0

0
1

文字

分享

0
0
1

蜻蜓的全視角的和蒼蠅的五倍速,複眼看見的是怎樣的世界?──《昆蟲誌》

左岸文化_96
・2018/03/31 ・4053字 ・閱讀時間約 8 分鐘 ・SR值 490 ・五年級

編按:本文節錄自《昆蟲誌:人類學家觀看蟲蟲的 26 種方式》〈章節:字母 V 視覺 〉。作者以人類學家的觀點,在本書中探討人類與昆蟲的愛恨情仇。在人類出現之前就已經稱霸世界的昆蟲,任憑人類愛之恨之也無可奈何之。昆蟲誌於科學的範疇之外,以字母開頭誌記「人類如何理解昆蟲、與之互動」、既瑣碎又綿密的脈絡。

圖/ROverhate @Pixabay

如果用昆蟲眼睛看世界,會是什麼樣子?

「就算是視力最好的昆蟲,」光學設備發明家亨利.馬洛克(Henry Mallock)曾於 1894 年寫道,「牠們所看到的畫面也會像是非常粗糙的絨線刺繡作品,而且就好像擺在一呎之外觀看。」馬洛克接著表示,如果複眼具有人類眼睛的解析度,那複眼本身的確就會像眼鏡一樣。根據馬洛克的估計,那一顆複眼的直徑將會高達 20 公尺。為什麼會這麼大呢?因為,為了抵抗光線的繞射(diffraction,也就是光線在通過狹窄缺口時會散開並且變模糊的特性),複眼的每一片晶體都必須像人類的瞳孔一樣大小,也就是兩毫米寬,等於蜜蜂眼睛的 80 倍。

昆蟲眼睛看出去的影像,可能類似這樣嗎? 圖/Pexel @Pixabay

根據馬洛克的構想,如果要具備人類眼睛的解析度,昆蟲的頭必須非常大,大到很誇張,但那並不可怕,不用像大衛.柯能堡(David Cronenberg)的「變蠅人」那樣,而這實在是太美妙了,讓我想爬到那一片片露塞樹脂組合而成的超大頭盔後面!即便我知道那樣還是無法讓我自己看到昆蟲眼中的世界,因為視覺並不是如此簡單的一回事,但這還是沒辦法讓我打消念頭,我可沒那麼容易死心。而且有這想法的人絕對不是只有我而已。曾有許多人嘗試過,他們用比較科學的巧妙手法,設法把昆蟲看到的影像直接記錄下來。他們小心翼翼地剖開昆蟲的眼睛,把視網膜拿掉,把角膜清乾淨,用光線、顯微鏡與攝影機來做實驗;實驗結果不像露塞樹脂頭盔那樣給人身歷其境的感覺,但是似乎比較客觀,有一種比較可靠的感覺。

只要用點科學方法,想用昆蟲的眼光看世界,不必像 Seth Brundle 一樣付出慘痛代價。 圖/《變蠅人》 @IMDb

這種想要透過另一種生物的眼睛去看世界的衝動是非常強烈的,而且我相信這種衝動是來自於以下兩種視覺觀念巧妙的結合:一方面,自然科學讓我們充滿希望,承諾讓我們理解事物的運作、結構與功能這些最基本但隱晦的事物;而另一方面,人文科學則是向來懷抱著一個無法實現的美夢,也就是去除物我之分的烏托邦幻想,那種想要成為另一個自我但又不可能實現的渴望。那一股強烈的衝動告訴我們,即便是最難懂的神祕現象還是可以被揭密的──一切都能夠被攤在陽光底下。

首先透過複眼來觀看世界的霍克和虎克,他們發現了什麼?

