Loading [MathJax]/extensions/tex2jax.js

0

0
0

文字

分享

0
0
0

噪音能讓大腦的效能更好?一片平靜不如來些雜訊 ──《偶然的科學》

PanSci_96
・2018/07/10 ・5253字 ・閱讀時間約 10 分鐘 ・SR值 552 ・八年級

惱人的噪音大有用處

製造震動

我們傾向把隨機的噪聲訊號當成不好的東西,但在許多系統中,無論是生物和技術,噪音其實都是個機會。勞拉.斯皮尼 (Laura Spinney) 認為,如果沒有噪音,你的大腦效能可能不及現在的一半。

噪音通常是一種討人厭的東西,任何曾在飛機航線下方生活過的人,或曾經嘗試聽遙遠調幅廣播電台的人,都知道這一點。但是對工程師而言,噪音的隨機波動可謂天賜。

噪音通常是一種討人厭的東西,任何曾在飛機航線下方生活過的人都能深刻理解。圖/pixabay

二次大戰期間,空勤人員必須計算飛機的任務路線和炸彈軌跡,結果發現他們用來測量的儀器在空中的表現,竟然比在地面上好。空軍工程師很快找出原因;原來當飛機在空中移動時,機身會在很寬的頻率範圍內振動,偶然間有些頻率與移動中儀器零件共鳴頻率一致,讓零件震動,因而能更順暢地移動。然而,工程師不知道哪些頻率很重要,所以開始在儀器中放入小的震動馬達,希望能藉此引發共鳴。這是高頻脈動最早的應用,或是說,是人們蓄意添加隨機噪音的例子。

如今我們發現,演化比我們更早就懂得利用這個道理,生物早就在利用隨機訊號的好處。在某些情況下,加入微小噪音可以強化生物體對於環境的感知。例如比起在靜止的水裡,小龍蝦在湍流中更能偵測到細微的魚鰭活動。事實證明,在添加了一小段雜訊後,人類更能分辨螢幕上的模糊影像。

-----廣告,請繼續往下閱讀-----

外部噪音增強大腦能力

在這些案例中,噪音源是在生物體外部,但卻引起一個有趣的問題:演化是否會將這種震動融入大腦之中?現在,有一群神經科學家宣稱,他們已發現神經迴路有「刻意製造噪音的設計」。如果這群人的說法正確,那麼震動可能是自然裡的共同特徵。噪音的操作定義是:一個頻率混亂的寬頻訊號。比方說,白噪音的嘶嘶聲,是由人耳可聽見的完整頻率,從最低到最高以相同量組成的。相較之下,有意義的非噪音訊號,則是把它們的能量都集中在相對較窄的頻譜上。

噪音能提高微弱訊號被偵測的可能性,這種現象稱為隨機共振(「隨機」單純表示隨機的模式)。隨機共振專門用於非線性系統,其中的輸出與輸入不成比例。神經元是非線性系統的一個好例子,只有當細胞膜上的電位達到臨界閥值時才會啟動;在這樣的系統中,不能達到閥值的微弱輸入,可藉由注入噪音而讓它升高到超過閥值的水準。

神經迴路有「刻意製造噪音的設計」。圖/pixibay

許多理論模型表示,隨機共振可改善神經元處理訊號的方式。此外,已有良好的實驗證據表示,在某些情況下,增加外部噪音可以增強大腦的能力。隨機共振解釋了,為什麼湍流的水,有助於小龍蝦的感覺毛細胞偵測遠距離的魚鰭活動,以及為什麼噪音有助於人的肉眼看出模糊的圖像。外部噪音已被用來增強人類的表現,例如用人工耳蝸植入器,幫助人們聽見微弱的聲音,以及使用震動鞋墊減少中風患者的身體晃動。

大腦會自己產生噪音?果蠅的嗅覺系統研究

然而在很長一段時間裡,沒有任何證據顯示大腦會自己產生內部噪聲,以利用隨機共振的好處。然後,牛津大學的神經科學家格羅.米森伯克 (Gero Miesenböck) 出現了。米森伯克認為,果蠅有一個大腦迴路是嗅覺系統的一部分,專門用於產生噪音以增強大腦功能。他的發現對人類大腦很有意義,因為果蠅嗅覺系統的基本結構,不僅在所有昆蟲都很常見,在脊椎動物來說也是如此,包括人類在內。

-----廣告,請繼續往下閱讀-----

為此,米森伯克並沒有馬上去找噪音,而是想解決一個已困擾嗅覺系統研究人員多年的謎團。

科學家利用果蠅研究大腦製造噪音之謎。圖/pixibay

果蠅的嗅覺系統是個巨大的神經迴路,從果蠅的觸角開始,大約有一千兩百個嗅覺受體神經元 (ORN) ,每個嗅覺受體神經元都攜帶單一種類的氣味受體分子;這裡大約有六十種不同的受體分子,因此約有六十種不同類型的受體神經元。

從觸角開始,特定氣味的受體神經元聚集在一個被稱為嗅神經球的節點上,與被稱為投射神經元的細胞進行突觸連接。每個嗅神經球只從唯一一種受體神經接收輸入訊號,所以過去很長的一段時間內,神經科學家假設每個投射神經元只會對單一氣味起反應。

