0

0
0

文字

分享

0
0
0

穿戴式腦磁測量頭盔問世!腦神經研究領域即將大革新?

活躍星系核_96
・2018/03/28 ・1785字 ・閱讀時間約 3 分鐘 ・SR值 531 ・七年級

-----廣告,請繼續往下閱讀-----

  • 文/林發暄 國立台灣大學醫學工程學研究所教授

腦磁圖(magnetoencephalography, MEG)是一種以非侵入方式量測腦部神經電信號的一種神經造影工具。他與常見的腦電圖(electroencephalography, EEG)相同,信號的主要來源以一群神經細胞(主要以位於皮質的錐狀細胞為主)在時間與空間上進行同步活動為主。與腦電圖不同的地方在於, 腦磁圖量測的是非常微弱的磁場信號(約比地球磁場小上千萬倍),因此技術上相當困難。

最早的腦磁圖實驗於 1970 年左右由 David Cohen 在屏蔽良好的磁屏蔽屋內首次完成(Cohen 1968, Cohen 1972)。幾十年來在磁屏蔽屋以及磁場感測器的技術發展下,由於具有毫秒等級的時間解析度,以及比腦電圖優良的空間敏感度選擇性和解析度,腦磁圖已經成功且廣泛地應用在臨床癲癇診斷以及神經科學研究上。

目前腦磁研究仍受到須在磁屏蔽室內進行實驗的限制。圖/wikipedia

舊型超導量子干涉元件龐大的腦磁測量頭盔

為達到足夠的敏感度來偵測微弱的腦磁信號,現有的腦磁系統多以使用超導量子干涉元件(superconductive quantum interference device, SQUID)。使用 SQUID 的限制在於:元件必須要在超低溫的環境下進行。

而整個系統因為冷卻需要,必須安裝在固定的頭盔上,且 SQUID 元件因冷卻系統的要求無法緊密貼合頭部。由於神經活動的磁場信號會隨距離而快速的消退,無法緊密貼合頭部的腦磁偵測器必然要損失一些敏感度。同樣的,目前的腦磁系統在量測腦磁信號上無法因不同人的頭型(例如:小孩實驗需使用大人的頭盔)而達到好的結果。

-----廣告,請繼續往下閱讀-----
現有的腦磁系統仍有諸多的侷限。圖/NIMH Image library@wikipedia

使用OPM 邊打乒乓邊測量腦磁

最近由英國諾丁漢(Nottingham)大學與倫敦大學學院(University College London)的團隊針對這項限制做出了突破性的研究(Boto, Holmes et al. 2018)。他們揚棄以往 SQUID 元件,改用光泵浦磁場計(optically pumped magnetometer, OPM)作為量測神經磁場信號的元件。OPM 藉由量測被微弱磁場調變的光信號達到量測磁場的目的。

由於 OPM 不需要在超低溫的環境下便有高敏感度,因此可以將偵測器安裝於輕便的頭盔上,而不像以往 SQUID 系統需要考量冷卻系統,而達成「可穿戴」的特性。進一步因為 OPM 可以盡可能地靠近頭皮,距離產生神經磁場的信號來源更為接近,因此在量測腦磁信號上也可提升其敏感度。

source:Science Magazine

在這項論文中,英國學者成功地展示了在進行手部運動時,運動皮質區所特有的 beta 頻段(約20赫茲)的神經震盪反彈(rebound)活動。此種神經活動特性在新的腦磁系統中,不論受試者在靜止,甚至在不斷點頭的活動下,都可以穩定的測得。

研究團隊甚至展示出當受試者在手執乒乓球拍擊球時所產生的 beta 頻段的神經震盪反彈活動。可以想像在這樣的運動中,受試者的頭部與手都有不可預期的快速移動。這在傳統使用 SQUID 的腦磁系統上是無法量測的。

-----廣告,請繼續往下閱讀-----

這套系統的特性除了以 OPM 取代 SQUID 之外,他們也自行發展出一套磁場補償系統,使磁場的分佈更均勻。事實上,也正因為這套補償系統,才能使 OPM 首次成功展現腦磁量測的功能。

目前報告中的腦磁系統雖然只包含體感覺皮質部分,但可預期的是,它將近一部延伸為涵蓋全腦的系統。這種架構對於進行小孩神經發展的研究與臨床應用將有巨大的好處:這些受試者不需再受限於系統使用大小不合的頭盔進行量測。

而在受試者自由地進行活動下,依然有高品質的腦磁信號量測的特性,對於想了解腦部活動在自然的環境下是如何工作的研究與臨床人員來說,也具有相當大的吸引力。

台灣本身的腦磁臨床應用與科學研究已有十數年。台北榮總的癲癇團隊與整合腦功能實驗室以及中研院的語言研究在腦磁研究上都有很好的成果。目前腦磁研究仍受到須在磁屏蔽室內進行實驗的限制。所以即使在最新的研究中,乒乓球的遊戲也不是日常常見兩人對打的狀況(因為一般的磁屏蔽室太小間了!)。是不是能有近一步突破,將腦磁量測走出室外,達到真正在自然的狀態下以穿戴式系統來研究腦功能,應該是許多神經科學家的夢想。