圖/左岸文化提供

第一個想到可以透過複眼來觀看這世界的,是安東尼.范.雷文霍克(Antoni Van Leeuwenhoek):他是細菌、精蟲與血液細胞的發現者,也曾發現蜜蜂的口器與蜂針,水滴裡面有許多微生物,還有其他許多微生物現象。他的做法是,把昆蟲的角膜放在自己發明的金銀材質顯微鏡底下,在旁邊點了一根蠟燭;後來這台顯微鏡跟他的其他許多台顯微鏡都在他去世後被賣掉,如今已經失傳,但羅伯.虎克(Robert Hooke)曾經重製他的顯微鏡,藉此把自己觀察到的影像畫出來,畫作都收錄在他的《微物圖解》(Micrographia)一書。

《微物圖解》扉頁。 圖/National Library of Wales via wikipedia

虎克的畫作令人大開眼界,而且令人看了深感不安,但因為身為繪圖員,他的畫卻又是精確無比,其中最有名的就是他繪製的蜻蜓頭部版畫,讓世人初次有機會看到那像是帶上面具的惡魔般臉孔。除此之外,他還把自己的不可思議發現給記錄了下來,表示蜻蜓複眼上的每一個小眼(facet)都能夠如實反映出「窗前地景上的種種事物,包括一棵大樹,我可以輕鬆辨認出哪個部分是樹幹或樹梢,同時我也可以清楚地看出窗戶的各個部分,如果我把手擺在窗戶與那角膜之間,我就能看到手與手指」。

透過食蚜蠅(Drone-fly)的角膜,虎克到底觀察到什麼?他曾經大聲驚嘆,「如果我們能夠製作出一個儀器來重現那種感光效果或是重現那麼小的折射角度,那個儀器的各個零件肯定是讓人覺得奇特而微妙」。但事實上複眼的每一個小眼都會各自捕捉影像,所以傳送到腦部的畫面是破碎零散的,而雷文霍克一直要等到三十年後才成為第一個體認到這件事的人。1695 年,在那個藝術與科學尚未正式分家的時代,雷文霍克寫了一封令人屏息的信給英國皇家學會(Royal Society of London),被該會刊登出來:「透過顯微鏡,」他向其他科學家表示:

「我看見一個個顛倒的燭火影像:那影像不是只有一個,而是好幾百個。儘管影像都很小,但我看得出燭火在動」。

將近兩個世紀後,知名生物學家席格蒙.艾斯納的《昆蟲與甲殼類動物的生理學研究》(The Physiology of the Compound Eyes of Insects and Crustaceans)一書:這是關於昆蟲視力的第一本權威專論,是這個研究領域的開創之作,書中許多立論到目前為止都還經得起考驗。艾斯納曾當過恩斯特.布呂克(Ernst Brücke)的助理,而布呂克則是維也納生理學研究院(Vienna Physiological Institute)的生理學教授,就是他勸佛洛伊德不要研究神經科學,應該研究神經學(neurology)。艾斯納與佛洛伊德是該研究院的同事,同時都在接受布呂克指導,跟佛洛伊德一樣,此刻艾斯納也深受視覺問題吸引,醉心於視覺機制的研究。經過一番籌畫與努力,他拍下了螢屬(Lampyris)螢火蟲的複眼影像,但他拍出來的照片與雷文霍克看到的大不相同

圖/左岸文化提供

那麼多顆眼睛同時成像,昆蟲的大腦是怎麼處理的?

複眼的層次複雜零碎,眼球上有那麼多小眼,怎麼可能只看到一個影像?那影像怎麼可能是直立的?難道不是該像食蚜蠅與人類眼睛傳送到大腦的影像那樣,是顛倒的?

