0

0
0

文字

分享

0
0
0

標準燭光緩慢減弱

peregrine
・2011/03/04 ・656字 ・閱讀時間約 1 分鐘 ・SR值 588 ・九年級

造父變星(Cepheid stars)是值得注意的信標,由於每一個變星皆以一個固定的頻率進行脈衝,而該頻率與其實質亮度有關,因而天文學家能藉由比較觀測到的及實質的光度,來判斷造父變星的距離。反過來,造父變星可用來來校準其他可從更遠處觀察,發出光度信號的標準燭光(standard candles)。重複上述過程,能產生用來估測整個宇宙距離的宇宙距離梯級(cosmic distance ladder:也通稱為銀河系外距離量表)。

(圖援用自原文)

長久以來,天文學家們一直認為,造父變星的狀態是不變的。不過,目前加拿大西安大略大學(the University of Western Ontario)的Pauline Barmby及同僚們提出報告,在該團隊研究的29顆造父變星中,約1/4正在喪失質量。當此些變星喪失質量時,遮蔽它們的塵霧會導致錯誤的距離估測。

文中來自較早相關研究的圖片,顯現了此類變星之一Delta Cephei,使用斯皮策太空望遠鏡(the Spitzer Space Telescope)所獲得的紅外線影像。紅色區域是該變星衝過星際氣體及塵埃時,激烈震動所產生的。震動形式揭露,這是由來自Delta Cephei百萬倍於咱們太陽的恆星風所引起。因此,宇宙距離梯級中不健全的較低梯級是否使得此梯級本身不可靠?

相反地,2011年1月,該團隊成員Massimo Marengo在美國天文學會(American Astronomical Society)於西雅圖市舉行的會議上表示,即使具有諸多不穩定性,造父變星的梯級依舊可靠,因而以諸多造父變星為基礎的觀測依然是值得信賴的。此外,由於天文學家們正更深入瞭解此些變星,因而將能更精準地確認它們的亮度,甚至經過比較建立更穩定的梯級。

-----廣告,請繼續往下閱讀-----

原文網址:http://blogs.physicstoday.org/update/2011/01/a-standard-candle-slowly-burns.html
翻譯:peregrine | 校對:Portnoy
本文轉載自PEREGRINE科學點滴

文章難易度
peregrine
38 篇文章 ・ 0 位粉絲

0

8
2

文字

分享

0
8
2
快!還要更快!讓國家級地震警報更好用的「都會區強震預警精進計畫」
鳥苷三磷酸 (PanSci Promo)_96
・2024/01/21 ・2584字 ・閱讀時間約 5 分鐘

本文由 交通部中央氣象署 委託,泛科學企劃執行。

  • 文/陳儀珈

從地震儀感應到地震的震動,到我們的手機響起國家級警報,大約需要多少時間?

臺灣從 1991 年開始大量增建地震測站;1999 年臺灣爆發了 921 大地震,當時的地震速報系統約在震後 102 秒完成地震定位;2014 年正式對公眾推播強震即時警報;到了 2020 年 4 月,隨著技術不斷革新,當時交通部中央氣象局地震測報中心(以下簡稱為地震中心)僅需 10 秒,就可以發出地震預警訊息!

然而,地震中心並未因此而自滿,而是持續擴建地震觀測網,開發新技術。近年來,地震中心執行前瞻基礎建設 2.0「都會區強震預警精進計畫」,預計讓臺灣的地震預警系統邁入下一個新紀元!

-----廣告,請繼續往下閱讀-----

連上網路吧!用建設與技術,換取獲得地震資料的時間

「都會區強震預警精進計畫」起源於「民生公共物聯網數據應用及產業開展計畫」,該計畫致力於跨部會、跨單位合作,由 11 個執行單位共同策畫,致力於優化我國環境與防災治理,並建置資料開放平台。

看到這裡,或許你還沒反應過來地震預警系統跟物聯網(Internet of Things,IoT)有什麼關係,嘿嘿,那可大有關係啦!