-----廣告,請繼續往下閱讀-----

參考資料

  • Boto, E., N. Holmes, J. Leggett, G. Roberts, V. Shah, S. S. Meyer, L. D. Munoz, K. J. Mullinger, T. M. Tierney, S. Bestmann, G. R. Barnes, R. Bowtell and M. J. Brookes (2018). “Moving magnetoencephalography towards real-world applications with a wearable system.” Nature.
  • Cohen, D. (1968). “Magnetoencephalography: evidence of magnetic fields produced by alpha-rhythm currents.” Science 161(3843): 784-786.
  • Cohen, D. (1972). “Magnetoencephalography: detection of the brain’s electrical activity with a superconducting magnetometer.” Science 175(4022): 664-666.
文章難易度
活躍星系核_96
752 篇文章 ・ 126 位粉絲
活躍星系核(active galactic nucleus, AGN)是一類中央核區活動性很強的河外星系。這些星系比普通星系活躍,在從無線電波到伽瑪射線的全波段裡都發出很強的電磁輻射。 本帳號發表來自各方的投稿。附有資料出處的科學好文,都歡迎你來投稿喔。 Email: contact@pansci.asia

0

3
3

文字

分享

0
3
3
圖形處理單元與人工智慧
賴昭正_96
・2024/06/24 ・6944字 ・閱讀時間約 14 分鐘

-----廣告,請繼續往下閱讀-----

  • 作者/賴昭正|前清大化學系教授、系主任、所長;合創科學月刊

我擔心人工智慧可能會完全取代人類。如果人們能設計電腦病毒,那麼就會有人設計出能夠自我改進和複製的人工智慧。 這將是一種超越人類的新生命形式。

——史蒂芬.霍金(Stephen Hawking) 英國理論物理學家

大約在八十年前,當第一台數位計算機出現時,一些電腦科學家便一直致力於讓機器具有像人類一樣的智慧;但七十年後,還是沒有機器能夠可靠地提供人類程度的語言或影像辨識功能。誰又想到「人工智慧」(Artificial Intelligent,簡稱 AI)的能力最近十年突然起飛,在許多(所有?)領域的測試中擊敗了人類,正在改變各個領域——包括假新聞的製造與散佈——的生態。

圖形處理單元(graphic process unit,簡稱 GPU)是這場「人工智慧」革命中的最大助手。它的興起使得九年前還是個小公司的 Nvidia(英偉達)股票從每股不到 $5,上升到今天(5 月 24 日)每股超過 $1000(註一)的全世界第三大公司,其創辦人(之一)兼首席執行官、出生於台南的黃仁勳(Jenson Huang)也一躍成為全世界排名 20 內的大富豪、台灣家喻戶曉的名人!可是多少人了解圖形處理單元是什麼嗎?到底是時勢造英雄,還是英雄造時勢?

黃仁勳出席2016年台北國際電腦展
Nvidia 的崛起究竟是時勢造英雄,還是英雄造時勢?圖/wikimedia

在回答這問題之前,筆者得先聲明筆者不是學電腦的,因此在這裡所能談的只是與電腦設計細節無關的基本原理。筆者認為將原理轉成實用工具是專家的事,不是我們外行人需要了解的;但作為一位現在的知識分子或公民,了解基本原理則是必備的條件:例如了解「能量不滅定律」就可以不用仔細分析,即可判斷永動機是騙人的;又如現在可攜帶型冷氣機充斥市面上,它們不用往室外排廢熱氣,就可以提供屋內冷氣,讀者買嗎?

CPU 與 GPU

不管是大型電腦或個人電腦都需具有「中央處理單元」(central process unit,簡稱 CPU)。CPU 是電腦的「腦」,其電子電路負責處理所有軟體正確運作所需的所有任務,如算術、邏輯、控制、輸入和輸出操作等等。雖然早期的設計即可以讓一個指令同時做兩、三件不同的工作;但為了簡單化,我們在這裡所談的工作將只是執行算術和邏輯運算的工作(arithmetic and logic unit,簡稱 ALU),如將兩個數加在一起。在這一簡化的定義下,CPU 在任何一個時刻均只能執行一件工作而已。

-----廣告,請繼續往下閱讀-----

在個人電腦剛出現只能用於一般事物的處理時,CPU 均能非常勝任地完成任務。但電腦圖形和動畫的出現帶來了第一批運算密集型工作負載後,CPU 開始顯示心有餘而力不足:例如電玩動畫需要應用程式處理數以萬計的像素(pixel),每個像素都有自己的顏色、光強度、和運動等, 使得 CPU 根本沒辦法在短時間內完成這些工作。於是出現了主機板上之「顯示插卡」來支援補助 CPU。

1999 年,英偉達將其一「具有集成變換、照明、三角形設定/裁剪、和透過應用程式從模型產生二維或三維影像的單晶片處理器」(註二)定位為「世界上第一款 GPU」,「GPU」這一名詞於焉誕生。不像 CPU,GPU 可以在同一個時刻執行許多算術和邏輯運算的工作,快速地完成圖形和動畫的變化。

依序計算和平行計算

一部電腦 CPU 如何計算 7×5+6/3 呢?因每一時刻只能做一件事,所以其步驟為:

  • 計算 7×5;
  • 計算 6/3;
  • 將結果相加。

總共需要 3 個運算時間。但如果我們有兩個 CPU 呢?很多工作便可以同時(平行)進行:

-----廣告,請繼續往下閱讀-----
  • 同時計算 7×5 及 6/3;
  • 將結果相加。

只需要 2 個運算時間,比單獨的 CPU 減少了一個。這看起來好像沒節省多少時間,但如果我們有 16 對 a×b 要相加呢?單獨的 CPU 需要 31 個運算的時間(16 個 × 的運算時間及 15 個 + 的運算時間),而有 16 個小 CPU 的 GPU 則只需要 5 個運算的時間(1 個 × 的運算時間及 4 個 + 的運算時間)!