圖/左岸文化提供

儘管從外表看來並不是那麼明顯,但艾斯納知道,複眼實際上有兩種。

雷文霍克所檢視的那種複眼是由一個個細小的獨立感光組織構成,它們叫做小眼(ommatidia),每一個小眼都能在昆蟲視野中的某個狹小範圍內感光。艾斯納發現,就這種所謂並置眼(apposition eyes)而言,光線在通過小眼的六角形晶體之後,進入圓錐晶體(crystalline cone,每一個圓錐晶體都被色素細胞包覆著,因此可以擋住鄰近小眼的環境光線),接著往下穿越那些對光線很敏感的圓柱狀感桿束(rhabdom,每個感桿束裡面有八個視網膜感光細胞),然後直接抵達神經細胞,由神經細胞把影像傳送到視神經節,最後到達大腦。視網膜細胞原本產生的馬賽克式影像是顛倒的,會在大腦裡面被轉換成單一的直立影像。

不過,艾斯納也知道,像飛蛾之類的許多夜行性昆蟲一樣,螢火蟲的複眼是所謂的「疊置眼」,這種複眼對於光線的敏感度是日行性昆蟲身上那種並置眼的一百倍。

疊置眼的結構並不是分隔成一個個小眼,它的視網膜是片狀的,位於眼睛的深處,視網膜下方的透明區域是光線聚集的地方。或許我們可以說,疊置眼的小眼是會相互合作的:在視網膜上形成的影像都是好幾個晶體一起製造出來的。

但真正令人疑惑之處在於:接下來,直立的影像是如何在腦海中形成的?儘管整個 1880 年代都沒有可靠的工具可以進行證明,但艾斯納還是想出了解答:疊置眼的「感桿束(Rhabdome)」具有雙透鏡望遠鏡的功能,能夠重新引導光線的方向,讓它們的圓柱狀感桿束裡面交會在一起,進而將影像翻轉過來。生物學家麥可.蘭德(Michael Land)表示,「顯然,在此我們面對的是相當異常的現象」。蘭德與與丹─艾力克.尼爾森(Dan-Erik Nilsson)設法取得如下圖的影像,證明了兩種不同複眼形成的影像有所不同。食蟲虻的複眼是並置眼,他們透過其角膜取得左圖的顛倒影像;至於右圖,則是螢火蟲眼中的查爾斯.達爾文,影像模糊不已。

左:食蟲虻的並置眼,右:螢火蟲的疊置眼。 圖/左岸文化提供

複眼敏銳了動作,也加快了蒼蠅的世界

複眼上小眼的數量有多有少,視昆蟲而定,有些螞蟻的小眼數量是個位數的,但某些蜻蜓的小眼數量卻可能高達三萬多個。可想而知,小眼數量越多,眼睛影像的解析度就越高。但即便是視力最好的昆蟲也無法聚焦,眼睛無法在眼窩裡轉動(所以必須轉動整個頭才能夠改變眼前影像),而且除非距離很近,否則影像的清晰度是很差的。曾經想要抓蒼蠅或打蚊子的人都很清楚,牠們的強項是對於動作很敏銳。會飛的昆蟲通常都有很寬的視野,最厲害的是兩顆眼睛在頭頂碰在一起的蜻蜓,牠們的視野是 360 度的。

但牠們之所以對動作很敏銳並不只是因為這一點,昆蟲的「臨界閃光融合頻率」1比較快,所以如果我們要拍影片給蒼蠅看(或者牠們拍給自己看),就不能使用 1 秒 24 格的標準影片,而是要用速度快五倍的影片。這也表示蒼蠅生活的那個世界遠比我們的世界快速。出生後,蒼蠅會在幾天、幾週或幾個月裡死去,不像人類可以活幾十年。牠們占據的領域與我們的領域截然不同,不只牠們看到的影像清晰度、圖案與顏色與我們看到的不同,牠們對時間與空間覺知方式也與我們大不相同。

若是把感官當成自己與周遭世界之間的中介,我們可以思考的一個問題是:那些感官與我們不同的生物(包括人類)會有什麼感覺,如何思考?其情緒又會是怎麼樣的?那些模糊的照片與塑膠面罩只能為這個問題提供部分解答。如果想要獲得另一部分答案,我們必須先把自己對於感覺的確定感拋諸腦後。