但是,幾年前神經科學家發現情況並非如此,來自各個投射神經元的電子紀錄表示,它們有時也會回應並非由其受體神經元所取得的氣味。

-----廣告,請繼續往下閱讀-----

然而,它們是怎麼做到這一點的?畢竟,每個嗅神經球都只從一種類型的受體神經元接收訊號。幾年前,米森伯克和他同事尚玉華 (Yuhua Shang) 在耶魯大學醫學院,致力於設法解決這個難題。

噪音讓神經更敏銳

他們使用一隻突變的蒼蠅,這隻蒼蠅所有連接到特定嗅神經球的受體神經元都不在了。於是,他們尋找其他可以連結到這隻蒼蠅之投射神經元的方式,結果發現一個之前沒人知道的「中間神經元」網絡,這網絡能將嗅神經球彼此連接,並在嗅神經球之間傳遞訊息。每當氣味出現時,這些「興奮性局部神經元」就會為投射神經元提供某種擴散而刺激性的輸入。

這個現象解決了人們眼前的問題,卻產生另一個問題:為什麼在系統中添加一些東西,便會失去氣味受體與投射神經元之間精確的一對一對應關係?「這似乎違反直覺,」米森伯克說,「為什麼要把清脆且鮮明的輸入訊號模糊化,把它弄得更吵雜?」他提出的假設是,噪音之所以會出現是有原因的。也許興奮性局部神經元刻意將噪音注入系統,如此便能利用隨機共振,讓微弱的氣味更容易被發現。

神經元會刻意將噪音注入系統。圖/pixibay

這些說法讓後續發生在感應輸入訊號上的現象變得合理起來。投射神經元將訊號發送到其他被稱為「肯揚恩細胞」 (Kenyon cell) 的神經元,這些神經元位於被稱為蕈狀體的結構上,這結構與蒼蠅大腦學習與記憶的能力有關。每個肯揚恩細胞都接收許多來自投射神經元的輸入,但它們有極高的反應閥值,並且只在大量神經元同時發射時才會啟動。和其他氣體相比,這種投射神經元更容易對自己的對應氣體起反應,而每一個肯揚恩細胞只會針對單一氣體啟動,所以系統會重新取得特異性。

-----廣告,請繼續往下閱讀-----

米森伯克的團隊還讀到1983年由德國馬克斯普朗克研究所神經生物學院的亞歷山大.鮑爾斯 (Alexander Borst) 所寫的文章,文章描述了一種連接嗅神經球的抑制性局部神經元網絡。米森伯克認為,這些神經元可能會對那些興奮性局部神經元產生反效果,從而阻礙了受體神經元的強烈訊號。

果蠅肯揚恩細胞研究的重要性

那麼,為什麼要多此一舉去強化微弱的訊號,而弱化強烈的訊號呢?米森伯克認為,這種狀況之所以會出現,是為了消除極端的氣體濃度。「若直接把一朵花放在鼻子下面,你必須要在香味很淡及花朵盛開時,都能聞到花香味,並且認得出那是一朵玫瑰花,」他說,「必須有個機制能根據氣味濃度來消除變異,我們認為這正是中間層在做的事情。」

不論濃或淡,我們都能辨認出玫瑰花的香氣。圖/pixibay

米森伯克的團隊仍在想辦法證明「刻意製造噪音的設計」之存在,為此而付出努力。藉由改變局部神經元,他們希望知道如何改變噪音量。米森伯克預測,在完全靜音的環境下,微弱的氣體就不太可能觸發肯揚恩細胞;另一個預測則是,果蠅對於微弱氣味的反應,將變得不那麼敏感。關於這點,研究人員可以透過觀察牠們如何避免不好的氣味,來進行測試。

然而這種做法很麻煩,其中部分原因在於,研究人員不知道果蠅腦中有多少局部神經元。如果他們想看到預設的結果,就必須對果蠅進行大幅改造。

-----廣告,請繼續往下閱讀-----

如果他們成功了,他們希望能在哺乳類動物大腦中看到類似的事情。但是,牛津大學的托馬斯.克勞斯伯格 (Thomas Klausberger) 認為,要在哺乳動物大腦中,發現類似果蠅局部神經元製造噪音的細胞,將是一個巨大的挑戰。克勞斯伯格已在老鼠的海馬體中,發現了新型的中間神經元,這種結構之所以會被拿來和昆蟲的蕈狀體相比,是因為它在學習和記憶上扮演的作用。他指出,單單海馬體的一個區域,就包含了至少二十一種不同類型的中間神經元。

適度的噪音有利動物行為

1993年,聖路易斯的密蘇里大學生物物理學家弗蘭克.莫斯 (Frank Moss) 做了小龍蝦研究。長期以來,莫斯一直懷疑動物會利用隨機共振,藉此提高牠們生殖的成功率,而米森伯克的發現也讓他留下深刻的印象。

莫斯的一項研究首次證明了外部施加的噪音,能透過隨機共振發揮作用。他用匙吻鱘做實驗,這種魚會利用鼻子裡的電感應器偵測浮游生物(牠們的自然獵物)發出的微弱電子訊號,以此尋找食物。莫斯把一隻匙吻鱘放入一個含有浮游生物的水箱裡,並附上兩個會以隨機變化的電場形式產生噪音的電極。當他測量噪音的影響時,發現有個中間振幅可讓魚獵食的成功率顯著增加。

匙吻鱘長長的鼻子內部有電感應器。圖/wikipedia

當噪音的水準是中等的時候,鱘魚會出現最佳表現,這是隨機共振的特徵之一:噪音太小,訊號沒有達到閥值;噪音太多的話,訊號又會被噪音淹沒。因此,噪音和益處之間的關係,像是一個顛倒的 U 形。

