息吧!

參考資料

  1. https://pansci.asia/archives/101764
  2. 短期記憶與機制
  3. 感覺記憶、短期記憶、長期記憶  
  4. 注意力不集中?「利他能」真能提神變聰明嗎?

文章難易度
所有討論 1

0

3
0

文字

分享

0
3
0
蟲蟲危機!氣溫上升加速害蟲蠶食農作物——《圖解全球碳年鑑》
商業周刊
・2022/10/03 ・3771字 ・閱讀時間約 7 分鐘

立即填寫問卷,預約【課程開賣早鳥優惠】與送你【問卷專屬折扣碼】!

 

目前全世界的農田,因為病蟲害而損失 10% 至 15% 的農作物。

氣候和農業害蟲

昆蟲的生理機能對溫度的改變敏感,溫度上升 10°C 會使其新陳代謝率加倍,溫度突然上升會加速昆蟲的食物消耗、成長和移動。

昆蟲的生理機能對溫度的改變敏感,溫度上升 10°C 會使其新陳代謝率加倍,溫度突然上升會加速昆蟲的食物消耗、成長和移動。圖/Pixabay

最近一份《科學雜誌》(Science)的研究,證實溫度提高 2°C 可能使大量農作物遭到昆蟲啃食,在歐洲和北美洲,小麥和高粱的蛋白質成分顯著下降,西歐則是有近 75% 的小麥作物遭到蟲害。

溫度上升會改變害蟲的整體數量,結果造成:

  • 世代更替的頻率增加。
  • 地理區域擴大。
  • 昆蟲散播的植物病。
  • 更可能捱過冬天。
  • 昆蟲和其掠食者不再同步。
  • 植物的成長和昆蟲不同步。

氣候與農業疾病

真菌影響糧食作物, 而且通常在 20-30° C 時成長旺盛,氣候變遷使全球溫度上升,沿赤道區也將會發生真菌疾病的改變。

愛爾蘭馬鈴薯歉收是真菌疾病造成,被稱為「立枯病」,進而傳染當地的農作物。這些疾病在遠離赤道的地區極可能再度出現,影響地區的糧食安全。

20 億人的缺糧危機

地球上有超過 20 億人受到缺糧的威脅,或是缺乏安全營養的食物,大氣中二氧化碳濃度升高使溫度升高、洪水氾濫以及陸地和土壤劣化,於是農作物產出的營養價值和品質以及家畜的生產力下降。

地球上有超過 20 億人受到缺糧的威脅,或是缺乏安全營養的食物。圖/Pixabay

策略與國際研究中心(The Center for Strategic & International Studies, CSIS)表示,溫度中數每上升攝氏 1 度,和農作物產出下降 10% 之間有關連性,熱浪可能造成農作物的全面歉收,至於土地管理不良、森林砍伐以及牲畜過度放牧而破壞草地,則加重了氣候相關的影響,也增加糧食系統的整體威脅。

溫度中數每上升攝氏 1 度,和農作物產出下降 10% 之間有關。圖/商業週刊

食物匱乏將持續惡化,導致更多饑荒和營養不良,此外農作物和家畜大規模遠離養分耗盡或無法使用的土壤也將更為常見。

陸地和土壤劣化的問題

陸地和土壤失去支持生命的物理性、化學性或生物特質,稱為劣化。相較工業革命和大規模農耕之前的狀態,如今地球上超過 75% 的土地養分殆盡,科學家預期 2050 年以前, 可能到達 90%。

世界各地,每年有相當半個歐盟(418 萬平方公尺)的土地變得較不具生產力與耐受力,而以非洲和亞洲受創最重。

岩石和土壤崩解後,被風和雨沖刷侵蝕而使陸地劣化,這個過程是自然發生的,但極端天氣事件使它更加嚴重。

岩石和土壤崩解後,被風和雨沖刷侵蝕而使陸地劣化,這個過程是自然發生的,但極端天氣事件使它更加嚴重。圖/Pixabay

隨著海岸地區的海平面上升, 鄰近一帶的陸地被海水淹沒,剩下的陸地會因為鹽分和汙染物增加而變得不堪使用。

土壤劣化也透過以下發生:

  • 農業活動
  • 動物吃草
  • 森林砍伐
  • 都市化程度升高

如今,32 億人經歷某種程度陸地劣化的效應,導致糧食供應減少,且往往伴隨遷徙的增加。

土壤的重要性

在我們腳下的棕色塵土,裡頭至少包含所有全球生物多樣性的四分之一,而且對提供乾淨的水是不可或缺,1 茶匙裡的土壤有數十億微生物,據估計,土壤中所含的碳,比大氣多了 3 倍。

95% 的全球食物供應仰賴土壤,來養活大部分的生物。氣候暖化達 2°C 將使土壤中超過 2,300 億公噸的二氧化碳外洩,可能使地球突然陷入不可逆的氣候變遷中。

其他面臨的問題

每一分鐘有大約 30 座足球場的土壤,因為以下原因而侵蝕或退化:

  • 農業化學物質
  • 森林砍伐
  • 過度放牧

殺蟲劑的使用

二次世界大戰後,大型的化學公司鎖定食品業來擴充市場,在接下來的 50 年間,美國的殺蟲劑使用量增加 10 倍,但農作物的損失近乎翻倍,殺蟲劑毒死微生物,而這些微生物為世界各地數億公畝土地帶來健康土壤,例如土壤中的蚯蚓被噴灑殺蟲劑後,只生長到正常重量的一半,生殖力也遠不及未被殺蟲劑噴灑的蚯蚓。

二次世界大戰後,美國的殺蟲劑使用量增加 10 倍。圖/Pixabay

風力

陸上風力渦輪(onshore wind turbine)需要發電半年,來抵銷建設它所用掉的能源,但在此之後,在它使用年限 24 年間,生產出 100% 無碳的電力。

大規模太陽能

印度的巴德拉太陽能公園(Bhadla Solar Park)是全世界最大的太陽能農場(solar farm),創造出 2,245 百萬瓦(MW)的電,超過許多燒炭或核能電廠。它位在沙漠,太陽能板是由機器人清理,而這些機器人的運作不需要用到水。

主要農作物產量下降

根據聯合國農糧組織(United Nations Food and Agriculture Organization, FAO),2020 年有高達 8.11億人飽受飢餓之苦,約占全人類的 10%。

隨著全球的平均溫度上升,乾旱和洪水發生的頻率可能降低糧食供應,而更嚴重的天然災害和活躍的病蟲害也將進一步減少農作物產出,目前有針對氣候變遷對糧食產出做出整體預測,全球最重要的農作物玉米,預估將減少高達 24% 產量,第二重要的小麥,在升溫 1.5° C 的情況下減少 14%,在升溫 2° C 的情況下減少 37%,大豆的收成量在升溫 2° C 下則可能掉落 10-12%。

目前世界可以藉由向不受影響的地區採購,來因應特定地域的乾旱或農作物歉收,美國、巴西、阿根廷和烏克蘭這 4 個最大的玉米出口國,占了出口的 87%,過去這些國家因為地理位置相距遙遠,不會同時出現農作物歉收的情形,如今這些地區的產出,會在升溫 2° C 下減少 8 至 18%,在升溫 4° C 下,下降 19 至 47%。在升溫 2° C 下,4 大農作區同時歉收的風險是 7%,溫度上升到 4° C 時,風險飆高到 86%。

我們的人是在追求「富足」而不是「永續」,

對我而言,「永續」意謂維持國家資源在得以維生的線上,

直到這些資源最終消失,或工業已經受夠而離開。

追求「富足」是確保你的孫子不需要像你那麼努力工作,

確保當我們把這園子留給他們時,他們將擁有所需的一切。

⸺喬.馬丁(Joe Martin),獨木舟雕刻大師

一個起司漢堡的碳足跡,等於 9 個鷹嘴豆餅(falafei)加上口袋餅,或是 6 份炸魚和薯條(fish and chips)。

糧價也因此飆高

糧價由供需的改變決定,雖然需求大致穩定,但供給可能變動。旱災和水災降低農作物的生產力和農田的產出,威脅食物的供應而導致價格上升,行銷和包裝成本的改變也會。

貿易也是主要因素,英國有大約 40% 的食物(香蕉、茶、咖啡、奶油、羊肉等)要靠進口,大部分國家的食物供應也仰賴貿易,美國的食物來自加拿大、墨西哥等國家,船運的汽油和貨櫃成本也占糧食成本的一部分。