註解:

  1. 臨界閃光融合頻率:flicker fusion frequency,在此一頻率之下,移動物體的影像才會變得流暢起來,而不是像手翻書(flip book)的一頁頁影像那樣,每個影像都是個獨立事件

 

 

本文摘自《昆蟲誌──人類學家觀看重重的 26 種方式》,左岸文化出版。

文章難易度
左岸文化_96
32 篇文章 ・ 9 位粉絲
左岸的出版旨趣側重歷史(文明史、政治史、戰爭史、人物史、物質史、醫療史、科學史)、政治時事(中國因素及其周邊,以及左岸專長的獨裁者)、社會學與人類學田野(大賣場、國會、工廠、清潔隊、農漁村、部落、精神病院,哪裡都可以去)、科學普通讀物(數學和演化生物學在這裡,心理諮商和精神分析也在這裡)。


2

4
0

文字

分享

2
4
0

發炎性腸道疾病的獵奇療法:來一杯「鉤蟲卵」吧!——《我們為什麼還沒有死掉?》

麥田出版_96
・2021/10/24 ・2290字 ・閱讀時間約 4 分鐘

• 作者/伊丹.班—巴拉克
• 譯者/傅賀

上一節,我提到了犬蛔蟲,我好不容易才忍住沒有提另外一種寄生蟲:蠕蟲。這類寄生蟲成員眾多,個個都是入侵或躲避免疫系統的行家,牠們有許多花招可以幫助牠們在人體內存活下來、繁榮昌盛。牠們之所以需要這些花招,是因為作為寄生蟲,牠們的個頭太大了,免疫系統不可能看不到牠們。即使是較小的蠕蟲物種,也有幾公釐長,跟病毒或細菌比起來,可謂龐然大物。

蠕蟲感染者的腸道 X 光照片,圖中黑線都是蠕蟲。圖/WIKIPEDIA by Secretariat

在世界上許多較貧窮的地區,由於衛生條件較差,蠕蟲帶來了無盡的痛苦:據統計,世界上約四分之一的人口感染了某種類型的蠕蟲。衛生機構正在嘗試使用預防、清潔的手段和抗蟲藥物來緩解疫情。與此同時,在已開發國家,人們已經成功消滅了蠕蟲疾病。

也許有點過於成功。

免疫反應有幾種不同的形式。我們理解得最透徹的兩種是 Th1 和 Th2(Th 代表輔助 T 細胞,這是一種重要的 T 細胞)。它們的細節比較複雜,但大體畫面是這樣的:這兩種反應處理的是不同類型的感染——Th1 類型的輔助 T 細胞會向吞噬細胞和胞毒 T 細胞發出啟動訊號。聽到「集結號」之後,這些細胞會追蹤並摧毀任何被病毒或特定細菌感染的人類細胞。與此相反,Th2 反應是直接攻擊那些尚未入侵人體的病原體,Th2 細胞會啟動一種叫作嗜酸性球(eosinophils)的免疫細胞,來殺死蠕蟲。只要一種 Th 反應上調,另外一種就會下調。這種機制是合理的,因為這樣可以節約身體的資源,並降低免疫反應的副作用。

TH2 細胞(左)正在被 B 細胞(右)活化。圖/WIKIPEDIA

蠕蟲激發的正是 Th2 反應。有人因此認為,此消彼長,在那些蠕蟲病發病率較高的國家,過敏反應( Th1)的概率恰恰因此更低。(在過去幾十年裡,已開發國家裡出現過敏反應的人越來越多)。流行病調查顯示:蠕蟲越是肆虐,過敏反應就越少。

蠕蟲採取的各種躲避和反擊策略,以及牠們的存在本身,都會對免疫系統產生影響。一個效果就是牠們會抑制發炎反應——要知道,世界上有許多人巴不得他們的發炎反應受到一點抑制呢。