-----廣告,請繼續往下閱讀-----

莫斯後來將注意力轉移到被稱為水蚤或魚蝨的小型水生甲殼類動物身上,牠們為生物體內會產生的隨機共振提供了另一個證據。

水蚤有種覓食特性。牠們在尋找食物時,會依循一系列跳躍、暫停、轉角和再跳的動作行動。用肉眼來看,轉角的變化看起來很隨機。

但莫斯不這麼認為。他和他同事拍攝了五個不同種類的水蚤,在淺水池裡找尋食物的影片,並測量了數百個轉角角度。當他們在繪製這些角度的頻率分布圖時,發現這些轉角並非全都是隨機的,因為有些轉角比其他角度更頻繁出現。這些轉角的整體分布,可用被稱為「噪音強度」的參數進行數學描述,這是我們測量噪音的隨機程度方法。

接著,他們使用不同的噪音強度,在電腦上模擬水蚤的覓食活動。結果發現,最成功的覓食策略,是利用他們在真正水蚤實驗中測量到的噪音強度水準。根據經典的倒 U 型隨機共振,較低或較高的噪音強度會降低覓食的成功率。雖然沒有人知道,水蚤究竟如何知道牠們該如何分配轉角,但莫斯的團隊認為,這就是隨機共振的一個實例,而這種隨機共振一定是在水蚤體內產生的,也許是在大腦之中。他認為,最佳的噪音強度必須是天擇的產物,因為採用這種強度的水蚤會發現更多食物,從而最大化其適應能力。

-----廣告,請繼續往下閱讀-----

大腦製造的噪音真的是噪音嗎?

然而,生物系統會利用體內產生的噪音,這樣的想法仍然有問題。其中一個大問題是,果蠅的局部神經元所製造的噪音,是真正的噪音嗎?南加州大學洛杉磯分校的電氣工程師巴特.柯斯可 (Bart Kosko) ,是2006年出版的《噪音》一書作者,他說他不相信是這樣的。

噪音有嚴格的數學定義;而在複雜的生物系統中,看起來像噪音的東西,往往被證明是從別處跑出來的訊號。柯斯可說:「我們要做的是把那種『噪音』源拿來,並說明它們具有噪音在統計上的痕跡。如果不是真正的噪音,那麼根據定義,就不會有隨機共鳴。」

紐約大學的神經科學家捷爾吉.布茲薩奇 (György Buzsáki) 更進一步認為,如果大腦中有某些東西可以讓微弱訊號增長到閥值,那東西不太可能是噪音。「製造噪音可是一件非常耗費成本的事,」他說,「一個好的系統,比如我們預設的大腦,可是負擔不起這個成本。」

製造噪音對大腦來說是一件非常耗費成本的事。圖/pixabay

布茲薩奇同意米森伯克的觀點,認為那可能是一種類似噪音的訊號,可以用來調節哺乳動物的大腦活動,但沒必要引起專門製造噪音的迴路;相反地,他點出腦部會產生的自發性神經活動 。

神經元有兩種類型的活動,分別是自發和誘發。自發性活動不需要外部刺激即可獨立發生,而誘發性活動則是對外部刺激所產生的反應。神經科學家對自發性活動很有興趣,因為它能讓人腦產生更高的心智活動。自發性活動可以在神經元網絡上傳播,而神經同步發射的暫態期約為每秒四十個尖波。有人認為,所謂的伽馬波就是一種結合不同認知過程的方法,藉此產生感知。

布茲薩奇說,微弱傳入的訊號可以搭在這些自發性的活動波上,藉此提升到閥值以上。這是一種提高微弱訊號的更省成本方法,因為自發性活動消耗的能量很少。

當然,這兩種可能性之間有個關鍵的相似處,就是兩者都是有一個訊號推動另一個訊號超過閥值。「它們的原理是一樣的,」米森伯克說。但是,對於瞭解大腦的基本運作,以及為了讓我們在未來可能利用隨機噪音和感官輔助器(例如視網膜植入物)的隨機共振現象來說,這些細節很重要。

我們必須多等待一些時間,才能瞭解天擇創造出的大腦,是否內建了一個隨機的噪音產生器,或是大腦只能借用其他神經訊號當作噪音。無論是哪種方式,果蠅的大腦似乎都不能在沒有任何震動之下運作,所以我們的大腦可能也在震動。

 

 

本文選自泛科學2018年7月選書《偶然的科學:好運、隨機及機率背後的秘密》,八旗文化。

-----廣告,請繼續往下閱讀-----
文章難易度
PanSci_96
1262 篇文章 ・ 2418 位粉絲
PanSci的編輯部帳號,會發自產內容跟各種消息喔。

0

1
0

文字

分享

0
1
0
ECU: 汽車大腦的演化與挑戰
鳥苷三磷酸 (PanSci Promo)_96
・2025/07/02 ・3793字 ・閱讀時間約 7 分鐘

本文與 威力暘電子 合作,泛科學企劃執行。

想像一下,當你每天啟動汽車時,啟動的不再只是一台車,而是一百台電腦同步運作。但如果這些「電腦」突然集體當機,後果會有多嚴重?方向盤可能瞬間失靈,安全氣囊無法啟動,整台車就像失控的高科技廢鐵。這樣的「系統崩潰」風險並非誇張劇情,而是真實存在於你我日常的駕駛過程中。

今天,我們將深入探討汽車電子系統「逆天改運」的科學奧秘。究竟,汽車的「大腦」—電子控制單元(ECU),是如何從單一功能,暴增至上百個獨立系統?而全球頂尖的工程師們,又為何正傾盡全力,試圖將這些複雜的系統「砍掉重練」、整合優化?