當我們將各種實體物品透過網路連結起來,建立彼此與裝置的通訊後,成為了所謂的物聯網。在我國的地震預警系統中,即是透過將地震儀的資料即時傳輸到聯網系統,並進行運算,實現了對地震活動的即時監測和預警。

地震中心在臺灣架設了 700 多個強震監測站,但能夠和地震中心即時連線的,只有其中 500 個,藉由這項計畫,地震中心將致力增加可連線的強震監測站數量,並優化原有強震監測站的聯網品質。

-----廣告,請繼續往下閱讀-----

在地震中心的評估中,可以連線的強震監測站大約可在 113 年時,從原有的 500 個增加至 600 個,並且更新現有監測站的軟體與硬體設備,藉此提升地震預警系統的效能。

由此可知,倘若地震儀沒有了聯網的功能,我們也形同完全失去了地震預警系統的一切。

把地震儀放到井下後,有什麼好處?

除了加強地震儀的聯網功能外,把地震儀「放到地下」,也是提升地震預警系統效能的關鍵做法。

為什麼要把地震儀放到地底下?用日常生活來比喻的話,就像是買屋子時,要選擇鬧中取靜的社區,才不會讓吵雜的環境影響自己在房間聆聽優美的音樂;看星星時,要選擇光害比較不嚴重的山區,才能看清楚一閃又一閃的美麗星空。

-----廣告,請繼續往下閱讀-----

地表有太多、太多的環境雜訊了,因此當地震儀被安裝在地表時,想要從混亂的「噪音」之中找出關鍵的地震波,就像是在搖滾演唱會裡聽電話一樣困難,無論是電腦或研究人員,都需要花費比較多的時間,才能判讀來自地震的波形。

這些環境雜訊都是從哪裡來的?基本上,只要是你想得到的人為震動,對地震儀來說,都有可能是「噪音」!

當地震儀靠近工地或馬路時,一輛輛大卡車框啷、框啷地經過測站,是噪音;大稻埕夏日節放起絢麗的煙火,隨著煙花在天空上一個一個的炸開,也是噪音;台北捷運行經軌道的摩擦與震動,那也是噪音;有好奇的路人經過測站,推了推踢了下測站時,那也是不可忽視的噪音。

因此,井下地震儀(Borehole seismometer)的主要目的,就是盡量讓地震儀「遠離塵囂」,記錄到更清楚、雜訊更少的地震波!​無論是微震、強震,還是來自遠方的地震,井下地震儀都能提供遠比地表地震儀更高品質的訊號。

-----廣告,請繼續往下閱讀-----

地震中心於 2008 年展開建置井下地震儀觀測站的行動,根據不同測站底下的地質條件,​將井下地震儀放置在深達 30~500 公尺的乾井深處。​除了地震儀外,站房內也會備有資料收錄器、網路傳輸設備、不斷電設備與電池,讓測站可以儲存、傳送資料。

既然井下地震儀這麼強大,為什麼無法大規模建造測站呢?簡單來說,這一切可以歸咎於技術和成本問題。

安裝井下地震儀需要鑽井,然而鑽井的深度、難度均會提高時間、技術與金錢成本,因此,即使井下地震儀的訊號再好,若非有國家建設計畫的支援,也難以大量建置。

人口聚集,震災好嚴重?建立「客製化」的地震預警系統!

臺灣人口主要聚集於西半部,然而此區的震源深度較淺,再加上密集的人口與建築,容易造成相當重大的災害。

-----廣告,請繼續往下閱讀-----

許多都會區的建築老舊且密集,當屋齡超過 50 歲時,它很有可能是在沒有耐震規範的背景下建造而成的的,若是超過 25 年左右的房屋,也有可能不符合最新的耐震規範,並未具備現今標準下足夠的耐震能力。 

延伸閱讀:

在地震界有句名言「地震不會殺人,但建築物會」,因此,若建築物的結構不符合地震規範,地震發生時,在同一面積下越密集的老屋,有可能造成越多的傷亡。

因此,對於發生在都會區的直下型地震,預警時間的要求更高,需求也更迫切。

-----廣告,請繼續往下閱讀-----

地震中心著手於人口密集之都會區開發「客製化」的強震預警系統,目標針對都會區直下型淺層地震,可以在「震後 7 秒內」發布地震警報,將地震預警盲區縮小為 25 公里。

111 年起,地震中心已先後完成大臺北地區、桃園市客製化作業模組,並開始上線測試,當前正致力於臺南市的模組,未來的目標為高雄市與臺中市。

永不停歇的防災宣導行動、地震預警技術研發

地震預警系統僅能在地震來臨時警示民眾避難,無法主動保護民眾的生命安全,若人民沒有搭配正確的防震防災觀念,即使地震警報再快,也無法達到有效的防災效果。

因此除了不斷革新地震預警系統的技術,地震中心也積極投入於地震的宣導活動和教育管道,經營 Facebook 粉絲專頁「報地震 – 中央氣象署」、跨部會舉辦《地震島大冒險》特展、《震守家園 — 民生公共物聯網主題展》,讓民眾了解正確的避難行為與應變作為,充分發揮地震警報的效果。

-----廣告,請繼續往下閱讀-----

此外,雖然地震中心預計於 114 年將都會區的預警費時縮減為 7 秒,研發新技術的腳步不會停止;未來,他們將應用 AI 技術,持續強化地震預警系統的效能,降低地震對臺灣人民的威脅程度,保障你我生命財產安全。

文章難易度

討論功能關閉中。

鳥苷三磷酸 (PanSci Promo)_96
196 篇文章 ・ 300 位粉絲
充滿能量的泛科學品牌合作帳號!相關行銷合作請洽:contact@pansci.asia

0

5
1

文字

分享

0
5
1
指甲刮黑板的聲音,為何讓人難以忍受?
雅文兒童聽語文教基金會_96
・2023/10/22 ・2522字 ・閱讀時間約 5 分鐘

-----廣告,請繼續往下閱讀-----

  • 朱家瑩/雅文基金會聽語科學研究中心 研究員

想像一下當你聽到手指甲刮著黑板產生的摩擦聲,或者是拿著叉子摩擦著不鏽鋼碗的聲音,抑或是小孩的哭叫聲,有沒有哪一個聲音會讓你全身起雞皮疙瘩,想要用手摀住耳朵,甚至是情緒爆炸、只想要遠離現場呢?這些讓人不適的聲音,是有其特有的聲學特質?或是其他緣故呢?

想像一下指甲刮黑板的聲音。圖/Pexels

不是尖銳、高頻音就刺耳,而是流淌在你我血液的祖先智慧

一般認為,令人不適的聲音是因為刺耳的高頻聲,尤其像是手指甲刮黑板時所產生的摩擦聲,其中那種「ㄍㄧ ㄍㄧ ㄍㄧ」的聲音,似乎是造成不適感的主因。

然而,Halpern、Blake 和 Hillenbrand(1986)這三位研究者對於這個現象感到好奇,因此他們進行了一項實驗 [1],他們將那些令人不適聲音(如:刮金屬或石板的聲音)中的高頻音減弱。

結果顯示,即使減弱尖銳的高頻聲音,受試者仍然感到不適,因而主張尖銳的高頻音並不是造成不適感的主因。接續 Halpern 等人在企圖尋求答案時,意外發現刮黑板的聲音頻譜圖跟靈長類猴子的警告叫聲非常相似,因而大膽推測這個不適感並非高頻音造成的,而是源於人類祖先的記憶。

-----廣告,請繼續往下閱讀-----

人類對特定頻率區間的聲音感知最敏感,加上跨感官的連結,讓人聽到某些音就不適

可惜,到底是不是來自老祖先的智慧傳承,這點未獲得後續研究的支持。另一方面,Kumar 等人(2008)進一步以聲學分析探究是否是因特定頻率導致聆聽的不適感時,發現聲音中涵蓋 2500-5500 赫茲這個頻率區間的聲學頻率似乎特別容易引起聽者的不適感 [2]

有沒有哪一個聲音會讓你全身起雞皮疙瘩,想要用手摀住耳朵?圖/Pexels

他們推測這可能是因為這個頻率範圍的聲音感知上最為強烈,同時也具有最高的能量,因此使得聽覺系統特別對這些頻率的聲音敏感。

但是,我們平常聊天談話中也涵蓋了這個頻率範圍的聲音,除了頻率之外,是不是還有其他因素造成對某些聲音的不適感呢?