現在就讓我們來看看為什麼稱 GPU 為「圖形」處理單元。圖一左圖《我愛科學》一書擺斜了,如何將它擺正成右圖呢? 一句話:「將整個圖逆時針方向旋轉 θ 即可」。但因為左圖是由上百萬個像素點(座標 x, y)組成的,所以這句簡單的話可讓 CPU 忙得不亦樂乎了:每一點的座標都必須做如下的轉換

x’ = x cosθ + y sinθ

y’ = -x sinθ+ y cosθ

-----廣告,請繼續往下閱讀-----

即每一點均需要做四個 × 及兩個 + 的運算!如果每一運算需要 10-6 秒,那麼讓《我愛科學》一書做個簡單的角度旋轉,便需要 6 秒,這豈是電動玩具畫面變化所能接受的?

圖形處理的例子

人類的許多發明都是基於需要的關係,因此電腦硬件設計家便開始思考:這些點轉換都是獨立的,為什麼我們不讓它們同時進行(平行運算,parallel processing)呢?於是專門用來處理「圖形」的處理單元出現了——就是我們現在所知的 GPU。如果一個 GPU 可以同時處理 106 運算,那上圖的轉換只需 10-6 秒鐘!

GPU 的興起

GPU 可分成兩種:

  • 整合式圖形「卡」(integrated graphics)是內建於 CPU 中的 GPU,所以不是插卡,它與 CPU 共享系統記憶體,沒有單獨的記憶體組來儲存圖形/視訊,主要用於大部分的個人電腦及筆記型電腦上;早期英特爾(Intel)因為不讓插卡 GPU 侵蝕主機的地盤,在這方面的研發佔領先的地位,約佔 68% 的市場。
  • 獨立顯示卡(discrete graphics)有不與 CPU 共享的自己專用內存;由於與處理器晶片分離,它會消耗更多電量並產生大量熱量;然而,也正是因為有自己的記憶體來源和電源,它可以比整合式顯示卡提供更高的效能。

2007 年,英偉達發布了可以在獨立 GPU 上進行平行處理的軟體層後,科學家發現獨立 GPU 不但能夠快速處理圖形變化,在需要大量計算才能實現特定結果的任務上也非常有效,因此開啟了為計算密集型的實用題目編寫 GPU 程式的領域。如今獨立 GPU 的應用範圍已遠遠超出當初圖形處理,不但擴大到醫學影像和地震成像等之複雜圖像和影片編輯及視覺化,也應用於駕駛、導航、天氣預報、大資料庫分析、機器學習、人工智慧、加密貨幣挖礦、及分子動力學模擬(註三)等其它領域。獨立 GPU 已成為人工智慧生態系統中不可或缺的一部分,正在改變我們的生活方式及許多行業的遊戲規則。英特爾在這方面發展較遲,遠遠落在英偉達(80%)及超微半導體公司(Advance Micro Devices Inc.,19%,註四)之後,大約只有 1% 的市場。

-----廣告,請繼續往下閱讀-----
典型的CPU與GPU架構

事實上現在的中央處理單元也不再是真正的「單元」,而是如圖二可含有多個可以同時處理運算的核心(core)單元。GPU 犧牲大量快取和控制單元以獲得更多的處理核心,因此其核心功能不如 CPU 核心強大,但它們能同時高速執行大量相同的指令,在平行運算中發揮強大作用。現在電腦通常具有 2 到 64 個核心;GPU 則具有上千、甚至上萬的核心。

結論

我們一看到《我愛科學》這本書,不需要一點一點地從左上到右下慢慢掃描,即可瞬間知道它上面有書名、出版社等,也知道它擺斜了。這種「平行運作」的能力不僅限於視覺,它也延伸到其它感官和認知功能。例如筆者在清華大學授課時常犯的一個毛病是:嘴巴在講,腦筋思考已經不知往前跑了多少公里,常常為了追趕而越講越快,將不少學生拋到腦後!這不表示筆者聰明,因為研究人員發現我們的大腦具有同時處理和解釋大量感官輸入的能力。

人工智慧是一種讓電腦或機器能夠模擬人類智慧和解決問題能力的科技,因此必須如人腦一樣能同時並行地處理許多資料。學過矩陣(matrix)的讀者應該知道,如果用矩陣和向量(vector)表達,上面所談到之座標轉換將是非常簡潔的(註五)。而矩陣和向量計算正是機器學習(machine learning)演算法的基礎!也正是獨立圖形處理單元最強大的功能所在!因此我們可以了解為什麼 GPU 會成為人工智慧開發的基石:它們的架構就是充分利用並行處理,來快速執行多個操作,進行訓練電腦或機器以人腦之思考與學習的方式處理資料——稱為「深度學習」(deep learning)。

黃仁勳在 5 月 22 日的發布業績新聞上謂:「下一次工業革命已經開始了:企業界和各國正與英偉達合作,將價值數萬億美元的傳統資料中心轉變為加速運算及新型資料中心——人工智慧工廠——以生產新商品『人工智慧』。人工智慧將為每個產業帶來顯著的生產力提升,幫助企業降低成本和提高能源效率,同時擴大收入機會。」

附錄

人工智慧的實用例子:下面一段是微軟的「copilot」代書、谷歌的「translate」代譯之「one paragraph summary of GPU and AI」。讀完後,讀者是不是認為筆者該退休了?