第一顆「汽車大腦」的誕生

時間回到 1980 年代,當時的汽車工程師們面臨一項重要任務:如何把汽油引擎的每一滴燃油都壓榨出最大動力?「省油即省錢」是放諸四海皆準的道理。他們發現,關鍵其實潛藏在一個微小到幾乎難以察覺的瞬間:火星塞的點火時機,也就是「點火正時」。

如果能把點火的精準度控制在「兩毫秒」以內,這大約是你眨眼時間的百分之一到千分之一!引擎效率就能提升整整一成!這不僅意味著車子開起來更順暢,還能直接省下一成的油耗。那麼,要如何跨過這道門檻?答案就是:「電腦」的加入!

-----廣告,請繼續往下閱讀-----

工程師們引入了「微控制器」(Microcontroller),你可以把它想像成一顆專注於特定任務的迷你電腦晶片。它能即時讀取引擎轉速、進氣壓力、油門深度、甚至異常爆震等各種感測器的訊號。透過內建的演算法,在千分之一秒、甚至微秒等級的時間內,精準計算出最佳的點火角度,並立刻執行。

從此,引擎的性能表現大躍進,油耗也更漂亮。這正是汽車電子控制單元(ECU)的始祖—專門負責點火的「引擎控制單元」(Engine Control Unit)。

汽車電子控制單元的始祖—專門負責點火的「引擎控制單元」(Engine Control Unit)/ 圖片來源:shutterstock

ECU 的失控暴增與甜蜜的負荷

第一顆 ECU 的成功,在 1980 年代後期點燃了工程師們的想像:「這 ECU 這麼好用,其他地方是不是也能用?」於是,ECU 的應用範圍不再僅限於點火,燃油噴射量、怠速穩定性、變速箱換檔平順度、ABS 防鎖死煞車,甚至安全氣囊的引爆時機……各種功能都交給專屬的 ECU 負責 。

然而,問題來了:這麼多「小電腦」,它們之間該如何有效溝通?

-----廣告,請繼續往下閱讀-----

為了解決這個問題,1986 年,德國的博世(Bosch)公司推出了一項劃時代的發明:控制器區域網路(CAN Bus)。你可以將它想像成一條專為 ECU 打造的「神經網路」。各個 ECU 只需連接到這條共用的線路上,就能將訊息「廣播」給其他單元。

更重要的是,CAN Bus 還具備「優先通行」機制。例如,煞車指令或安全氣囊引爆訊號這類攸關人命的重要訊息,絕對能搶先通過,避免因資訊堵塞而延誤。儘管 CAN Bus 解決了 ECU 之間的溝通問題,但每顆 ECU 依然需要獨立的電源線、接地線,並連接各種感測器和致動器。結果就是,一輛汽車的電線總長度可能達到 2 到 4 公里,總重量更高達 50 到 60 公斤,等同於憑空多載了一位乘客的重量。

另一方面,大量的 ECU 與錯綜複雜的線路,也讓「電子故障」開始頻繁登上汽車召回原因的榜首。更別提這些密密麻麻的線束,簡直是設計師和維修技師的惡夢。要檢修這些電子故障,無疑讓人一個頭兩個大。

大量的 ECU 與錯綜複雜的線路,也讓「電子故障」開始頻繁登上汽車召回原因的榜首。/圖片來源:shutterstock

汽車電子革命:從「百腦亂舞」到集中治理

到了2010年代,汽車電子架構迎來一場大改革,「分區架構(Zonal Architecture)」搭配「中央高效能運算(HPC)」逐漸成為主流。簡單來說,這就像在車內建立「地方政府+中央政府」的管理系統。

-----廣告,請繼續往下閱讀-----

可以想像,整輛車被劃分為幾個大型區域,像是車頭、車尾、車身兩側與駕駛艙,就像數個「大都會」。每個區域控制單元(ZCU)就像「市政府」,負責收集該區所有的感測器訊號、初步處理與整合,並直接驅動該區的馬達、燈光等致動器。區域先自理,就不必大小事都等中央拍板。

而「中央政府」則由車用高效能運算平台(HPC)擔任,統籌負責更複雜的運算任務,例如先進駕駛輔助系統(ADAS)所需的環境感知、物體辨識,或是車載娛樂系統、導航功能,甚至是未來自動駕駛的決策,通通交由車輛正中央的這顆「超級大腦」執行。

乘著這波汽車電子架構的轉型浪潮中, 2008 年成立的台灣本土企業威力暘電子,便精準地切入了這個趨勢,致力於開發整合 ECU 與區域控制器(Domain Controller)功能的模組化平台。他們專精於開發電子排檔、多功能方向盤等各式汽車電子控制模組。為了確保各部件之間的溝通順暢,威力暘提供的解決方案,就像是將好幾個「分區管理員」的職責,甚至一部分「超級大腦」的功能,都整合到一個更強大的硬體平台上。

