0

0
0

文字

分享

0
0
0

如何讓「蘇丹紅鴨蛋」或「芬普尼雞蛋」不再出現:談化學物質管理的秘訣撇步

行政院環境保護署毒物及化學物質局_96
・2018/07/11 ・3663字 ・閱讀時間約 7 分鐘

本文由行政院環境保護署毒物及化學物質局委託,泛科學企劃執行

  • 文/林宇軒

月圓人團圓的中秋節即將到來,每到佳節是不是覺得要來一塊月餅才應景呢?不過你知道嗎?月餅裡可口的鹹蛋黃,在去年(2017)曾驗出含有工業用染料蘇丹紅,引起了軒然大波。蘇丹色素於今年 6月 28日被環保署公告為「毒性化學物質」,列入環保署跟衛福部工業原料聯合稽查的範圍中。究竟這個蘇丹紅有什麼厲害之處?這類食安事件又該如何杜絕呢?

月餅與粽子中的鹹蛋黃是很多人的心頭好。圖/zhaona1206@pixabay

讓蛋黃染紅的「蘇丹紅」

「蘇丹紅」(Sudan stain),其實是幾種相似但不同的分子的統稱,這幾種化學物質常作為染料,主要包括:蘇丹紅 I (Sudan I)、蘇丹紅 II(Sudan II)、蘇丹紅 III(Sudan III)、蘇丹紅 IV(Sudan IV, Scarlet Red)、蘇丹紅 7B (Sudan 7B)、蘇丹紅 G(Sudan Red G),顏色上看起來都是紅色的1

常見四種蘇丹紅分子的結構。圖 / Sudan I By Benjah-bmm27, Sudan II By Harbin, Sudan III By Harbin, Sudan IV By Harbin@Wikipedia Commons

蘇丹紅色素因為本身分子結構的關係,易溶於油脂,在工業上常用來將溶劑、蠟或汽油增色,甚至有些鞋油也會添加蘇丹紅,讓顏色看起來比較飽滿。

作為便宜易取得、穩定又不易褪色的紅色染料,蘇丹紅也因此常在食安事件中佔有「一席之地」,包括 2005 年歐盟和中國就曾經發現一些辣椒粉產品中驗出了蘇丹紅色素(新聞連結),而在 2006 年在中國也爆出為了讓鴨蛋黃增色,而在鴨子飼料中添加蘇丹紅的事件,相隔 11 年後,2017 年的中秋前夕,臺灣這邊也發現月餅的鹹蛋黃竟然含有蘇丹紅(新聞連結),另外由於前述的脂溶特性,蘇丹紅也會囤積在鴨隻的脂防細胞中2-4。而臺灣業者違法的使用蘇丹紅的理由也跟中國的事件一樣:就為了讓蛋黃有更飽滿的橘紅色。

蘇丹紅其實就是紅色粉末狀的色素。圖/Wikimedia

這類色素的分子都被國際癌症研究機構 IARC 列為第三類致癌物(尚無足夠研究供分類是否為致癌物)。蘇丹紅的結構上和二甲基黃相似,都屬於偶氮化合物,主要的致癌機制可能源自於蘇丹紅這類染料經過肝臟會代謝為苯胺(Aniline)、氨基萘酚等胺類化學物質,這些物質同樣被 IARC 列為第二類或第三類(對人類可能有致癌性/無法分類)致癌物。(延伸閱讀:關於 IARC 的致癌物分類,詳見本文

國際癌症研究機構 IARC 致癌性分類,第二類為對人類可能有致癌性,第三類為無足夠人群、動物或致癌機制研究供分類其對人類的致癌性。 圖/IARC

那是否應該對蘇丹紅聞之色變?其實也並沒有必要。幾種屬於蘇丹紅的化學物質,其致癌性尚未明朗,因此在保險起見、有選擇的情況下,我們會選擇明確知道其風險、風險比較小的化學物質作為食品添加物、嬰幼兒用品等,但只要使用方式正確,落實「化學物質管理」,任何化學物質都能夠為我們所用。

聞「蛋」色變?落實「化學物質管理」好撇步

除了蘇丹紅鴨蛋事件之外,2017 年還發生了「芬普尼蛋事件」,以及「戴奧辛蛋事件」,真的是令蛋農「蛋疼」,使大眾聞「蛋」色變的 1 年。

到底這些有疑慮的化學物質是如何進到食物中的?事實上,除了我們最熟悉的在食品的製程中,使用了非公告的食品添加物這種情況(違反食安法)以外;在各項「蛋」的事件中,則可以發現另一種化學物質進入食物的來源:在原料的生產階段,所使用的化學物質未經良好的「化學物質管理」。如 2017 年的蘇丹紅鴨蛋事件,就是發生了在飼料中添加了非食用的蘇丹紅色素;或是在雞舍中錯誤使用「芬普尼」。