-----廣告,請繼續往下閱讀-----

GPU(圖形處理單元)和 AI(人工智慧)之間的協同作用徹底改變了高效能運算領域。GPU 具有平行處理能力,特別適合人工智慧和機器學習所需的複雜資料密集運算。這導致了影像和視訊處理等領域的重大進步,使自動駕駛和臉部辨識等技術變得更加高效和可靠。NVIDIA 開發的平行運算平台 CUDA 進一步提高了 GPU 的效率,使開發人員能夠透過將人工智慧問題分解為更小的、可管理的、可同時處理的任務來解決這些問題。這不僅加快了人工智慧研究的步伐,而且使其更具成本效益,因為 GPU 可以在很短的時間內執行與多個 CPU 相同的任務。隨著人工智慧的不斷發展,GPU 的角色可能會變得更加不可或缺,推動各產業的創新和新的可能性。大腦透過神經元網路實現這一目標,這些神經元網路可以獨立但有凝聚力地工作,使我們能夠執行複雜的任務,例如駕駛、導航、觀察交通信號、聽音樂並同時規劃我們的路線。此外,研究表明,與非人類動物相比,人類大腦具有更多平行通路,這表明我們的神經處理具有更高的複雜性。這個複雜的系統證明了我們認知功能的卓越適應性和效率。我們可以一邊和朋友聊天一邊走在街上,一邊聽音樂一邊做飯,或一邊聽講座一邊做筆記。人工智慧是模擬人類腦神經網路的科技,因此必須能同時並行地來處理許多資料。研究人員發現了人腦通訊網路具有一個在獼猴或小鼠中未觀察獨特特徵:透過多個並行路徑傳輸訊息,因此具有令人難以置信的多任務處理能力。

註解

(註一)當讀者看到此篇文章時,其股票已一股換十股,現在每一股約在 $100 左右。

(註二)組裝或升級過個人電腦的讀者或許還記得「英偉達精視 256」(GeForce 256)插卡吧?

(註三)筆者於 1984 年離開清華大學到 IBM 時,就是參加了被認為全世界使用電腦時間最多的量子化學家、IBM「院士(fellow)」Enrico Clementi 的團隊:因為當時英偉達還未有可以在 GPU 上進行平行處理的軟體層,我們只能自己寫軟體將 8 台中型電腦(非 IBM 品牌!)與一大型電腦連接來做平行運算,進行分子動力學模擬等的科學研究。如果晚生 30 年或許就不會那麼辛苦了?

-----廣告,請繼續往下閱讀-----

(註四)補助個人電腦用的 GPU 品牌到 2000 年時只剩下兩大主導廠商:英偉達及 ATI(Array Technology Inc.)。後者是出生於香港之四位中國人於 1985 年在加拿大安大略省成立,2006 年被超微半導體公司收購,品牌於 2010 年被淘汰。超微半導體公司於 2014 年 10 月提升台南出生之蘇姿豐(Lisa Tzwu-Fang Su)博士為執行長後,股票從每股 $4 左右,上升到今天每股超過 $160,其市值已經是英特爾的兩倍,完全擺脫了在後者陰影下求生存的小眾玩家角色,正在挑戰英偉達的 GPU 市場。順便一題:超微半導體公司現任總裁(兼 AI 策略負責人)為出生於台北的彭明博(Victor Peng);與黃仁勳及蘇姿豐一樣,也是小時候就隨父母親移居到美國。

(註五)

延伸閱讀

  • 熱力學與能源利用」,《科學月刊》,1982 年 3 月號;收集於《我愛科學》(華騰文化有限公司,2017 年 12 月出版),轉載於「嘉義市政府全球資訊網」。
  • 網路安全技術與比特幣」,《科學月刊》,2020 年 11 月號;轉載於「善科教育基金會」的《科技大補帖》專欄。
文章難易度

討論功能關閉中。

賴昭正_96
43 篇文章 ・ 56 位粉絲
成功大學化學工程系學士,芝加哥大學化學物理博士。在芝大時與一群留學生合創「科學月刊」。一直想回國貢獻所學,因此畢業後不久即回清大化學系任教。自認平易近人,但教學嚴謹,因此穫有「賴大刀」之惡名!於1982年時當選爲 清大化學系新一代的年青首任系主任兼所長;但壯志難酬,兩年後即辭職到美留浪。晚期曾回台蓋工廠及創業,均應「水土不服」而鎩羽而歸。正式退休後,除了開始又爲科學月刊寫文章外,全職帶小孫女(半歲起);現已成七歲之小孫女的BFF(2015)。首先接觸到泛科學是因爲科學月刊將我的一篇文章「愛因斯坦的最大的錯誤一宇宙論常數」推薦到泛科學重登。

0

0
0

文字

分享

0
0
0
棒球場上的腦科學:直球?變化球?──WBC經典賽系列文(2)
貓心
・2017/03/07 ・3285字 ・閱讀時間約 6 分鐘 ・SR值 579 ・九年級