這些模組不僅擁有強大的晶片運算能力,可同時支援 ADAS 與車載娛樂,還能兼容多種通訊協定,大幅簡化車內網路架構。如此一來,車廠在追求輕量化和高效率的同時,也能顧及穩定性與安全性。

-----廣告,請繼續往下閱讀-----
2008 年威力暘電子致力於開發整合 ECU 與區域控制器(Domain Controller)功能的模組化平台 /圖片來源:shutterstock

萬無一失的「汽車大腦」:威力暘的四大策略

然而,「做出來」與「做好」之間,還是有差別。要如何確保這顆集結所有功能的「汽車大腦」不出錯?具體來說,威力暘電子憑藉以下四大策略,築起其產品的可靠性與安全性:

  1. AUTOSAR : 導入開放且標準化的汽車軟體架構 AUTOSAR。分為應用層、運行環境層(RTE)和基礎軟體層(BSW)。就像在玩「樂高積木」,ECU 開發者能靈活組合模組,專注在核心功能開發,從根本上提升軟體的穩定性和可靠性。
  2. V-Model 開發流程:這是一種強調嚴謹、能在早期發現錯誤的軟體開發流程。就像打勾 V 字形般,左側從上而下逐步執行,右側則由下而上層層檢驗,確保每個階段的安全要求都確實落實。
  3. 基於模型的設計 MBD(Model-Based Design) 威力暘的工程師們會利用 MatLab®/Simulink® 等工具,把整個 ECU 要控制的系統(如煞車),用數學模型搭建起來,然後在虛擬環境中進行大量的模擬和測試。這等於在實體 ECU 誕生前,就能在「數位雙生」世界中反覆演練、預先排除設計缺陷,,並驗證安全機制是否有效。
  4. Automotive SPICE (ASPICE) : ASPICE 是國際公認的汽車軟體「品質管理系統」,它不直接評估最終 ECU 產品本身的安全性,而是深入檢視團隊在軟體開發的「整個過程」,也就是「方法論」和「管理紀律」是否夠成熟、夠系統化,並只根據數據來評估品質。

既然 ECU 掌管了整輛車的運作,其能否正常運作,自然被視為最優先項目。為此,威力暘嚴格遵循汽車業中一本堪稱「安全聖經」的國際標準:ISO 26262。這套國際標準可視為一本針對汽車電子電氣系統(特別是 ECU)的「超嚴格品管手冊」和「開發流程指南」,從概念、設計、測試到生產和報廢,都詳細規範了每個安全要求和驗證方法,唯一目標就是把任何潛在風險降到最低

有了上述這四項策略,威力暘確保其產品從設計、生產到交付都符合嚴苛的安全標準,才能通過 ISO 26262 的嚴格檢驗。

然而,ECU 的演進並未就此停下腳步。當ECU 的數量開始精簡,「大腦」變得更集中、更強大後,汽車產業又迎來了新一波革命:「軟體定義汽車」(Software-Defined Vehicle, SDV)。

-----廣告,請繼續往下閱讀-----

軟體定義汽車 SDV:你的愛車也能「升級」!

未來的汽車,會越來越像你手中的智慧型手機。過去,車輛功能在出廠時幾乎就「定終身」,想升級?多半只能換車。但在軟體定義汽車(SDV)時代,汽車將搖身一變成為具備強大運算能力與高速網路連線的「行動伺服器」,能夠「二次覺醒」、不斷升級。透過 OTA(Over-the-Air)技術,車廠能像推送 App 更新一樣,遠端傳送新功能、性能優化或安全修補包到你的車上。

不過,這種美好願景也將帶來全新的挑戰:資安風險。當汽車連上網路,就等於向駭客敞開潛在的攻擊入口。如果車上的 ECU 或雲端伺服器被駭,輕則個資外洩,重則車輛被遠端鎖定或惡意操控。為了打造安全的 SDV,業界必須遵循像 ISO 21434 這樣的車用資安標準。

威力暘電子運用前面提到的四大核心策略,確保自家產品能符合從 ISO 26262 到 ISO 21434 的國際認證。從品質管理、軟體開發流程,到安全認證,這些努力,讓威力暘的模組擁有最高的網路與功能安全。他們的產品不僅展現「台灣智造」的彈性與創新,也擁有與國際大廠比肩的「車規級可靠度」。憑藉這些實力,威力暘已成功打進日本 YAMAHA、Toyota,以及歐美 ZF、Autoliv 等全球一線供應鏈,更成為 DENSO 在台灣少數核准的控制模組夥伴,以商用車熱系統專案成功打入日系核心供應鏈,並自 2025 年起與 DENSO 共同展開平台化量產,驗證其流程與品質。

毫無疑問,未來車輛將有更多運作交由電腦與 AI 判斷,交由電腦判斷,比交由人類駕駛還要安全的那一天,離我們不遠了。而人類的角色,將從操作者轉為監督者,負責在故障或斷網時擔任最後的保險。透過科技讓車子更聰明、更安全,人類甘願當一個「最弱兵器」,其實也不錯!

