Loading [MathJax]/extensions/tex2jax.js

0

0
0

文字

分享

0
0
0

白堊紀植物改朝換代,昆蟲們如何因應?問問嚼嚼花粉的琥珀甲蟲吧!

蕭昀_96
・2018/06/25 ・2513字 ・閱讀時間約 5 分鐘 ・SR值 568 ・九年級

-----廣告,請繼續往下閱讀-----

白堊紀(Cretaceous),可說是被子植物的時代。被子植物從白堊紀早期開始適應輻射,其多樣性在此時期爆炸性的成長,到了白堊紀晚期時被子植物已成了陸地植群的主宰,許多現生的科群也已然誕生。而相較於「花花世界」的絢爛,在此之前的中生代前期則是裸子植物和蕨類植物的世界,陸地森林充滿了蘇鐵、本內蘇鐵、銀杏和松柏等植物。

植物這樣大規模的「改朝換代」如何影響與其共生的昆蟲們呢?透過琥珀化石,我們可能得到了一點線索。

中生代的森林充滿了高大的裸子植物。 圖/12019 @Pixabay

來自白堊紀的琥珀化石:馬氏達爾文擬天牛

在西班牙北部的巴斯克─坎塔布連盆地,可以找到出產自白堊紀時期的琥珀化石,其年代估計約在 1.05 億年前,比近年在古昆蟲學界相當夯的緬甸琥珀估計為 9900 萬年前來得更早。2017 年一篇刊載於《支序分類學》(Cladistics)的論文中,揭露了一塊特別的巴斯克─坎塔布連盆地甲蟲琥珀化石:這隻甲蟲的周圍佈滿了花粉(甚至有一些還附在蟲體身上)。學者推測,這位苦主當時正在大口嚼著花粉餐,卻在吃得滿嘴都是時,倒楣地被樹脂給包埋,成為了時空凝結的可憐蟲。

被包埋在琥珀中的甲蟲苦主。研究人員們認為這隻甲蟲是在取食花粉時被包覆進樹脂,由於蟲體掙扎和樹脂流動而使花粉脫離身體,其右圖綠色箭頭方向為樹脂的流向,可看出花粉漸漸散開呈現一圓錐狀。 圖/原始論文

透過比較形態學,研究人員認為這隻甲蟲隸屬於擬天牛科(Oedemeridae),是本科最古老的化石紀錄。本種被命名為馬氏達爾文擬天牛(Darwinylus marcosi Peris),其屬名字首以達爾文命名,種小名則紀念作者的兒子馬可仕。擬天牛科為小、中小型甲蟲,軀體、足部修長而身體柔軟,觸角細長,前胸背板前寬後窄;成蟲白日會出現在花或葉面上,喜訪花取食花粉;部分類群像是芫菁會分泌毒素芫菁素(Cantharidin) 接觸到肌膚會造成起水泡、潰爛。

-----廣告,請繼續往下閱讀-----
現生的擬天牛喜訪花,很容易在花間觀察到。圖/Pollinator [CC BY SA-3.0] via wikipedia

白堊紀有哪些昆蟲幫裸子植物授粉?

研究人員更進一步對這個化石物種的形態和古生物學角度的剖析,探討其演化意義。2017 年稍晚,同篇文章作者領頭的研究團隊在《當代生物學》(Current Biology)再次發表了針對馬氏達爾文擬天牛的古生物學研究,探討訪花甲蟲與裸子植物間的授粉關係及演化歷史。

這次,研究團隊先確認了「這些花粉是否真的是屬於裸子植物的?」。透過植物孢粉化石的研究和微細結構的比對,這些花粉被認為屬於單槽粉屬(Monosulcites)(下圖),雖然單槽粉屬實際上除了包含各種不同的中生代裸子植物的花粉,在一些少數的例子裏,有一些被子植物的花粉也被歸類到單槽粉屬,然而由於這些被子植物單槽粉屬的化石在年代上均是新生代,因此研究團隊確認該琥珀化石中的這些花粉應是屬於裸子植物的花粉。

琥珀中的花粉屬於單槽粉屬(Monosulcites)。 圖/原始論文

在確認包裹馬氏達爾文擬天牛的的確是裸子植物的花粉後,文章作者接著探討達爾文擬天牛屬與裸子植物間的交互關係。

在此之前,與中生代裸子植物授粉有關的昆蟲依口器和取食方式分為三類:

-----廣告,請繼續往下閱讀-----
  • 透過吸管狀的長喙吸食裸子植物的授粉滴(Pollination Drops),這類昆蟲包括了:雙翅目張氏擬樹虻科 (Zhangsolvidae)的華麗喇叭虻(Buccinatormyia magnifica)、脈翅目麗蛉科(Kalligrammatidae)的猛暴麗蛉(Kallihemerobius feroculus) 和 艷麗中生脈翅蛉(Meioneurites spectabilis)。
  • 利用唇瓣舔吸授粉滴的雙翅目昆蟲,如:帕洛蠅屬(Paroikus)。
  • 使用口錐對植物體進行銼吸的纓翅目食孢薊馬科(Merothripidae)裸子粉授薊馬屬 (Gymnopollisthrips),包含大裸子粉授薊馬(G. maior)和小裸子粉授薊馬(G. minor)。

透過形態觀察,研究人員發現馬氏達爾文擬天牛的口器屬於咀嚼式口器;這點與原先的三種分類不同,卻與現生的擬天牛一樣:利用強壯的大顎啃食花粉。因而亦可能扮演著協助傳播花粉的角色,進而被認為是第四種中生代裸子植物的授粉形式。

馬氏達爾文擬天牛(Darwinylus marcosi Peris, 2016)的古生態學復原圖,其體表佈滿了裸子植物的花粉。 圖/原始論文。

植物大規模改朝換代,活下去或是我跟你走?

然而現生的擬天牛科成員常見於被子植物的花叢間,與裸子植物沒有明顯的伴生關係。那麼,又是什麼讓我遇見這樣的你?

白堊紀中期,有段全球性震盪期被稱為阿普第─阿爾布間斷期(Aptian-Albian gap),約在 1.25 億到 9 千萬年前。從化石紀錄來看,這段期間中原本優勢的裸子植物多樣性驟降,而被子植物則漸漸興盛,可謂改朝換代。此時站在命運交叉點的裸子植物伴生昆蟲們當然也面臨了生存挑戰,某些類群出現了新的策略,當然也有一些維持原來的生存方式,迎來了不同的結局和未來 (如下圖)。

某些昆蟲的類群因此在演化的歷史上滅絕,如:張氏擬樹虻;另一些昆蟲則繼續維持與裸子植物的伴生關係、存續至今,如現在還存在的食孢薊馬。當然,還有另外一些昆蟲的寄生對象則由裸子植物轉移到被子植物。如今在花間依然常見的擬天牛,由這次的琥珀化石暗示我們的,很可能就是成功由裸子植物拓殖到被子植物,度過嚴峻考驗、從此生生不息綿延昌盛的好例子。

-----廣告,請繼續往下閱讀-----
歷經裸子植物多樣性急遽下降,而被子植物則漸漸興盛的阿普第─阿爾布間斷期,與裸子植物伴生昆蟲們面臨了生存上的考驗,迎來了各式各樣的結局。 圖/原始論文

論文連結:





-----廣告,請繼續往下閱讀-----
文章難易度
蕭昀_96
22 篇文章 ・ 17 位粉絲
澳洲國立大學生物學研究院博士,在澳洲聯邦科學與工業研究組織國立昆蟲標本館完成博士研究,目前是國立臺灣大學生態學與演化生物學研究所博士後研究員,曾任科博館昆蟲學組蒐藏助理。研究興趣為鞘翅目(甲蟲)系統分類學和古昆蟲學,博士研究主題聚焦在澳洲蘇鐵授粉象鼻蟲的系統分類及演化生物學,其餘研究題目包括菊虎科(Cantharidae)、長扁朽木蟲科(Synchroidae)、擬步總科(Tenebrionoidea)等,不時發現命名新物種,研究論文發表散見於國內外學術期刊 。

0

1
0

文字

分享

0
1
0
拆解邊緣AI熱潮:伺服器如何提供穩固的運算基石?
鳥苷三磷酸 (PanSci Promo)_96
・2025/05/21 ・5071字 ・閱讀時間約 10 分鐘

-----廣告,請繼續往下閱讀-----

本文與 研華科技 合作,泛科學企劃執行。

每次 NVIDIA 執行長黃仁勳公開發言,總能牽動整個 AI 產業的神經。然而,我們不妨設想一個更深層的問題——如今的 AI 幾乎都倚賴網路連線,那如果哪天「網路斷了」,會發生什麼事?