-----廣告,請繼續往下閱讀-----

棒球場上的打擊,是一件很困難的任務。我曾有一個體育老師用這麼一句話來形容棒球打者:「在世界上有哪一個職業,失敗率高達七成,卻可以領高薪呢?」當然啦,在中華職棒這個常常出現15:15這種網球般比數的奇妙聯盟,或許好的打擊者打擊率必須要來到3成5才行,但即使如此,一個好的中華職棒打者的失敗率依然高達6成5。

一個打者,要能夠把球打得好,除了打擊本身的技巧之外,選球也是另一個很重要的因素。而選球又可以分成兩個部分,一個是選擇你想攻擊的球路,例如教練常常會要打者「挑直球打」,另一個則是判斷球會不會進入好球帶。

而過去關於棒球打擊的研究,也剛好在「判斷球種」和「判斷好壞球」上有所著墨,本文就要先來介紹「當一個打者在判斷球種時,他的大腦會出現哪些變化呢?」

_mg_8574
圖/作者攝影

-----廣告,請繼續往下閱讀-----

直球?變化球?

根據我所讀到的論文,實驗者通常會挑選「直球V.S.曲球」或是「直球V.S.曲球V.S.滑球」來做為刺激的材料,而滑球和曲球也是棒球場上最常見的兩種球路。

先來看看在分辨這三種球路的時候,打者所需耗費的時間吧。要分辨一顆球是什麼球路,很重要的一個因素,就是這顆球移動的速度,以及變化的角度。

很直覺的,要分辨一顆球是直球、曲球或滑球,最容易被分辨出來的應該是直球,Sherwin等人在2012年所發表的一篇論文就證實了這一點,他們策劃了一系列的腦電圖(Electroencephalography, EEG)研究,從六名受試者(五男一女,均沒有參與過職業棒球或大學棒球的訓練)腦神經的訊號可以發現,快速球比其他兩種球路更快被區分出來。

除此之外,由於這三種球路的軌跡及速度都有所差異,被辨識出來的時間點也有所不同,因此受試者在區辨這三種球路時的大腦反應模式可以說是截然不同[1],不過更細節的部分,由於太過複雜,因此就不在本篇文章細談了,有興趣的人可以找出原論文來讀看看。

-----廣告,請繼續往下閱讀-----

判斷球種與揮擊時的大腦變化

然而,當一個打者分辨出一種球路是直球、曲球或滑球之後,他們接下來會怎麼做呢?當然就是攻擊它啦!這一個研究團隊後續又做了另一份研究[2],他們以三名美國大學棒球聯賽第一級(NCAA Division I)的大學棒球隊球員做為受試者,讓他們觀看468個模擬球路(快速球、曲球、控制組,其中控制組是電腦隨機模擬出來的球路,該球路不符合牛頓物理定律的球路軌跡),這個研究分成兩個部分,其中一個是腦電圖的研究,另一個則是功能性磁振造影(fMRI,functional magnetic resonance imaging)的研究。

腦電圖和功能性磁振照影最大的差別就是,腦電圖可以測量到每一毫秒的大腦電波變化,但是沒辦法精確地掌握這些腦電波的變化是來自於哪一個腦區;而功能性磁振照影雖然只能每兩秒鐘掃描一次,但是卻可以測量到很精細的大腦變化。因此,結合這兩種研究,便能夠精確地掌握到,打者在選擇攻擊的球種時,在不同時間上,大腦反應的區域有何不同。

其中腦電圖的研究結果發現,在棒球從投手的手中出手後500ms左右時,打者的大腦反應會來到高峰,這可能反應出打者出手的時機點(以投手板到本壘板的距離18.44公尺而言,該實驗的模擬球路中的速球球速為83mph,換算成我國常用的km/hr後,則是133kph左右,而一顆時速133公里的球,從投出到進入本壘板,所需時間大約是496ms,因此在出手後500ms前後所出現的大腦反應高峰,可能正代表著打者出手的時間點)。

而第二次的大腦反應高峰則是在球出手後900ms時,這可能代表著打者針對剛剛所做的判斷進行反思,因而產生了第二個大腦反應的極大期。

-----廣告,請繼續往下閱讀-----

_mg_8532
圖/作者攝影

那麼,這兩個大腦反應的極大期,大腦到底在做些什麼呢?這個團隊又用了功能性磁振造影來對大腦在判斷球路時的腦區變化做了研究,研究結果顯示,無論受試者看到的是直球、曲球或是滑球,大腦中對應到的反應區域大多都分布在後半部,而這些區域和視覺處理與動作處理有關,其中包含了參與複雜影像視覺編碼的舌回(lingual gyrus)[3]、辨識物體的側枕葉皮質(lateral occipital cortex,LOC)[4]、解釋視覺圖像的布羅德曼分區(Brodmann)第18腦區[5]、負責注意力和多功能整合的布羅德曼分區第19腦區[6],以及有助於覺察運動中物體的顳葉中區(middle temporal,MT,又稱視覺皮質第五區,V5)[7]。