Ro 等人(2013)發現當聽到聲音時,聲音進入大腦的聽覺皮質同時,會傳遞訊號到觸覺感官系統,啟動了觸覺感官,讓聽者聽到聲音時,「感覺」到自己的皮膚彷彿被指甲刮的刺痛感 [3]

-----廣告,請繼續往下閱讀-----

聽聲音會啟動身體觸覺感官系統並非只存在刮黑板這類聲音,有些人在聽到音樂聲,像是聽到低音貝斯的聲音時,也會感覺到自己的身體也在震動,甚至感受到皮膚的不適感 [4、5]

也許因為這個跨感官的訊號傳遞,讓身體的其他部位也出現不適的感受,才會讓聽者對於這些聲音感到不適。

當感知到令人不適的聲音,杏仁核會依據習得經驗,決定是否啟動保護機制!

Zald 與 Pardo(2002)發現當聽到讓人感到不適的聲音刺激時,大腦中的杏仁核(amygdala)會高度活化 [6],而杏仁核在大腦中負責掌控恐懼、焦慮、害怕等負面情緒,換句話說,當聲音訊息抵達杏仁核時,它會誘發情緒反應,進而導致我們做出不同行為反應 [7]

杏仁核的啟動是大腦的一種保護機制,透過過往的經驗連結學習會對讓人不適的聲音發出警報[8] ,當聽者遇到可能危及安全的聲音時,杏仁核就會發出警報。

-----廣告,請繼續往下閱讀-----

例如,當聽到車子緊急剎車的聲音時,這個聲音傳送到杏仁核,會進而引起我們想要逃離的反應,或者產生對駕駛者行為的憤怒反應。

由於杏仁核在聆聽這些聲音時會高度活化,Kumar 等人(2012)進一步試圖了解在聆聽令人不適的聲音時,杏仁核在大腦中扮演著怎樣的角色,以及聲音資訊如何被傳遞到杏仁核。

他們的研究結果顯示,聲音刺激會最先傳送到聽覺皮質(auditory cortex)進行聲學訊息處理和分析,解碼聲音所代表的意義,例如,聽到「ㄍㄧ」的剎車聲,解碼出來的是來自汽車或者腳踏車的剎車聲。聽覺皮質處理完畢後,將資訊傳遞到杏仁核,當杏仁核接收到來自聽覺皮質的訊號後,依據這些訊息及過去經驗發出警報 [8],誘發恐懼、焦慮或憤怒等負面情緒,並可能促使進一步的行為反應,像是尖叫、摀住耳朵,或逃離現場。

舉例來說,如果是汽車的剎車聲,基於過去的經驗,可能存在危險,因此可能會誘發恐懼情緒,並引發立馬逃離現場的行為舉動。

-----廣告,請繼續往下閱讀-----
有些人基於過去的經驗,聽到汽車的剎車聲,可能會誘發恐懼情緒。圖/Pexels

然而,如果解碼後的聲音是腳踏車的剎車聲,根據過去的經驗,可能不會有危及生命的危險,因此即便會觸發閃躲的動作行為,但負面情緒可能不如汽車剎車聲來的強烈,可能只會憤怒的罵騎車的人不長眼。

聽到某些聲音,讓人立馬想逃或想戰,也許這個過往的經驗是來自遠古時代祖先的傳承,但更可能是因為聽到這些聲音時,觸覺感官系統被啟動了,身體上「感覺」到不適,所以當不適的聲音再次出現時,杏仁核的活化反應就更增強,讓我們除了單純的接收到聲音之外,也產生了身體及情緒上的反應。