想像你正在自駕車打個盹,系統突然警示:「網路連線中斷」,車輛開始偏離路線,而前方竟是萬丈深谷。又或者家庭機器人被駭,開始暴走跳舞,甚至舉起刀具向你走來。

這會是黃仁勳期待的未來嗎?當然不是!也因為如此,「邊緣 AI」成為業界關注重點。不靠雲端,AI 就能在現場即時反應,不只更安全、低延遲,還能讓數據當場變現,不再淪為沉沒成本。

什麼是邊緣 AI ?

邊緣 AI,乍聽之下,好像是「孤單站在角落的人工智慧」,但事實上,它正是我們身邊最可靠、最即時的親密數位夥伴呀。

當前,像是企業、醫院、學校內部的伺服器,個人電腦,甚至手機等裝置,都可以成為「邊緣節點」。當數據在這些邊緣節點進行運算,稱為邊緣運算;而在邊緣節點上運行 AI ,就被稱為邊緣 AI。簡單來說,就是將原本集中在遠端資料中心的運算能力,「搬家」到更靠近數據源頭的地方。

-----廣告,請繼續往下閱讀-----

那麼,為什麼需要這樣做?資料放在雲端,集中管理不是更方便嗎?對,就是不好。

當數據在這些邊緣節點進行運算,稱為邊緣運算;而在邊緣節點上運行 AI ,就被稱為邊緣 AI。/ 圖片來源:MotionArray

第一個不好是物理限制:「延遲」。
即使光速已經非常快,數據從你家旁邊的路口傳到幾千公里外的雲端機房,再把分析結果傳回來,中間還要經過各種網路節點轉來轉去…這樣一來一回,就算只是幾十毫秒的延遲,對於需要「即刻反應」的 AI 應用,比如說工廠裡要精密控制的機械手臂、或者自駕車要判斷路況時,每一毫秒都攸關安全與精度,這點延遲都是無法接受的!這是物理距離與網路架構先天上的限制,無法繞過去。

第二個挑戰,是資訊科學跟工程上的考量:「頻寬」與「成本」。
你可以想像網路頻寬就像水管的粗細。隨著高解析影像與感測器數據不斷來回傳送,湧入的資料數據量就像超級大的水流,一下子就把水管塞爆!要避免流量爆炸,你就要一直擴充水管,也就是擴增頻寬,然而這樣的基礎建設成本是很驚人的。如果能在邊緣就先處理,把重要資訊「濃縮」過後再傳回雲端,是不是就能減輕頻寬負擔,也能節省大量費用呢?

第三個挑戰:系統「可靠性」與「韌性」。
如果所有運算都仰賴遠端的雲端時,一旦網路不穩、甚至斷線,那怎麼辦?很多關鍵應用,像是公共安全監控或是重要設備的預警系統,可不能這樣「看天吃飯」啊!邊緣處理讓系統更獨立,就算暫時斷線,本地的 AI 還是能繼續運作與即時反應,這在工程上是非常重要的考量。

所以你看,邊緣運算不是科學家們沒事找事做,它是順應數據特性和實際應用需求,一個非常合理的科學與工程上的最佳化選擇,是我們想要抓住即時數據價值,非走不可的一條路!

邊緣 AI 的實戰魅力:從工廠到倉儲,再到你的工作桌

知道要把 AI 算力搬到邊緣了,接下來的問題就是─邊緣 AI 究竟強在哪裡呢?它強就強在能夠做到「深度感知(Deep Perception)」!