而前面提到的第二個神經訊號大量反應的時期,也就是球出手後900ms的反應極大期,在fMRI的研究中則發現,這和上額葉(superior frontal)、副扣帶迴(paracingulate gyri)的反應有關,這些腦區會在受試者正確辨識出球路之後活化,它們負責的功能則是正向顯著事件(positive salient events)[8]和內省(introspection)[9],白話一點來說就是「受試者很肯定地認為,剛剛所做的判斷應該是正確無誤的!」。

_mg_8821
圖/作者攝影

-----廣告,請繼續往下閱讀-----

 判斷正確與錯誤,大腦反應也會有所不同

有趣的是,這份實驗也針對受試者判斷正確與判斷錯誤時的大腦變化進行比較,結果發現,當受試者判斷正確時,他們的大腦神經變化,會顯著地活化處理高階視覺反應的MT和側枕葉皮質(LOC) ,以及關於動作控制和處理的蒼白球(globus pallidus)和殼核(putamen) [7],還有牽涉到自我獎勵的額葉極區(frontal pole regions),且這些腦區的啟動,是不需要經過意識控制的!也就是說,他們的大腦會很自動地從辨認出球路切換到準備揮棒的模式裡,不需要經過大腦思考,這也是為什麼大聯盟傳奇名將Yogi Berra會說:「打者是不能一邊思考,一邊好好地打擊的(you can’t think and hit at the same time)。」。

反之,當受試者無法對該球種做出正確判斷時,他們便不會啟動預備揮棒的動作區,反而是啟動了位於前額葉的布羅德曼腦區第10腦區[1][2]。前額葉是關於思考與決策的腦區,而布羅德曼腦區第10腦區最主要的功能正是處理困難的認知作業(task difficulty)[10]。這可能是因為受試者有看到這些球,但資訊並未傳到更高階的視覺紀錄區或是正確編碼(如MT、LOC),因此受試者感到很困惑,因而啟動了負責思考的大腦區域,試圖想出剛剛看到的到底是哪一種變化球。

1

這樣的研究結果,不免讓我聯想到我打棒球的經驗,其實打者在選擇球路作攻擊時,常常是一種很自然的身體反應,從投手抬腳投球的那一剎那,到擊中球為止,其實打者是沒有什麼時間仔細思考該如何揮棒、何時揮棒的,而是一種連貫「判斷—揮擊」的動作,這正好呼應了實驗研究的結果。

順帶一提,雖然實驗當中並沒有提到這一點,不過我認為,當一個打者被一顆球凍結住,站著不動遭到三振時,很有可能就是因為,他來不及對眼前的球路做出反應,因而未能啟動他下意識的動作區域吧。

-----廣告,請繼續往下閱讀-----

我變!我變!我變變變!

在最後,關於變化球和打者反應之間的另一個有趣研究,則是針對「投手的球種越多,會對打者造成什麼樣的影響」為主題進行研究的,結果發現,當一個投手的球種越多時,打者得動用到越多的腦區聯合起來來分辨球路,而非增加某一特定腦區的活動量來分辨球種;除此之外,當投手球種到達三種時,和只有兩種時相比,打者能夠正確區分球種的機率就會掉到5成左右,且反應時間雖未達顯著差異,但會隨著球路越多,而有越來越慢的趨勢[11]。

1

因此,如果你想成為一個讓打者摸不著頭緒的投手,即便你無法和達比修一樣練成一手七彩變化球,但實驗告訴你,只要有兩種變化球,就足以讓打者有一半的機率猜不透你想投什麼球了!

如果你喜歡我的文章,歡迎點圖追蹤粉專 Psydetective-貓心

參考文獻

-----廣告,請繼續往下閱讀-----
  1. Sherwin, J.Muraskin, & P.Sajda(2012)You can’t think and hit at the same time: neural correlates of baseball pitch classification. Front Neurosci, 6: p. 177.
  2. Muraskin, J.Sherwin,& P.Sajda(2013)A System for Measuring the Neural Correlates of Baseball Pitch Recognition and Its Potential Use in Scouting and Player Development. Sports Analytics Conference.
  3. Machielsen, W.C., et al., FMRI of visual encoding: reproducibility of activation. Hum Brain Mapp, 2000. 9(3): p. 156-64. 17.
  4. Grill-Spector, K., et al., The lateral occipital complex and its role in object recognition. Vision Res, 2001. 41(10-11): p. 1409-22. 19. Hyvarinen, J., et al., Early visual deprivation alters modality of neuronal responses in area 19 of monkey cortex. Neurosci Lett, 1981. 26(3): p. 239-43
  5. Kaas, J.H., Theories of visual cortex organization in primates: Areas of the third level. Extrageniculostriate Mechanisms Underlying VisuallyGuided Orientation Behavior, 1996. 112: p. 213-221. 18.
  6. Tootell, R.B.H., et al., Functional-Analysis of Human Mt and Related Visual Cortical Areas Using Magnetic-Resonance-Imaging. Journal of Neuroscience, 1995. 15(4): p. 3215-3230. 21.
  7. Marchand, W.R., et al., Putamen coactivation during motor task execution. Neuroreport, 2008. 19(9): p. 957-60.
  8. Euston, D.R., et al., The role of medial prefrontal cortex in memory and decision making. Neuron, 2012. 76(6): p. 1057-70.
  9. Goldberg, I.I., et al., When the brain loses its self: Prefrontal inactivation during sensorimotor processing. Neuron, 2006. 50(2): p. 329-339.
  10. Philiastides, M.G., et al., EEG-informed fMRI reveals spatiotemporal characteristics of perceptual decision making. Journal of Neuroscience, 2007. 27(48): p. 13082-13091.
  11. Ryu, J.Kim, A.Ali, W.Kim & S.J. Radlo (2015) Changes in baseball batters’ brain activity with increased pitch choice. Journal of Integrative Neuroscience, Vol. 14, No. 3369–381.
貓心
76 篇文章 ・ 122 位粉絲
心理作家。台大心理系學士、國北教心理與諮商所碩士。 寫作主題為「安全感」,藉由依附理論的實際應用,讓缺乏安全感的人,了解安全感構成的要素,進而找到具有安全感的對象,並學習建立具有安全感的對話。 對於安全感,許多人有一個想法:「安全感是自己給自己的。」但在實際上,安全感其實是透過成長過程中,從照顧者對自己敏感而支持的回應,逐漸內化而來的。 因此我認為,獲得安全感的兩個關鍵在於:找到相對而言具有安全感的伴侶,並透過能夠創造安全感的說話方式與對方互動,建立起一段具有安全感的關係。 個人專欄粉專: https://www.facebook.com/psydetective/ 個人攝影粉專: https://www.facebook.com/psyphotographer/