參考文獻

  1. Halpern, D. L., Blake, R., & Hillenbrand, J. (1986). Psychoacoustics of a chilling sound. Perception & Psychophysics39, 77-80.
  2. Kumar, S., Forster, H. M., Bailey, P., & Griffiths, T. D. (2008). Mapping unpleasantness of sounds to their auditory representation. The Journal of the Acoustical Society of America124(6), 3810-3817.
  3. Ro, T., Ellmore, T. M., & Beauchamp, M. S. (2013). A neural link between feeling and hearing. Cerebral cortex, 23(7), 1724-1730.
  4. Koenig, L., & Ro, T. (2022). Sound Frequency Predicts the Bodily Location of Auditory-Induced Tactile Sensations in Synesthetic and Ordinary Perception. bioRxiv.
  5. Lad, D., Wilkins, A., Johnstone, E., Vuong, Q.C. (2022). Feeling the music: The feel and sound of songs attenuate pain. British Journal of Pain, 16(5), 518-527. 
  6. Zald, D. H., & Pardo, J. V. (2002). The neural correlates of aversive auditory stimulation. Neuroimage16(3), 746-753.
  7. LeDoux, J. E. (2000). Emotion circuits in the brain. Annual review of neuroscience23(1), 155-184.
  8. Kumar, S., von Kriegstein, K., Friston, K., & Griffiths, T. D. (2012). Features versus feelings: dissociable representations of the acoustic features and valence of aversive sounds. Journal of Neuroscience, 32(41), 14184-14192.
雅文兒童聽語文教基金會_96
54 篇文章 ・ 222 位粉絲
雅文基金會提供聽損兒早期療育服務,近年來更致力分享親子教養資訊、推動聽損兒童融合教育,並普及聽力保健知識,期盼在家庭、學校和社會埋下良善的種子,替聽損者營造更加友善的環境。

4

3
3

文字

分享

4
3
3
運動聽音樂,讓你越動越活躍!
鳥苷三磷酸 (PanSci Promo)_96
・2022/08/15 ・2255字 ・閱讀時間約 4 分鐘

你有過邊聽音樂邊跑步的經驗嗎?讓我們先來看一段動畫,再開始今天的主題!動畫裡的主角阿辰有個熱愛跑步的阿公,他想要挑戰路跑,於是向阿辰下戰帖,想看誰可以先跑完四圈操場。沒想到,原本落後的阿辰,戴上耳機後,竟然逆轉局勢,贏得了比賽。這究竟是什麼魔法?為什麼音樂能讓阿辰瞬間變成飛毛腿呢?

「音樂關鍵字(Unlocking Music)」EP2:奔跑吧!阿公(Go, Grandpa, Go!)。影/YouTube

日常生活中的音樂與運動

2014 年,美國音樂潮牌 Sol Republic 調查 1,000 位民眾使用耳機的習慣,有 62% 的民眾表示「一整天沒有聽音樂,比一整天沒有社交活動」更糟,另外也有 40% 的民眾表示,如果沒有搭配音樂,他們想要運動、鍛鍊身體的欲望就會大幅降低。

在臺灣,如果你曾經踏進健身房或運動中心,想必聽過從喇叭傳出來的快節奏音樂,或是看過不少人戴著耳機跑步、舉重、騎飛輪。如果你在學校或熱鬧的商圈看過街舞表演,通常也都是選用節奏明快的流行歌。可是,為什麼音樂和運動有關呢?一邊運動,一邊聽音樂,真的對我們有幫助嗎?如果有,背後的科學原理又是什麼?

聲音如何穿越耳朵、抵達大腦?