從許多食安事件,尤其這幾項關於「蛋」的事件可以發現:未追蹤高風險工業用化學品的流向、不了解用藥方法與劑量,都常是發生問題的主因。然而,亡羊補牢,為時未晚;確切歸納出問題發生的模式,落實化學品的管理,解決管理上的漏洞,就更有機會能夠防止食安問題一再發生。

從蘇丹紅鴨蛋、芬普尼雞蛋,這些食安問題都讓日常飲食蒙上一層陰影。圖/lacuisinesportive @pixabay

因此針對雞蛋這類的產業,自 2018 年起化學局推動輔導化學物質自主管理升級,針對蛋農、飼料業業者自行輔導業者,宣導四項主要原則「一問再問」、「正確使用」、「用藥安全」及「四要管理」。

「一問再問」確認藥品用途

首先,從蘇丹紅鴨蛋的事件,可以看出「一問再問」與「用藥安全」的重要。蛋農朋友在購買藥品使用之前,要仔細去了解藥品究竟能不能使用在食品,尤其是不要聽信偏方、要確認推銷員的話是否是真的。

「用藥安全」注意人身安全

其次,在使用藥品的時候,要先確認藥品的包裝標示非常明確;不要輕易聽信偏方,並且在藥品作業的時候都要注意人身防護、不要過度曝露在藥品之中。

行政院環境保護署化學局「食安專區」:化學管理

「使用正確」:方法、劑量、用途要正確

接下來部分則是在拿到合法藥品後也要注意「使用正確」;在芬普尼蛋事件中,蛋農拿含有芬普尼的藥劑來噴灑雞舍,造成雞蛋的污染。從這個事件可以看到「使用正確」的重要性,除了藥品能否使用之外,也要去注意該化學藥品可以使用的方法、容許使用的劑量是多少、用途也要正確才行。

「四要管理」:標示、記錄明確

最後,化學局從 2017 年開始推動的「四要管理」也要注意,在購買藥品時,要注意店家有沒有分區存放食品添加物和工業用化學品?也要注意不要買到標示不明的化學物質,只用有政府許可的用藥。購買了正確的藥品後,也同樣要分區存放,也務必要記錄下跟誰購買、購買量,還有每次用了多少、剩下多少庫存量等等資訊,確實記錄下各項藥品流向。

做好化學物質管理,杜絕食安事件

這些化學物質管理措施都有仔細做到的話,才能盡可能地杜絕工業用化學品或有致癌風險的化學物質進入食品原料,最終影響廣大民眾的身體健康,與蛋農朋友們的生計。

化學局在今年 6 月 28 日公告修正第四類毒化物列表,將蘇丹紅系列列入其中 7。依照毒性化學物質管理法,一旦被公告列為毒化物管理,製造業者必須取得核可,並依照規定申報買賣流向,有效阻絕誤用8。化學物質管理的步驟乍看繁瑣,但藉由層層把關留意,以及在環節中的所有人有自覺、有意識地完整進行化學物質管理,相信未來可以更有效阻止不該出現的化學物質進入食品供應鏈,讓每個人都能享有更好的食品安全。

參考資料:

  1. Erdemir, U. S., Izgi, B., & Gucer, S. (2013). An alternative method for screening of Sudan dyes in red paprika paste by gas chromatography-mass spectrometry. Analytical Methods5(7), 1790-1798.
  2. 鹹鴨蛋檢出蘇丹紅,3 分鐘搞懂前因後果 – 農傳媒 (2017/09/29)
  3. 撲殺 7100 隻!鴨吃蘇丹紅 脂肪高度殘留 – TVBS 新聞網 (2017/09/30)
  4. 檢出蘇丹紅 雲林兩鴨場進行蛋.鴨隻銷毀 – 公視新聞網 (2017/09/30)
  5. 戴奧辛蛋原因成謎,官方定調非持續污染,彰化地檢接手偵辦 – 農傳媒 (2017/05/05)
  6. 全台恐慌戴奧辛蛋風暴 彰檢查了1年原因成謎 – 蘋果日報 (2018/03/29)
  7. 蘇丹紅列第四類毒化物 沒許可證敢賣 6 月起開罰 – udn新聞網 (2018/04/27)
  8. 毒性化學物質管理法 – 法務部全國法規資料庫
  9. 國際癌症研究機構 IARC

延伸閱讀:

  1. 「二甲基黃」在二戰時期引起的食安危機:該讓人民心慌慌,還是繼續食用致癌奶油黃? – Pansci 泛科學
  2. 芬普尼是惡魔還是天使?在聊芬普尼蛋前先來一份風險管理吧! – PanSci 泛科學

備註:

  1. 蘇丹紅為多種化學物質,被國際癌症研究機構(IARC)列為「第三類致癌物質」。
    蘇丹紅 I、蘇丹紅 II、蘇丹紅 III

    蘇丹紅IV,英文又名Scarlet Red
  2. 環保署於 2018 年 6 月 28 日公告 16 種化學物質為毒性化學物質,包括蘇丹色素共 14 種具食安風險的化學物質。

 





文章難易度
行政院環境保護署毒物及化學物質局_96
52 篇文章 ・ 3 位粉絲
行政院環境保護署毒物及化學物質局,落實毒物及化學物質之源頭管理及勾稽查核,從源頭預防管控食安風險,追蹤有害化學物質,維護國民健康。 網站:https://www.tcsb.gov.tw/

0

8
0

文字

分享

0
8
0

地震規模越大,晃得越厲害?

鳥苷三磷酸 (PanSci Promo)_96
・2021/09/16 ・3706字 ・閱讀時間約 7 分鐘

本文由 交通部氣象局 委託,泛科學企劃執行。

某天,阿雲跟阿寶分享了一個通訊軟體上看到的資訊:

阿雲:「欸,你知道最近有個傳言說,花蓮有 7.7 級地震,如果發生的話台北會有 5.0 級的震度耶!」

阿寶:「蛤?那個傳言也太怪了吧,應該是把規模和震度搞混了!」

震度:量度地表搖晃的單位

確實常常有人把地震的規模跟震度搞混,實際上,因為規模指的是地震釋放的能量大小,所以當一個地震發生時,它的規模值已經決定了,只是會因為測量或計算的方式不同,會有些許的數字差異,而一般規模計算會到小數點後第一位,故常會有小數點在裡面。然而震度指的意思是地表搖晃的程度,度量表示方式通常都是以「分級」為主,比如國外常見、分了 12 級震度的麥卡利震度階,就是用 12 種不同分級來描述,而中央氣象局目前所使用的震度則共分十級,原先是從 0 級到 7 級,而自 2020 年起,在 5 級與 6 級又增了強、弱之分,也就是震度由小而大為 0-1-2-3-4-5弱-5強-6弱-6強-7 等分級,所以在表示上我們以整數 + 級或是強、弱等寫法,就可以區分規模和震度,不被混淆了!

而為什麼專家常需要強調震度和規模不一樣?那是因為震度的大小,是受到許多因素的影響。地震發生後,造成地表搖晃的主要原因是「地震波」傳來了大量能量,規模越大的地震,代表的就是地震釋放的能量越大,就像是你把擴音的音量不斷提高時,會有更大的聲音傳出一般。所以當其他的因素固定時,確實會因為規模越大、震度越大。

可是,地震波的能量在傳播過程中也會慢慢衰減,就像在演唱會的搖滾區時,在擴音器旁往往感覺聲音震耳欲聾,但隔了二、三十公尺之外,音量就會變得比較適中,但到了會場外,又會變得不是那麼清楚一樣。所以無論是地震的震源太深、或是震央離我們太遙遠,地震波的能量都會隨著距離衰減,一般來說震度都會變得比較小。

「所以,只要把那個謠言的台北規模 5.0 改為震度 5 弱,說法就比較合理了嗎?」阿雲說。

「可是,影響震度的因素還有很多,像是我們腳下的岩石性質,也是影響震度的重要因素。」阿寶說。

場址效應:像布丁一樣的軟弱岩層放大震波

原本我們都會覺得,如果地震釋放能量的方式就像是聲音或是爆炸一般,照理說等震度圖(地表的震度大小分布圖)上會呈現同心圓分布,但因為地質條件的差異,分布上會稍微不規則一些,只能大致看出震度會隨著離震央越遠而越小。地震學上有一個專有名詞叫做「埸址效應」,指的就是因為某些特殊的地質條件下,反而讓距離震央較遠的地方但震度被放大的地質條件。其中最常見的就是「軟弱岩層」和「盆地」兩種條件,而且這兩種還常常伴隨在一起出現,像是 1985 年的墨西哥城大地震,便是一個著名的例子。

影片:「場址效應」是什麼? 布丁演給你看

墨西哥城在人們開始在這邊發展之前,是個湖泊,湖泊中常有鬆軟的沉積物,而當湖泊乾掉之後,便成了易於居住與發展的盆地。雖然 1985 年發生的地震規模達 8.0,但震央距離墨西哥城中心有 400 公里,照理說這樣的距離足以讓地震波大幅衰減,而地震波傳到盆地外圍時,造成的加速度(PGA)大約只有 35gal,在臺灣大約是 4 級的震度,然而在盆地內的測站,卻觀測到 170gal 的 PGA 值,加速度放大了將近五倍,換算成震度,也可能多了一至二級的程度,也造成了相當程度的災情。盆地裡的沉積物,就像是裝在容器裡的布丁一樣,受到搖晃時,會有更加「Q 彈」的晃動!