0

0
0

文字

分享

0
0
0
脫離昏迷後的意識探測
國科會 國際合作簡訊網
・2012/07/12 ・963字 ・閱讀時間約 2 分鐘 ・SR值 519 ・六年級

-----廣告,請繼續往下閱讀-----

認知神經學@維基
認知神經科學@維基

當一個人自昏迷狀態中醒來時,可能會出現幾種不同的臨床現象。若此人變成植物人並保有反射動作,就可以自行呼吸、睜開眼睛,但是對周遭的環境沒有意識。相反的,若此人處在「最低程度意識」狀態,有時會出現短暫的意識徵兆,例如儘管他無法持續交談,但是可以對親人微笑,其預後狀況較為良好,可以進行特殊照料以協助其復原。不過,這兩種狀態通常很難區分,誤診機率為 40%。為了能夠區分之,一個國際團隊開發了一項結合穿顱腦部刺激與腦電圖的新技術。

這項技術與目前使用的「意識測試」方法非常不同。巴黎硝石醫院(hôpital de la Pitié-Salpêtrière)的神經學家 Lionel Naccache 表示,「實際上,大多數的測試都是要求病人用大腦進行需要意識的認知工作,例如想像在打網球。醫生觀察執行工作時的腦部訊號,就可以確認患者是否有意識。不過,我們很難解釋負面的結果,例如病人可能無法理解我們的措詞或者他正在睡覺等等。米蘭大學的 Marcello Massimini 與其同事共同設計的方式並不會受此限制」。

這個新方式不會刺激患者的溝通能力,其運作基準是根據腦丘與皮層之間的交互作用速度來判定是否有意識。這兩個部位都位於腦部深層。為了探測意識是否存在,研究員將磁線圈置於患者腦中,磁線圈會誘導電流刺激大腦,這種技術稱為「穿顱腦部刺激」。研究員同時以腦電圖來記錄患者的腦部活動。

-----廣告,請繼續往下閱讀-----

狀態不同

為了證明該方式的有效性,研究團隊選了 12 名脫離昏迷狀態的患者,這些患者都可以透過徹底且重複的神經檢測來進行可靠的診斷。在這 12 名患者中,有 5 名已經被診斷為植物人、5 名處於最低程度意識狀態,其餘 2 名則屬於「閉鎖症候群」(locked-in syndrom),也就是說全身癱瘓,但是對周遭有意識。

一旦這些患者獲得診斷,神經學家就以新方式進行測試,並證實的確可以區分這些患者。與處於麻醉狀態者(也就是無意識狀態時)相較之下,刺激植物人會引起特定區域的腦部活動。相反的,刺激處於最低程度意識狀態者,會引發腦丘系統在有意識的狀態下才會出現的複雜活動。同樣的活動狀態也出現在 2 名閉鎖症候群的患者身上。

作者:駐法國代表處科技組
資料來源:Mieux détecter la conscience après un coma—法國《研究》雜誌(La Recherche)2012 年 3 月第 462 號期刊

-----廣告,請繼續往下閱讀-----

轉載自國科會國際合作簡訊網 [2012-07-02]

0

0
0

文字

分享

0
0
0
穿戴式腦磁測量頭盔問世!腦神經研究領域即將大革新?
活躍星系核_96
・2018/03/28 ・1785字 ・閱讀時間約 3 分鐘 ・SR值 531 ・七年級

  • 文/林發暄 國立台灣大學醫學工程學研究所教授

腦磁圖(magnetoencephalography, MEG)是一種以非侵入方式量測腦部神經電信號的一種神經造影工具。他與常見的腦電圖(electroencephalography, EEG)相同,信號的主要來源以一群神經細胞(主要以位於皮質的錐狀細胞為主)在時間與空間上進行同步活動為主。與腦電圖不同的地方在於, 腦磁圖量測的是非常微弱的磁場信號(約比地球磁場小上千萬倍),因此技術上相當困難。