-----廣告,請繼續往下閱讀-----

所謂深度感知,並非僅僅是對數據進行簡單的加加減減,而是透過如深度神經網路這類複雜的 AI 模型,從原始數據裡面,去「理解」出更高層次、更具意義的資訊。

研華科技為例,旗下已有多項邊緣 AI 的實戰應用。以工業瑕疵檢測為例,利用物件偵測模型,快速將工業產品中的瑕疵挑出來,而且由於 AI 模型可以使用同一套參數去檢測,因此品管上能達到一致性,減少人為疏漏。尤其在高產能工廠中,檢測速度必須快、狠、準。研華這套 AI 系統每分鐘最高可處理 8,000 件產品,替工廠節省大量人力,同時確保品質穩定。這樣的效能來自於一台僅有膠囊咖啡機大小的邊緣設備—IPC-240。

這樣的效能來自於一台僅有膠囊咖啡機大小的邊緣設備—IPC-240。/ 圖片提供:研華科技

此外,在智慧倉儲場域,研華與威剛合作,研華與威剛聯手合作,在 MIC-732AO 伺服器上搭載輝達的 Nova Orin 開發平台,打造倉儲系統的 AMR(Autonomous Mobile Robot) 自走車。這跟過去在倉儲系統中使用的自動導引車 AGV 技術不一樣,AMR 不需要事先規劃好路線,靠著感測器偵測,就能輕鬆避開障礙物,識別路線,並且將貨物載到指定地點存放。

當然,還有語言模型的應用。例如結合檢索增強生成 ( RAG ) 跟上下文學習 ( in-context learning ),除了可以做備忘錄跟排程規劃以外,還能將實務上碰到的問題記錄下來,等到之後碰到類似的問題時,就能詢問 AI 並得到解答。

你或許會問,那為什麼不直接使用 ChatGPT 就好了?其實,對許多企業來說,內部資料往往具有高度機密性與商業價值,有些場域甚至連手機都禁止員工帶入,自然無法將資料上傳雲端。對於重視資安,又希望運用 AI 提升效率的企業與工廠而言,自行部署大型語言模型(self-hosted LLM)才是理想選擇。而這樣的應用,並不需要龐大的設備。研華的 SKY-602E3 塔式 GPU 伺服器,體積僅如後背包大小,卻能輕鬆支援語言模型的運作,實現高效又安全的 AI 解決方案。

但問題也接著浮現:要在這麼小的設備上跑大型 AI 模型,會不會太吃資源?這正是目前 AI 領域最前沿、最火熱的研究方向之一:如何幫 AI 模型進行「科學瘦身」,又不減智慧。接下來,我們就來看看科學家是怎麼幫 AI 減重的。

-----廣告,請繼續往下閱讀-----

語言模型瘦身術之一:量化(Quantization)—用更精簡的數位方式來表示知識

當硬體資源有限,大模型卻越來越龐大,「幫模型減肥」就成了邊緣 AI 的重要課題。這其實跟圖片壓縮有點像:有些畫面細節我們肉眼根本看不出來,刪掉也不影響整體感覺,卻能大幅減少檔案大小。

模型量化的原理也是如此,只不過對象是模型裡面的參數。這些參數原先通常都是以「浮點數」表示,什麼是浮點數?其實就是你我都熟知的小數。舉例來說,圓周率是個無窮不循環小數,唸下去就會是3.141592653…但實際運算時,我們常常用 3.14 或甚至直接用 3,也能得到夠用的結果。降低模型參數中浮點數的精度就是這個意思! 

然而,量化並不是那麼容易的事情。而且實際上,降低精度多少還是會影響到模型表現的。因此在設計時,工程師會精密調整,確保效能在可接受範圍內,達成「瘦身不減智」的目標。

當硬體資源有限,大模型卻越來越龐大,「幫模型減肥」就成了邊緣 AI 的重要課題。/ 圖片來源:MotionArray

模型剪枝(Model Pruning)—基於重要性的結構精簡

建立一個 AI 模型,其實就是在搭建一整套類神經網路系統,並訓練類神經元中彼此關聯的參數。然而,在這麼多參數中,總會有一些參數明明佔了一個位置,卻對整體模型沒有貢獻。既然如此,不如果斷將這些「冗餘」移除。

這就像種植作物的時候,總會雜草叢生,但這些雜草並不是我們想要的作物,這時候我們就會動手清理雜草。在語言模型中也會有這樣的雜草存在,而動手去清理這些不需要的連結參數或神經元的技術,就稱為 AI 模型的模型剪枝(Model Pruning)。