因此,許多患有慢性自體免疫疾病(比如,發炎性腸道疾病)的人現在正在接受蠕蟲療法(用的是鉤蟲),針對其他發炎疾病的臨床治療也正在測試。

Necator Americanus L3 x1000 12-2007.jpg
鉤蟲, 被用在慢性自體免疫疾病的蠕蟲療法 。圖/WIKIPEDIA

這聽起來有點怪誕:有人竟希望——不,堅持要——被寄生蟲感染。他們向醫生求助,醫生給他們的藥是一小杯鉤蟲卵,然後他們就喝下去了。在他們的胃裡,這些卵會孵化,幼蟲會爬出來。然後,不知怎的,患者就感覺好多了。當然,鉤蟲不會存活很久(醫生選擇的物種並不會在人體腸道內存活很久,否則就會有新的麻煩了),因此,過一段時間,患者又要接受新一輪的感染,以維持免疫系統的平衡。

當然,如果我們可以不用蟲子(比如使用其中的有效成分,類似某種「鉤蟲萃取物」的藥物)就可以治療疾病,那就更好了。但是,目前還沒人知道到底哪些成分重要——而且似乎要見效,必須要用活的蠕蟲。

為了解釋關於蠕蟲的這個情況,研究人員提出了「老朋友假說」(old-friends hypothesis),這是「衛生假說」的一個改良版。你也許聽說過「衛生假說」,它已經流傳了很長一段時間,但直到一九八九年才由大衛.斯特拉昌(David Strachan)正式提出。他進行的流行病學調查顯示,那些在農場裡或田野邊上長大的孩子要比那些在城市裡長大的同齡人更少患上過敏。從此之後,「衛生假說」就被用於描述許多不同的觀念,其中一些得到了研究支持,而另一些則沒有。

總的來說,老朋友假說的大意是,人類的免疫系統是在一個充滿微生物的世界裡發育的,我們經常要跟許許多多的微生物打交道。我們已經看到了免疫系統跟腸道微生物的密切聯繫,但是這樣的親密關係也可能會擴展到病原體。免疫系統已經對一定程度的接觸和較量習以為常了。現代西方社會,是人類有史以來最愛清潔、刷洗、消毒的階段,我們受感染的機會大大減少——但這破壞了免疫系統的平衡。我們的免疫系統習慣了跟某些病原體對抗,一旦沒有了對手,它就會工作失常。因此,嬰兒和小朋友也許最好要接觸一點髒東西。

現代社會,是人類有史以來最愛清潔及消毒的階段,我們受感染的機會大大減少,但這破壞了免疫系統的平衡。圖/Pixabay

顯然,你不希望你的孩子臉上有霍亂弧菌,雖然研究人員在二○○○年發現結核病對預防氣喘有幫助,但這並不意味著你要讓孩子染上結核。但是「髒東西」裡含有許多常見病原菌的減毒突變株(不再那麼有害),這可能對孩子的身體有益。沒有它們,孩子日後也許更容易患上免疫疾病——比如過敏和自體免疫病。

問題是,要多乾淨才算乾淨,要多髒才算髒呢?抱歉,我真的不知道答案。

——本文摘自《我們為什麼還沒有死掉?》,2020 年 9 月,麥田

所有討論 2
麥田出版_96
156 篇文章 ・ 375 位粉絲
1992,麥田裡播下了種籽…… 耕耘多年,麥田在摸索中成長,然後努力使自己成為一個以人文精神為主軸的出版體。從第一本文學小說到人文、歷史、軍事、生活。麥田繼續生存、繼續成長,希圖得到眾多讀者對麥田出版的堅持認同,並成為讀者閱讀生活裡的一個重要部分。
網站更新隱私權聲明
本網站使用 cookie 及其他相關技術分析以確保使用者獲得最佳體驗,通過我們的網站,您確認並同意本網站的隱私權政策更新,了解最新隱私權政策