最早的腦磁圖實驗於 1970 年左右由 David Cohen 在屏蔽良好的磁屏蔽屋內首次完成(Cohen 1968, Cohen 1972)。幾十年來在磁屏蔽屋以及磁場感測器的技術發展下,由於具有毫秒等級的時間解析度,以及比腦電圖優良的空間敏感度選擇性和解析度,腦磁圖已經成功且廣泛地應用在臨床癲癇診斷以及神經科學研究上。

目前腦磁研究仍受到須在磁屏蔽室內進行實驗的限制。圖/wikipedia

舊型超導量子干涉元件龐大的腦磁測量頭盔

為達到足夠的敏感度來偵測微弱的腦磁信號,現有的腦磁系統多以使用超導量子干涉元件(superconductive quantum interference device, SQUID)。使用 SQUID 的限制在於:元件必須要在超低溫的環境下進行。

-----廣告,請繼續往下閱讀-----

而整個系統因為冷卻需要,必須安裝在固定的頭盔上,且 SQUID 元件因冷卻系統的要求無法緊密貼合頭部。由於神經活動的磁場信號會隨距離而快速的消退,無法緊密貼合頭部的腦磁偵測器必然要損失一些敏感度。同樣的,目前的腦磁系統在量測腦磁信號上無法因不同人的頭型(例如:小孩實驗需使用大人的頭盔)而達到好的結果。

現有的腦磁系統仍有諸多的侷限。圖/NIMH Image library@wikipedia

使用OPM 邊打乒乓邊測量腦磁

最近由英國諾丁漢(Nottingham)大學與倫敦大學學院(University College London)的團隊針對這項限制做出了突破性的研究(Boto, Holmes et al. 2018)。他們揚棄以往 SQUID 元件,改用光泵浦磁場計(optically pumped magnetometer, OPM)作為量測神經磁場信號的元件。OPM 藉由量測被微弱磁場調變的光信號達到量測磁場的目的。

由於 OPM 不需要在超低溫的環境下便有高敏感度,因此可以將偵測器安裝於輕便的頭盔上,而不像以往 SQUID 系統需要考量冷卻系統,而達成「可穿戴」的特性。進一步因為 OPM 可以盡可能地靠近頭皮,距離產生神經磁場的信號來源更為接近,因此在量測腦磁信號上也可提升其敏感度。

-----廣告,請繼續往下閱讀-----

source:Science Magazine

在這項論文中,英國學者成功地展示了在進行手部運動時,運動皮質區所特有的 beta 頻段(約20赫茲)的神經震盪反彈(rebound)活動。此種神經活動特性在新的腦磁系統中,不論受試者在靜止,甚至在不斷點頭的活動下,都可以穩定的測得。

研究團隊甚至展示出當受試者在手執乒乓球拍擊球時所產生的 beta 頻段的神經震盪反彈活動。可以想像在這樣的運動中,受試者的頭部與手都有不可預期的快速移動。這在傳統使用 SQUID 的腦磁系統上是無法量測的。

這套系統的特性除了以 OPM 取代 SQUID 之外,他們也自行發展出一套磁場補償系統,使磁場的分佈更均勻。事實上,也正因為這套補償系統,才能使 OPM 首次成功展現腦磁量測的功能。

-----廣告,請繼續往下閱讀-----

目前報告中的腦磁系統雖然只包含體感覺皮質部分,但可預期的是,它將近一部延伸為涵蓋全腦的系統。這種架構對於進行小孩神經發展的研究與臨床應用將有巨大的好處:這些受試者不需再受限於系統使用大小不合的頭盔進行量測。

而在受試者自由地進行活動下,依然有高品質的腦磁信號量測的特性,對於想了解腦部活動在自然的環境下是如何工作的研究與臨床人員來說,也具有相當大的吸引力。

台灣本身的腦磁臨床應用與科學研究已有十數年。台北榮總的癲癇團隊與整合腦功能實驗室以及中研院的語言研究在腦磁研究上都有很好的成果。目前腦磁研究仍受到須在磁屏蔽室內進行實驗的限制。所以即使在最新的研究中,乒乓球的遊戲也不是日常常見兩人對打的狀況(因為一般的磁屏蔽室太小間了!)。是不是能有近一步突破,將腦磁量測走出室外,達到真正在自然的狀態下以穿戴式系統來研究腦功能,應該是許多神經科學家的夢想。

參考資料

-----廣告,請繼續往下閱讀-----
  • Boto, E., N. Holmes, J. Leggett, G. Roberts, V. Shah, S. S. Meyer, L. D. Munoz, K. J. Mullinger, T. M. Tierney, S. Bestmann, G. R. Barnes, R. Bowtell and M. J. Brookes (2018). “Moving magnetoencephalography towards real-world applications with a wearable system.” Nature.
  • Cohen, D. (1968). “Magnetoencephalography: evidence of magnetic fields produced by alpha-rhythm currents.” Science 161(3843): 784-786.
  • Cohen, D. (1972). “Magnetoencephalography: detection of the brain’s electrical activity with a superconducting magnetometer.” Science 175(4022): 664-666.
文章難易度
活躍星系核_96
752 篇文章 ・ 126 位粉絲
活躍星系核(active galactic nucleus, AGN)是一類中央核區活動性很強的河外星系。這些星系比普通星系活躍,在從無線電波到伽瑪射線的全波段裡都發出很強的電磁輻射。 本帳號發表來自各方的投稿。附有資料出處的科學好文,都歡迎你來投稿喔。 Email: contact@pansci.asia