1985 年墨西哥城大地震的等震度圖。圖/wikipedia

因此,在臺灣,雖然臺北都會區並沒有比其他區有更多更活躍的斷層,但地震風險仍不容小覷,因為臺北也正是一個過去曾為湖泊的盆地都市,仍有一定程度的地震風險,也需要小心來自稍遠的地震,除了建築需要有更強靭的抗震能力,強震警報能提供數秒至數十秒的預警,也多少讓人們能即時避災。

斷層的方向與震源破裂的瞬間,也決定了等震度圖的模樣

阿雲似懂非懂的接著問:「可是啊,為什麼有的時候大地震的等震度圖長得很奇怪,而且有些時候震度最大的地方都離震央好遠呢!也太巧合了吧?」

「這並不是巧合,因為震央下方的震源,指的其實是地震發生的起始點,並不是地震能量釋放最大的地方啊!」阿寶繼續解釋著。

「蛤!為什麼啊?」阿雲抓抓頭,一邊思考著。

地震是因為地下岩層破裂產生斷層滑動而造成的,雖然不是每個地震都會造成地表破裂,但目前科學家大多認為,地震的破裂只是藏在地底下,沒有延伸到地表而已,而且從地震的震度,也可以看出地底下斷層滑移的特性。

斷層在滑動時,主要的滑動和地震波傳出的地方,會集中在斷層面上某些特定的「地栓」(Asperity)之上,這些地栓又被認為「錯動集中區」,而通常透過傳統的地震定位求出來的震源,其實只是這些地栓中,最早開始錯動的地方。但實際上,整個斷層錯動最大的地方,往往都不會在那一開始錯動的地方,就像是我們跑步時,跑得最快的瞬間,不會發生在起跑的瞬間,而是在起跑後一小段的過程中,而錯動量最大的區域,才會是能量釋放最大的地方。而或許是小地震的地栓範圍小,震央幾乎就在最大滑移區的附近,因此也看不太出來,通常規模越大,震源的破裂行為會隨著時間傳遞,此效應才會越明顯。

震源與震央位置示意圖。圖/中央氣象局

那麼斷層上的地栓位置能否確認?這仍是科學上的難題,但近年來科學進展已經能讓我們透過地震波逆推斷層上的錯動集中區,至少可以透過地震波逆推斷層破裂滑移的型式,得以用來比對斷層破裂方向對震度分布的影響。以 2016 年臺南—美濃地震為例,最大錯動量的地區並不在震央所在的美濃附近,而是稍微偏西北方的臺南地區,也就是因為從地震資料逆推後,發現斷層在破裂時是向西北方向破裂。而更近一點的 2018 年花蓮地震,錯動量大、災害多的地方,也是與斷層破裂方向一致的西南方。

一張含有 地圖 的圖片  自動產生的描述
2016 年臺南美濃地震的等震度圖。圖/中央氣象局

透過更多的分析,現在也逐漸發現破裂方向性對於大地震震度分布的影響確實是重要議題。而雖然我們無法在地震發生之前就預知地栓的位置,但仍可從各種觀測資料作為基礎,針對目前已知的活動斷層進行模擬,就能做出「地震情境模擬」,並且由模擬結果找出可能有高危害度的地區,就能考慮對這些地區早先一步加強耐震或防災的準備工作。

多知道一點風險和危害度,多一份準備以減低災害

但是,直到目前為止,我們仍無法確知斷層何時會錯動、錯動是大是小。科學能給我們的解答,只能先評估出斷層未來的活動性中,哪個稍微大一些(機會小的不代表不會發生),或者像是斷層帶附近、特殊地質特性的場址附近,或許更要小心被意外「放大」的震度。而更重要的是,當地震來臨前,先確保自己的住家、公司或任何你所在的地方是安全還是危險,在室內要小心高處掉落物、在路上要小心掉落的招牌花盆壁磚、在鐵路捷運上要注意緊急煞車對你產生的慣性效應…多一些及早思考與演練,目的就是為了防範不知何時突然出現的大地震,在不恐慌的情況下保持適當警戒,會是對你我都很重要的防震守則!

【參考文獻】

鳥苷三磷酸 (PanSci Promo)_96
9 篇文章 ・ 2 位粉絲
充滿能量的泛科學品牌合作帳號!相關行銷合作請洽:contact@pansci.asia
網站更新隱私權聲明
本網站使用 cookie 及其他相關技術分析以確保使用者獲得最佳體驗,通過我們的網站,您確認並同意本網站的隱私權政策更新,了解最新隱私權政策