-----廣告,請繼續往下閱讀-----

模型剪枝的效果,大概能把100變成70這樣的程度,說多也不是太多。雖然這樣的縮減對於提升效率已具幫助,但若我們要的是一個更小幾個數量級的模型,僅靠剪枝仍不足以應對。最後還是需要從源頭著手,採取更治本的方法:一開始就打造一個很小的模型,並讓它去學習大模型的知識。這項技術被稱為「知識蒸餾」,是目前 AI 模型壓縮領域中最具潛力的方法之一。

知識蒸餾(Knowledge Distillation)—讓小模型學習大師的「精髓」

想像一下,一位經驗豐富、見多識廣的老師傅,就是那個龐大而強悍的 AI 模型。現在,他要培養一位年輕學徒—小型 AI 模型。與其只是告訴小型模型正確答案,老師傅 (大模型) 會更直接傳授他做判斷時的「思考過程」跟「眉角」,例如「為什麼我會這樣想?」、「其他選項的可能性有多少?」。這樣一來,小小的學徒模型,用它有限的「腦容量」,也能學到老師傅的「智慧精髓」,表現就能大幅提升!這是一種很高級的訓練技巧,跟遷移學習有關。

舉個例子,當大型語言模型在收到「晚餐:鳳梨」這組輸入時,它下一個會接的詞語跟機率分別為「炒飯:50%,蝦球:30%,披薩:15%,汁:5%」。在知識蒸餾的過程中,它可以把這套機率表一起教給小語言模型,讓小語言模型不必透過自己訓練,也能輕鬆得到這個推理過程。如今,許多高效的小型語言模型正是透過這項技術訓練而成,讓我們得以在資源有限的邊緣設備上,也能部署愈來愈強大的小模型 AI。

但是!即使模型經過了這些科學方法的優化,變得比較「苗條」了,要真正在邊緣環境中處理如潮水般湧現的資料,並且高速、即時、穩定地運作,仍然需要一個夠強的「引擎」來驅動它們。也就是說,要把這些經過科學千錘百鍊、但依然需要大量計算的 AI 模型,真正放到邊緣的現場去發揮作用,就需要一個強大的「硬體平台」來承載。

-----廣告,請繼續往下閱讀-----

邊緣 AI 的強心臟:SKY-602E3 的三大關鍵

像研華的 SKY-602E3 塔式 GPU 伺服器,就是扮演「邊緣 AI 引擎」的關鍵角色!那麼,它到底厲害在哪?

一、核心算力
它最多可安裝 4 張雙寬度 GPU 顯示卡。為什麼 GPU 這麼重要?因為 GPU 的設計,天生就擅長做「平行計算」,這正好就是 AI 模型裡面那種海量數學運算最需要的!

你想想看,那麼多數據要同時處理,就像要請一大堆人同時算數學一樣,GPU 就是那個最有效率的工具人!而且,有多張 GPU,代表可以同時跑更多不同的 AI 任務,或者處理更大流量的數據。這是確保那些科學研究成果,在邊緣能真正「跑起來」、「跑得快」、而且「能同時做更多事」的物理基礎!

二、工程適應性——塔式設計。
邊緣環境通常不是那種恆溫恆濕的標準機房,有時是在工廠角落、辦公室一隅、或某個研究實驗室。這種塔式的機箱設計,體積相對緊湊,散熱空間也比較好(這對高功耗的 GPU 很重要!),部署起來比傳統機架式伺服器更有彈性。這就是把高性能計算,進行「工程化」,讓它能適應台灣多樣化的邊緣應用場景。

三、可靠性
SKY-602E3 用的是伺服器等級的主機板、ECC 糾錯記憶體、還有備援電源供應器等等。這些聽起來很硬的規格,背後代表的是嚴謹的工程可靠性設計。畢竟在邊緣現場,系統穩定壓倒一切!你總不希望 AI 分析跑到一半就掛掉吧?這些設計確保了部署在現場的 AI 系統,能夠長時間、穩定地運作,把實驗室裡的科學成果,可靠地轉化成實際的應用價值。

-----廣告,請繼續往下閱讀-----
研華的 SKY-602E3 塔式 GPU 伺服器,體積僅如後背包大小,卻能輕鬆支援語言模型的運作,實現高效又安全的 AI 解決方案。/ 圖片提供:研華科技