糧價高漲會因為氣候變遷而惡化,2021 年的平均糧食價格是近 50 年來最高,巴西的乾旱、洪水和霜害,使咖啡價格上漲 30%,消費者只能眼巴巴看著咖啡的價格節節高升。

糧價高漲會因為氣候變遷而惡化,2021 年的平均糧食價格是近 50 年來最高,巴西的乾旱、洪水和霜害,使咖啡價格上漲 30%。圖/Pixabay

俄羅斯、美國和加拿大⸺杜蘭小麥最大供應國⸺的乾旱,導致杜蘭小麥減產,麵包和麵條漲價已經讓消費者有感,以番茄為主的蔬果價格,也因為佛羅里達和加州氣候變遷問題而節節高升。

世界曾經目睹幾次糧價飆高,1973 年,全球石油危機和乾旱造成糧價上漲,2008 年,石油價格上漲、澳洲乾旱以及美國決定種玉米來生產燃料而不是食用用途,因此推高動物飼料的價格而導致糧食價格膨脹,2021 年,糧價飆高的情形類似 1973 年,只是這次極端天氣扮演較顯著的角色。

糧價上漲影響各種收入的人,只是方式不同。糧價直接威脅低收入戶的糧食供應導致飢荒,至於較高收入家庭,則是較不健康的飲食和肥胖增加。

到2030 年以前,10 種主要農作物當中,9 種的生長速度將遲緩或開始放緩。至少部分來自氣候變遷,平均價格將看到顯著上升。圖/商業週刊

到 2030 年以前,10 種主要農作物當中,9 種的生長速度將遲緩或開始放緩。至少部分來自氣候變遷,平均價格將看到顯著上升。

——本文摘自《圖解全球碳年鑑:一本揭露所有關於碳的真相,並即時改變之書》,2022 年 9 月,商業周刊,未經同意請勿轉載。

3

2
0

文字

分享

3
2
0
全球熱浪災情頻傳!臺灣熱成這樣,竟然不符合「熱浪」的定義?
Heidi_96
・2022/09/02 ・3393字 ・閱讀時間約 7 分鐘

立即填寫問卷,預約【課程開賣早鳥優惠】與送你【問卷專屬折扣碼】!

 

世界各地熱浪災情頻傳

今年稍早,熱浪侵襲印度和巴基斯坦一帶, 5 月氣溫頻頻突破 45℃,最高溫甚至來到 51℃,是 122 年以來最強的熱浪。

對此,瑞典哥德堡大學(University of Gothenburg)地球科學教授陳德亮表示,要是溫室效應持續加劇,南亞地區每年頻繁出現的熱浪,將影響超過 5.5 億人口,造成食物短缺和難民潮——這樣的場景很有可能在 80 年內上演。

在日本,6 月就迎來了氣象觀測史上持續最久的「猛暑日」(單日最高氣溫超過 35℃),總共持續了 9 天。

下圖為日本氣象廳歷年來的統計數據:綠色長條圖對應縱軸,是每年猛暑日的天數;藍色折線圖是 5 年平均線;紅色斜線則是長期下來的平均趨勢。

1910–2021 年間,日本出現猛暑日的頻率呈現上升趨勢。圖/日本氣象廳

在英國,7 月氣溫飆至 40.3℃。然而,2020 年才有研究團隊推測,在 2100 年前,英國氣溫超過 40°C 的可能性極低,沒想到才過兩年,就打破了氣候模型的預測。