-----廣告,請繼續往下閱讀-----
-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

0

0
0

文字

分享

0
0
0
跨越百年障礙 擴張蠅腦的魔術
顯微觀點_96
・2025/06/23 ・1783字 ・閱讀時間約 3 分鐘

本文轉載自顯微觀點

圖 / 顯微觀點

平價嶄新技術 擴張毫微蠅腦

2023 Taiwan顯微攝影競賽銀獎 Wiring the Brain,題材為果蠅大腦的多巴胺神經網路。蠅腦中比頭髮纖細數千倍的神經纖維與突觸,放大印刷到超過人腦直徑,依然清晰可數。

由於果蠅具有與人類高同源性的基因,也能表現複雜的行為(求偶、覓食、打鬥等),精密解析其腦部構造與整體運作方式,是科學家探索人心智奧秘的重要里程。果蠅的大腦尺寸約為 0.59mm × 0.34mm × 0.12mm,比針尖更細小。其中的神經纖維與突觸更細小數千倍,僅有數百奈米,有時小於光學顯微鏡 200 奈米的繞射極限。即使透過最精密的轉盤式雷射共軛焦顯微鏡,科學家也難窺全像。

到了 21 世紀,在突觸等級分析果蠅大腦仍是相當困難的工程。以掃描式電子顯微鏡(SEM)逐步分析被切成薄片的蠅腦樣本,提供奈米等級解析度的同時,也是侵入性極高,而且可能破壞神經原貌的耗時作法。在AI協助下,2018 年首先問世的立體果蠅全腦圖譜就是由大量平面電子顯微影像重建而成。

-----廣告,請繼續往下閱讀-----

對於持續探索腦神經真實立體結構的科學家,除了鑽研更極致的光學放大效果(如螢光消去顯微術、晶格層光顯微術等足以達到超解析影像,也需要昂貴設備的技術),也有人另闢蹊徑,擴張樣本以浮現原本被繞射極限遮蔽的細節。

果蠅全腦連接體 by Flywire.ai
2023 年 8 月發表的果蠅全腦連接體圖,來自大量電子顯微圖片,由超過 200 位科學家與 AI 合力打造。而果蠅腦部的超解析螢光顯微影像,可以用於協助校正主要由平面電子顯微影像重建的模型,是持續理解果蠅全腦運作機制的重要資源。Courtesy of Flywire Project.

2015 年,麻省理工的波伊登(E. Boyden)提爾貝里(P. W. Tillberg)與陳飛等科學家發表擴張顯微術,以實驗室常見的水凝膠(Hydrogel)、蛋白質水解酶(Protease)等材料,就能將螢光染色的組織均勻(Isotropic, 各方向等量均質)放大,以傳統光學顯微鏡就能觀察原本相距數百奈米的微小構造。

即使有擴張顯微術的幫助,建立果蠅的連接體圖譜仍是一番繁複工程。取出果蠅大腦的顯微手術,需要數周到數月的時間才能熟練。成功擴張的樣本也必然遭遇螢光訊號被稀釋,影像解析度降低的問題。

聚合、分解與吸水 尿布材質推動腦科學

擴張顯微術的基本步驟包含

-----廣告,請繼續往下閱讀-----

錨定 / Anchoring:將樣本浸泡於水凝膠(常用丙烯酸鈉,與尿布吸水部位相同的材料分子),讓水凝膠單體分子滲入樣本,與樣本的蛋白質黏合固定。

聚合 / Polymerization:加入藥劑,讓水凝膠單體間形成聚合並交聯(Cross-link),形成一個緊密滲入、黏合樣本的立體網狀結構。

分解 / Digestion:以蛋白質水解酶分解樣本中的蛋白質骨架,除去擴張時來自樣本的抵抗,但盡量保留螢光蛋白。

擴張 / Expansion:將水凝膠與樣本的結合體加入水中,讓聚合水凝膠吸水擴張,使樣本隨之擴大,每個方向可均勻擴張4到5倍。反覆吸水,各維度最多可擴張近 20 倍。

-----廣告,請繼續往下閱讀-----
擴張顯微術
擴張顯微術示意圖。Courtesy of addgene

2023 Taiwan 顯微攝影競賽銀獎得主劉柏亨分享,其中的「分解」步驟最為關鍵。如何除去樣本內部的拉力,又盡量保持螢光蛋白的訊號,就是實驗的技巧所在。除了使用蛋白質水解酶分解細胞骨架,也能採替代方案,以藥物將蛋白質骨架「變性(Denature)」減少原有的拉力,保留全部螢光蛋白。但是殘存的拉力也會影響擴張過程,使其失去各向同性(Isotropic)的均衡性質,導致樣本扭曲。

他的訣竅是,結合兩種途徑,在過程中不斷調整實驗溫度等變項,並使用「生物素化(Biotinylation)」在擴張前放大螢光訊號;或是使用鍵擊化學(Click Chemistry)在樣本擴張後染上螢光,在每次嘗試中逐步接近理想的解析度與信號強度。

-----廣告,請繼續往下閱讀-----

討論功能關閉中。

顯微觀點_96
32 篇文章 ・ 6 位粉絲
從細微的事物出發,關注微觀世界的一切,對肉眼所不能見的事物充滿好奇,發掘蘊藏在微觀影像之下的故事。

0

1
2

文字

分享

0
1
2
從昏迷到死亡錯覺:摩托車事故後的科塔爾症候群——《大腦獵奇偵探社》
行路出版_96
・2024/08/24 ・3933字 ・閱讀時間約 8 分鐘

摩托車事故後的幻覺

一九八九年十月,二十八歲的股票經紀人,姑且稱之為威爾(Will),發生了嚴重的摩托車意外。他腦部受到重創,陷入昏迷,雖然幾天後恢復意識,但他在醫院裡住了好幾個月,治療腦傷以及其他損傷引起的感染。