想知道為什麼音樂和運動有關,就得先瞭解聲音如何穿越耳朵、抵達大腦。

-----廣告,請繼續往下閱讀-----

從生理構造來看,我們的耳朵可分為三部分:外耳、中耳和內耳。外耳負責將接收到的聲波傳入中耳。中耳有「耳膜」和「聽小骨」,能夠增強聲波,將聲波轉換成內耳能夠解讀的訊號。內耳有「耳蝸」和「前庭系統」,分別掌管聽覺和平衡感。這兩個結構會在末端合體,成為「前庭耳蝸神經」,也就是 12 對腦神經中的第 8 對,可以將聲音訊號直接送進大腦。

聽小骨(綠色)、耳蝸(粉紅色)與前庭耳蝸神經(藍色)。圖/iStock

擅長平衡、喜歡打節拍的前庭系統

說到平衡感,那就和運動有關了!前庭系統的功能就是穩定身體,讓我們走路時不易跌倒、運動時能保持平衡,眼睛追蹤移動物體時,也不至於暈頭轉向。這些都要歸功於前庭系統裡頭的「半規管」和「耳石」,前者感知旋轉,後者感知重力與加速度。

如果我們一邊跑步一邊聽音樂,讓節奏規律的低頻重拍經由前庭系統刺激大腦,就能讓大腦誤以為是雙腳落地的低頻聲響。如此一來,大腦就會透過前庭系統發送訊號給肌肉,幫助腳步保持規律。換句話說,如果音樂節奏與步伐速度相近,跑起來就能更輕鬆;反之,如果換成節奏較慢的音樂,前庭系統就會讓我們不自覺放慢腳步,導致運動效果不佳。

研究顯示,聽音樂運動「效果十分顯著」

早在 1911 年,美國統計學家艾爾斯(Leonard Ayres)就發現,如果賽道旁有樂隊演奏,自行車選手踩踏板的速度也會隨之加快。[1] 2012 年,英國雪菲爾哈倫大學(Sheffield Hallam University)的研究進一步證明,相較於踩踏速度沒有和音樂節拍同步的選手來說,同步選手的耗氧量減少 7%,意思就是比較不容易疲累或缺氧。由此可見,音樂就像身體的節拍器,可以穩住運動節奏,減少體力耗損。[2]

-----廣告,請繼續往下閱讀-----

2017 年,印度幾所大學的醫學院教授共同研究音樂對青少年運動表現的影響。這些教授找來 50 位年齡介於 19 到 25 歲的學生,讓他們連續 10 個早晨在跑步機上運動,速度不限,累了就可以停下來。研究數據顯示,在沒有播放任何音樂時,男性的平均運動時間約為 26 分鐘,女性則是 18 分鐘;相較之下,當他們聆聽各自喜歡的音樂時,男性的平均運動時間可以達到 42 分鐘,女性則是 31 分鐘,前後有非常明顯的落差。[3]

音樂能夠顯著延長青少年的慢跑時間。圖/IJPPP

2020 年,美國桑福德大學(Samford University)的研究也顯示,只要在暖身時,聆聽喜歡的音樂,就可以提高臥推槓鈴的表現。雖然臥推速度幾乎沒有差異,如圖(a),可是臥推次數明顯增加。根據圖(b)的數據,如果聆聽不喜歡的音樂(NON-PREF),平均只能推 11.1 下,經過兩分鐘休息後,只能再推 8.0 下;但如果聆聽喜歡的音樂(PREF),平均可以推 13.5 下,經過兩分鐘休息後,也可以再推 9.4 下,可見聽音樂運動的效果確實非常顯著。[4] 

研究顯示,只要在暖身時,聆聽喜歡的音樂,就可以提高臥推槓鈴的表現。圖/JFMK

註解

參考資料

  1. Sound Over Pounds: Survey Finds Two Out Of Three People Cut Their Workout Short Or Ditch It Completely Without Headphones
  2. 認識耳朵 – 歡迎光臨林口長庚耳鼻喉部
  3. Let’s Get Physical: The Psychology of Effective Workout Music
所有討論 4
鳥苷三磷酸 (PanSci Promo)_96
196 篇文章 ・ 300 位粉絲
充滿能量的泛科學品牌合作帳號!相關行銷合作請洽:contact@pansci.asia