針對今年英國熱浪的情況,世界氣象歸因組織(World Weather Attribution)的分析報告也指出,要不是人為造成的氣候變遷,英國絕對不可能超過 40°C,而且熱浪的溫度也會比現在還要低 2–4°C。

英國熱浪的溫度逐年升高。圖/Nature

在歐洲,居民同樣飽受熱浪之苦。法國、西班牙、葡萄牙、義大利等地都超過 45°C,泰晤士河源頭乾涸、萊茵河水位創下歷史新低,中歐的水文地標「飢餓之石(Hungerstein)」也重見天日。

在捷克境內易北河的飢餓之石上,就刻著這樣一行字:「如果你看到我,那就哭泣吧(Wenn du mich siehst, dann weine)」。

為什麼會有熱浪?跟一般的熱有什麼不同?

簡單來說,熱浪的成因與地球的氣壓系統有關,特別是高壓系統。

當高壓系統長時間盤踞一地時,就稱為「熱穹(heat dome)」。在熱穹範圍內,因為高壓中心氣流下沉,阻礙地面暖空氣上升,導致暖空氣更密集、溫度更高,連帶影響地表溫度。

高氣壓迫使上升的暖空氣下降,導致暖空氣更密集、溫度更高。圖/NOAA

除此之外,影響各地熱浪的因素都不相同,但大致可以分成以下幾種:

  1. 北極暖化噴射氣流遷移:伍德威爾氣候研究中心(Woodwell Climate Research Center)的氣候科學家佛朗西斯(Jennifer Francis)說明「北極暖化」導致北極噴射氣流擺動,原本應該帶給歐洲冷空氣,可是卻沒有,因此造成熱浪。
  2. 聖嬰現象反聖嬰現象:「聖嬰現象」將赤道東太平洋的溫暖海水帶到美州西岸;「反聖嬰現象」則帶來冷水。目前,地球處在反聖嬰時期,因此未來若是聖嬰現象發生,夏季溫度將進一步升高,美洲熱浪也會更加頻繁。
  3. 燃燒化石燃料:科學家指出,人為燃燒化石燃料確實導致了氣候變遷,而且這樣的影響範圍遍及全球。英國布里斯托大學(University of Bristol)氣候科學家薇琪.湯普森(Vikki Thompson)則表示,熱浪強度將隨著全球氣溫升高而上升。
太平洋海水溫度圖:上圖為聖嬰現象期間,下圖則為反聖嬰現象期間。圖/中央氣象局

臺灣熱成這樣,不算熱浪嗎?

先講結論,不算!在臺灣氣象觀測史上,也從來沒有出現過熱浪。

根據中央氣象局統計資料,在橫跨近百年的前 30 筆高溫排行榜中,近三年(2020–2022)就包辦了其中 12 筆,從 38.8℃ 到 40.2℃ 都有。今年 8 月 21 日,花蓮富源自動觀測站更測得 41.6℃ 的高溫。[註]

註:這項記錄沒有列入中央氣象局的高溫排行榜,因為能夠上榜的只有 28 個人工測站的資料,其他 300 多個自動測站都被排除在外。

臺灣氣象觀測史上前 10 筆高溫紀錄。資料來源/中央氣象局

可是,都這麼熱了,為什麼不算熱浪呢?考量到不同地區有不同類型的氣候,世界各國對於熱浪的認定標準都不同。

若參考世界氣象組織(WMO)的定義,必須是「連續 5 日的最高溫,超過歷年最高溫度平均值 5℃ 以上」,才能稱為熱浪。

以臺北市為例,必須連續 5 天出現 39.3℃ 以上的高溫,才符合熱浪的天氣定義,因此即使是受到熱島效應影響的臺北市,至今也都沒有出現過熱浪。

延伸閱讀:我來到一個島,它叫做都市熱島——《都市的夏天為什麼愈來愈熱?》

那麼,未來有可能發生熱浪嗎?應該也不會。

雖然偶爾有熱帶大陸氣團,從中國帶來乾熱的大氣,但臺灣四面環海,有海風調節,海溫最高也只有 30℃ 左右,不太可能出現異常高溫。

極端高溫有多危險?連狗狗都可能被柏油路燙傷!