到了隔年一月,威爾的復原情況非常良好,已經可準備出院。他的身上有些問題永遠好不了,例如右腿行動困難以及喪失部分視覺。但是最困擾他的問題發生在他的腦袋裡:他相當確定自己已經死了。威爾的母親為了幫助兒子早日康復,帶他去南非度假。但南非的炎熱讓威爾相信這個地方就是(真正的)地獄,因此更加確定自己必定是個死人。母親難以置信地問他是怎麼死的,他說了幾個可能的死因。有可能是血液感染(這是治療初期的風險),也有可能是他之前打黃熱病疫苗之後的併發症。此外他也提出自己可能死於愛滋病,雖然他沒有感染 HIV 病毒或愛滋病的任何跡象。

威爾康復出院,但堅信自己已經死亡。連他母親帶他去南非度假,都被他認為自己身在地獄。 圖/envato

有一種強烈的感覺纏上威爾,揮之不去─他覺得身旁所有東西都……這麼說好了……不是真的。車禍前熟悉的人和地方,他現在都不太認得,所以他愈發覺得自己住在一個奇怪又陌生的世界。連母親都不像真的母親。其實在南非度假的時候,威爾就曾這麼說過。他認為真正的母親在家裡睡覺,是她的靈魂陪伴他遊歷陰間。

喪失現實感:大腦如何捏造非理性的死亡解釋

四十六歲的茱莉亞(Julia)有嚴重的雙相情緒障礙症(bipolar disorder),入院時她相信自己的大腦和內臟都已消失。她覺得她早已不存在,只剩下一副空殼般的軀體。她的「自我」消失了,所以她(無論從哪個意義上看來都)是個死人。她不敢泡澡也不敢淋浴,因為怕自己空空如也的身體會滑進排水孔流走。

-----廣告,請繼續往下閱讀-----

三十五歲的凱文(Kevin)憂鬱的情況愈來愈嚴重,幾個月之後,腦海中的念頭漸漸演變成妄想。一開始,他懷疑家人正在密謀要對付他。接著,他認為自己已經死了,也已經下地獄,只是身體仍在人間。現在這副身體是空殼,裡面一滴血液也沒有。為了證明自己的想法沒錯,他從岳母家的廚房裡拿了一把刀,反覆戳刺手臂。他的家人明智地叫了救護車,將他送進醫院。

科塔爾症候群患者的大腦顯然有問題。發病之前,通常發生過嚴重的神經系統事故(中風、腫瘤、腦傷等等),或出現精神疾病(憂鬱症、雙相情緒障礙症、思覺失調症等等)。不過這些情況導致科塔爾症候群仍屬少見,神經科學家尚未找到明確原因,可以解釋科塔爾症候群患者的大腦為何如此與眾不同。再加上每個患者的症狀都不太一樣,判斷起來更加困難。話雖如此,有些共同症狀或許能提供蛛絲馬跡,幫助我們了解這種症候群。

科塔爾症候群的患者經常說,他們身處的世界莫名其妙變得很陌生。多數人看到自己曾邂逅多次的人事物時,大腦都能點燃辨認的火花,但這件事不會發生在科塔爾症候群的患者身上。舉例來說,患者可能認得母親的臉,但就是莫名的感到陌生。她似乎缺乏某種無形──但重要的─個人特質,所以患者即使看到這個生命中最重要的人,卻無法產生預期中的的情感反應。

患者也可能會有疏離感,彷彿自己是這世界的旁觀者,而不是參與者。術語叫做人格解離(depersonalization)。此外,周遭的一切都散發超現實的氣氛,讓患者相信自己生活在擬真的夢境裡─這是一種叫做喪失現實感(derealization,亦稱失實症)的症狀。科塔爾症候群患者體驗到的陌生感、人格解離、喪失現實感,都會嚴重扭曲他們眼中的現實世界。不難想像這會讓大腦難以負荷。

-----廣告,請繼續往下閱讀-----

大腦碰到如此矛盾的情況會拚命尋找原因。對大腦來說,能夠合理解釋各種生活事件是非常重要的。若找不到合理的解釋,世界很快就會變成無法預測、無法理解,最終變得無法忍受。因此為了清楚解釋所經歷的事情,大腦會無所不用其極。如果在經驗裡出現大腦難以合理解釋的元素,它會退而求其次:自己捏造合理的答案。

每個人的大腦都會這麼做,而且隨時隨地都在做,只是我們察覺不到。例如有研究發現,我們每天做的決定不計其數─從什麼時間吃點心,到要跟誰出去約會──但我們做這些決定時總是不假思索。我們好像大部分的時間都處於自動駕駛模式。可是每當有人問我們為什麼做這樣的決定時,大腦幾乎總能想出好答案來合理化我們的選擇。但有時候,它想出來的答案完全不合理。

有一項研究讓男女受試者看兩名女性的照片,請他們選出比較好看的那位。受試者做出決定之後,研究人員隨即將照片放在他們面前,要他們解釋為什麼選這個人。但受試者不知道的是,研究人員會偷偷調換照片(占比約二十%),要受試者解釋自己為什麼挑中這個(他們明明沒挑中的)人。大多數受試者都沒有識破研究人員的詭計。他們通常不會質疑照片上的人不是自己選的那個,而是當場想出合理的答案,說明為什麼覺得眼前照片上的人比較好看,例如「她看起來很辣」,或是「我覺得她比較有個性」(兩張照片差異甚大,所以受試者不是單純的認錯人)。