台灣製造 × 在地智慧:打造專屬的邊緣 AI 解決方案

研華科技攜手八維智能,能幫助企業或機構提供客製化的AI解決方案。他們的技術能力涵蓋了自然語言處理、電腦視覺、預測性大數據分析、全端軟體開發與部署,及AI軟硬體整合。

無論是大小型語言模型的微調、工業瑕疵檢測的模型訓練、大數據分析,還是其他 AI 相關的服務,都能交給研華與八維智能來協助完成。他們甚至提供 GPU 與伺服器的租借服務,讓企業在啟動 AI 專案前,大幅降低前期投入門檻,靈活又實用。

台灣有著獨特的產業結構,從精密製造、城市交通管理,到因應高齡化社會的智慧醫療與公共安全,都是邊緣 AI 的理想應用場域。更重要的是,這些情境中許多關鍵資訊都具有高度的「時效性」。像是產線上的一處異常、道路上的突發狀況、醫療設備的即刻警示,這些都需要分秒必爭的即時回應。

如果我們還需要將數據送上雲端分析、再等待回傳結果,往往已經錯失最佳反應時機。這也是為什麼邊緣 AI,不只是一項技術創新,更是一條把尖端 AI 科學落地、真正發揮產業生產力與社會價值的關鍵路徑。讓數據在生成的那一刻、在事件發生的現場,就能被有效的「理解」與「利用」,是將數據垃圾變成數據黃金的賢者之石!

👉 更多研華Edge AI解決方案
👉 立即申請Server租借

-----廣告,請繼續往下閱讀-----
-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

0

6
0

文字

分享

0
6
0
草莓是果實還是種子?又或者……以上皆非?——「112年會考自然科考題」
椀濘_96
・2023/09/22 ・858字 ・閱讀時間約 1 分鐘

-----廣告,請繼續往下閱讀-----

112 會考甫結束,自然考科中有題非常令人印象深刻……。

自然科第 35 題。圖/國立臺灣師範大學心理與教育測驗研究發展中心

原來我們吃的草莓不是以為的「果實」,那個紅紅的果肉是其實是草莓的花托,而上面黑色的點點也不是「種子」,而是果實本人!至於真正的種子呢?當然是在那些黑黑的果實裡啦~

這似乎顛覆我們的印象,以為日常生活中所吃的水果果肉就是植物的果實,究竟這當中又藏著什麼奧秘呢?若想進一步完整理解草莓,就得從果實的構造及分類說起。

果實為被子植物的生殖器官之一,當雌蕊中的胚珠完成受精作用後,子房便逐漸發育為果實,胚珠則發育成種子。有些植物的花托、苞片、花萼等構造會與子房外壁癒合,並隨之生長而膨大,成為果實的一部分;例如這次的主角——草莓。

-----廣告,請繼續往下閱讀-----

接著我們談談果實的分類。可依據發育、構造、型態的不同,分為:橘子的「柑果」、水蜜桃為「核果」、杏仁屬於「堅果」等等,至於草莓則被歸類在「瘦果」及「聚合果」。

花的解剖構造。圖/維基百科

現在我們要先將草莓紅紅的果肉剔除,只剩下單獨一粒粒黑黑小小的果實。「瘦果」(achene)顧名思義,型態硬而細小,其內僅有一粒種子,除了草莓外,常見的如愛玉子、向日葵的瓜子。

屬於「聚合果」(又稱「聚心皮果」,為複合果實的一種)的植物則是一朵花中有多個(兩個以上)離生的雌蕊,花的萼片(花萼)、花托一同參與了果實的發育,最終膨大癒合形成肉質果肉;另外,其果實被分類在聚合果的植物,常見的有釋迦、覆盆莓。

其實除了草莓還有許多我們意想不到,所吃的水果果肉並非單單只有果實本人,例如鳳梨、桑葚、香蕉、無花果……等等;它們也都和草莓一樣,由於果實發育的方式,所造就了如此特別、豐富型態,等著我們一一去認識!

-----廣告,請繼續往下閱讀-----
-----廣告,請繼續往下閱讀-----
椀濘_96
12 篇文章 ・ 20 位粉絲
喜歡探索浪漫的事物; 比如宇宙、生命、文字, 還有你。(嘿嘿 _ 每天都過著甜甜的小日子♡(*’ー’*)