在熱浪期間,由於高壓籠罩、降雨減少,更容易發生乾旱,而乾燥炎熱的氣溫也容易引發森林大火,造成惡性循環。

舉例來說,加拿大西部去年遭逢熱浪,氣溫飆升至 49.6℃,頻繁的森林大火促成積雨雲形成,帶來致災性雨量,或是降下閃電,引發更多火災。

除了生態危機以外,熱浪還很有可能造成農作物欠收與能源供應短缺。在交通運輸方面,歐洲鐵軌膨脹變形,紛紛減班或停駛,而水位下降、河床乾涸等問題,也阻礙了水路運輸。

另外,英國也呼籲民眾盡量不要外出遛狗,免得狗狗中暑、曬傷,或是被柏油路燙傷。

如何應對極端高溫造成的「熱傷害」?

在氣溫高、濕度高、風速弱,或是天氣突然變熱的情況下,如果在劇烈運動、戶外作業時,沒有適時補充水分與鹽分,就可能對身體造成「熱傷害」,包括熱痙攣、熱暈厥、熱水腫、熱衰竭與熱中暑。根據衛福部統計,今年 7 月,就有 444 人因熱傷害而送往急診,是去年同期的 1.8 倍,而且呈現逐年上升的趨勢。

俗話說得好:「預防勝於治療。」與其逐一認識這五種熱傷害(請參考熱傷害自我保護懶人包),不如學學如何預防,那就是——多喝水、待在陰涼處,隨時注意身體狀況。尤其是嬰幼兒、長者、過重者、慢性病患、戶外活動者、服用特定藥物者,更要小心防範。

然而,要是不幸碰上這種情況,請按照以下五個步驟處理:

  1. 陰涼:移動到陰涼處休息。
  2. 脫衣:脫掉多餘的衣物。
  3. 散熱:保持環境通風。(切勿泡冰水、擦酒精!)
  4. 喝水:迅速補充水分和電解質,如運動飲料。
  5. 送醫:若情況嚴重,如意識不清、痙攣、休克等,應儘速送醫。
夏日炎炎,沒事別出門曬太陽,也要記得多補充水分。圖/衛生福利部國民健康署

參考資料

  1. 熱浪煉獄!巴基斯坦城市氣溫達51℃ 中暑民眾苦不堪言:這種高溫將奪走我們的生命
  2. Ullah, S., You, Q., Chen, D., Sachindra, D. A., AghaKouchak, A., Kang, S., et al. (2022). Future population exposure to daytime and nighttime heat waves in South Asia. Earth’s Future, 10, e2021EF002511.
  3. 大雨や猛暑日など(極端現象)のこれまでの変化
  4. Christidis, N., McCarthy, M. & Stott, P.A. (2020).The increasing likelihood of temperatures above 30 to 40 °C in the United Kingdom. Nature Communications, 11:3093. 
  5. Without human-caused climate change temperatures of 40°C in the UK would have been extremely unlikely
  6. Extreme heatwaves: surprising lessons from the record warmth
  7. 熱浪來襲,是天災還是人禍?
  8. Explainer: What’s causing the recent U.S. heat waves?
  9. What is a heat dome?
  10. Extreme weather: What is it and how is it connected to climate change?
  11. Thompson, V., Kennedy-Asser, A. T., Vosper, E., Lo, Y., Huntingford, C., Andrews, O., Collins, M., Hegerl, G. C., & Mitchell, D. (2022). The 2021 western North America heat wave among the most extreme events ever recorded globally. Science advances, 8(18), eabm6860. 
  12. 聖嬰現象(ENSO)|交通部中央氣象局
  13. 天氣排行榜|交通部中央氣象局
  14. 地獄之門再開啓 台北會那麼熱嗎
  15. 越來越熱!什麼是熱浪?氣候變遷會對您我造成哪些「熱傷害」?
  16. 熱傷害自我保護懶人包
  17. 防熱傷害三要訣 夏日炎炎保安康
所有討論 3