這種非刻意的捏造叫做虛談(confabulation),大腦做這件事的頻率比你以為的更高。虛談的原因可能有百百種,但這似乎是大腦遇到自己無法明確解釋的事件時,會使用的策略。神經科學家相信,科塔爾症候群患者的大腦也做了類似的事情。從這個角度來說,科塔爾症候群的起點,是前面提過的幾種狀況(例如創傷、腫瘤等等)導致大腦功能異常。

-----廣告,請繼續往下閱讀-----

大腦合理性檢查機制失靈

大腦功能異常導致現實感喪失與人格解離,進而使患者覺得周遭的一切很陌生,欠缺他們預期中的「真實感」。於是患者的大腦努力理解這樣的經驗,瘋狂尋找合理的解釋。基於不明原因,科塔爾症候群患者容易把注意力轉向內在,認為如果外在經驗不對勁,毛病可能出在自己身上。

結果基於某些更加不明的原因,大腦找到的解釋是他們已經死了、正在腐爛、被邪靈附體,或其他稀奇古怪的、與存在有關的原因。這一連串環環相扣的假設聽起來有點誇張。畢竟,喪失現實感這樣的症狀沒那麼少見;很多人(某些估計高達七十五%)會有類似的─但非常短暫的─喪失現實感的經驗。但有這種經驗的人,幾乎都不會認為自己已經死了。

顯然,科塔爾症候群患者的大腦裡還發生了別的事情。神經科學家相信,或許是重要的合理性檢查機制(plausibility-checking mechanism)沒有發揮作用。大腦偶爾會錯誤解讀生活裡發生的事,但我們通常不會想出一個明顯不合理的解釋。

或許是因為大腦錯誤解讀現實,讓科塔爾症患者對現實理解出現錯覺。 圖/envato

大腦似乎有一套用來評估邏輯的機制,確保我們的邏輯可以通過合理性的檢驗。在多數有過喪失現實感或人格解離等症狀的人身上,這套合理性檢查機制能使他們立刻否決「我感覺到自己脫離現實,是因為我已經死了」的想法;大腦認為這個提議很荒唐,很可能再也不會想起它。但是在科塔爾症候群的患者身上,這套合理性檢查機制顯然壞掉了。大腦將脫離現實的感覺歸因於他們已經死了,這個想法不知為何保留了下來,而大腦也認為這個解釋站得住腳。於是在其他人眼中絕對是妄想的念頭,成了他們深信不移的答案。

-----廣告,請繼續往下閱讀-----

醫生在為科塔爾症候群患者(以及後面會介紹的另外幾種行為古怪的精神障礙患者)尋找腦部損傷時,經常發現腦傷位於右腦。神經科學家因此假設合理性檢查機制位於右腦。大腦分為兩半,叫做大腦半球(cerebral hemispheres)。左腦半球和右腦半球的劃分簡單有力,因為有一道裂縫將大腦一分為二。乍看之下,左右兩邊一模一樣,但受過訓練的神經科學家用肉眼就能看出兩者並非完全對稱。透過顯微鏡觀察,差異更加顯著。因此左腦與右腦的功能有差異或許不足為奇。

長期以來,一直有人拿這些差異做文章,用錯誤的方式來解讀左腦和右腦的不同,以偏概全又過於誇大。例如斬釘截鐵地說,有些人較常使用右腦,也就是「右腦人」,所以擅長創意思考,「左腦人」則比較有邏輯。這是大家耳熟能詳的觀念,但神經科學家認為這只是迷思。實際上,我們使用大腦時不會特別偏左或偏右,而是完整使用兩個半腦。不過有些功能(例如語言的某些能力)會比較依賴某一個大腦半球。所以科塔爾症候群與右腦損傷有關的假設,並非全然不可能。

但科塔爾症候群(可能也包括合理性檢查機制)與右腦的關聯性依然只是假設,只不過許多(但不是所有)神經科學家深入研究過的科塔爾症候群案例,都支持這項觀察結果。無論合理性檢查機制確切位於何處,但在推演患者如何發展出科塔爾症候群的通用模型中,這個假設的機制扮演著重要角色。首先,大腦功能異常造成疏離症狀,例如喪失現實感與人格解離。大腦出於習慣,會先試著為眼前的情況找答案。問題是,仔細檢查並淘汰不合理答案的能力也受損了,於是大腦只好捏造稀奇古怪的答案,告訴自己身體已經死了(或是邪靈附體、正在腐爛等等),而且不會因為這個答案不合理而淘汰它。

有人認為,這種階段性的妄想形成過程也適用於另一些妄想症。這些妄想症的症狀也很古怪,不亞於科塔爾症候群。

-----廣告,請繼續往下閱讀-----

——本文摘自《大腦獵奇偵探社:狼人、截肢癖、多重人格到集體中邪,100個讓你洞察人性的不思議腦科學案例》,2024 年 7 月,行路出版,未經同意請勿轉載。

-----廣告,請繼續往下閱讀-----

討論功能關閉中。

行路出版_96
21 篇文章 ・ 8 位粉絲
行路為「讀書共和國」出版集團旗下新創的出版社,出版知識類且富科普或哲普內涵的書籍,科學類中尤其將長期耕耘「心理學+腦科學」領域重要、具時代意義,足以當教材的出版品。 行路臉書專頁:https://www.facebook.com/WalkPublishing