0

0
0

文字

分享

0
0
0

穿戴式腦磁測量頭盔問世!腦神經研究領域即將大革新?

活躍星系核_96
・2018/03/28 ・1785字 ・閱讀時間約 3 分鐘 ・SR值 531 ・七年級

  • 文/林發暄 國立台灣大學醫學工程學研究所教授

腦磁圖(magnetoencephalography, MEG)是一種以非侵入方式量測腦部神經電信號的一種神經造影工具。他與常見的腦電圖(electroencephalography, EEG)相同,信號的主要來源以一群神經細胞(主要以位於皮質的錐狀細胞為主)在時間與空間上進行同步活動為主。與腦電圖不同的地方在於, 腦磁圖量測的是非常微弱的磁場信號(約比地球磁場小上千萬倍),因此技術上相當困難。

最早的腦磁圖實驗於 1970 年左右由 David Cohen 在屏蔽良好的磁屏蔽屋內首次完成(Cohen 1968, Cohen 1972)。幾十年來在磁屏蔽屋以及磁場感測器的技術發展下,由於具有毫秒等級的時間解析度,以及比腦電圖優良的空間敏感度選擇性和解析度,腦磁圖已經成功且廣泛地應用在臨床癲癇診斷以及神經科學研究上。

目前腦磁研究仍受到須在磁屏蔽室內進行實驗的限制。圖/wikipedia

舊型超導量子干涉元件龐大的腦磁測量頭盔

為達到足夠的敏感度來偵測微弱的腦磁信號,現有的腦磁系統多以使用超導量子干涉元件(superconductive quantum interference device, SQUID)。使用 SQUID 的限制在於:元件必須要在超低溫的環境下進行。

而整個系統因為冷卻需要,必須安裝在固定的頭盔上,且 SQUID 元件因冷卻系統的要求無法緊密貼合頭部。由於神經活動的磁場信號會隨距離而快速的消退,無法緊密貼合頭部的腦磁偵測器必然要損失一些敏感度。同樣的,目前的腦磁系統在量測腦磁信號上無法因不同人的頭型(例如:小孩實驗需使用大人的頭盔)而達到好的結果。

-----廣告,請繼續往下閱讀-----
現有的腦磁系統仍有諸多的侷限。圖/NIMH Image library@wikipedia

使用OPM 邊打乒乓邊測量腦磁

最近由英國諾丁漢(Nottingham)大學與倫敦大學學院(University College London)的團隊針對這項限制做出了突破性的研究(Boto, Holmes et al. 2018)。他們揚棄以往 SQUID 元件,改用光泵浦磁場計(optically pumped magnetometer, OPM)作為量測神經磁場信號的元件。OPM 藉由量測被微弱磁場調變的光信號達到量測磁場的目的。

由於 OPM 不需要在超低溫的環境下便有高敏感度,因此可以將偵測器安裝於輕便的頭盔上,而不像以往 SQUID 系統需要考量冷卻系統,而達成「可穿戴」的特性。進一步因為 OPM 可以盡可能地靠近頭皮,距離產生神經磁場的信號來源更為接近,因此在量測腦磁信號上也可提升其敏感度。

source:Science Magazine

在這項論文中,英國學者成功地展示了在進行手部運動時,運動皮質區所特有的 beta 頻段(約20赫茲)的神經震盪反彈(rebound)活動。此種神經活動特性在新的腦磁系統中,不論受試者在靜止,甚至在不斷點頭的活動下,都可以穩定的測得。

研究團隊甚至展示出當受試者在手執乒乓球拍擊球時所產生的 beta 頻段的神經震盪反彈活動。可以想像在這樣的運動中,受試者的頭部與手都有不可預期的快速移動。這在傳統使用 SQUID 的腦磁系統上是無法量測的。

-----廣告,請繼續往下閱讀-----

這套系統的特性除了以 OPM 取代 SQUID 之外,他們也自行發展出一套磁場補償系統,使磁場的分佈更均勻。事實上,也正因為這套補償系統,才能使 OPM 首次成功展現腦磁量測的功能。

目前報告中的腦磁系統雖然只包含體感覺皮質部分,但可預期的是,它將近一部延伸為涵蓋全腦的系統。這種架構對於進行小孩神經發展的研究與臨床應用將有巨大的好處:這些受試者不需再受限於系統使用大小不合的頭盔進行量測。

而在受試者自由地進行活動下,依然有高品質的腦磁信號量測的特性,對於想了解腦部活動在自然的環境下是如何工作的研究與臨床人員來說,也具有相當大的吸引力。

台灣本身的腦磁臨床應用與科學研究已有十數年。台北榮總的癲癇團隊與整合腦功能實驗室以及中研院的語言研究在腦磁研究上都有很好的成果。目前腦磁研究仍受到須在磁屏蔽室內進行實驗的限制。所以即使在最新的研究中,乒乓球的遊戲也不是日常常見兩人對打的狀況(因為一般的磁屏蔽室太小間了!)。是不是能有近一步突破,將腦磁量測走出室外,達到真正在自然的狀態下以穿戴式系統來研究腦功能,應該是許多神經科學家的夢想。

-----廣告,請繼續往下閱讀-----

參考資料

  • Boto, E., N. Holmes, J. Leggett, G. Roberts, V. Shah, S. S. Meyer, L. D. Munoz, K. J. Mullinger, T. M. Tierney, S. Bestmann, G. R. Barnes, R. Bowtell and M. J. Brookes (2018). “Moving magnetoencephalography towards real-world applications with a wearable system.” Nature.
  • Cohen, D. (1968). “Magnetoencephalography: evidence of magnetic fields produced by alpha-rhythm currents.” Science 161(3843): 784-786.
  • Cohen, D. (1972). “Magnetoencephalography: detection of the brain’s electrical activity with a superconducting magnetometer.” Science 175(4022): 664-666.
-----廣告,請繼續往下閱讀-----
文章難易度
活躍星系核_96
778 篇文章 ・ 127 位粉絲
活躍星系核(active galactic nucleus, AGN)是一類中央核區活動性很強的河外星系。這些星系比普通星系活躍,在從無線電波到伽瑪射線的全波段裡都發出很強的電磁輻射。 本帳號發表來自各方的投稿。附有資料出處的科學好文,都歡迎你來投稿喔。 Email: contact@pansci.asia

0

1
0

文字

分享

0
1
0
從認證到實踐:以智慧綠建築三大標章邁向淨零
鳥苷三磷酸 (PanSci Promo)_96
・2024/11/15 ・4487字 ・閱讀時間約 9 分鐘

本文由 建研所 委託,泛科學企劃執行。 


當你走進一棟建築,是否能感受到它對環境的友善?或許不是每個人都意識到,但現今建築不只提供我們居住和工作的空間,更是肩負著重要的永續節能責任。

綠建築標準的誕生,正是為了應對全球氣候變遷與資源匱乏問題,確保建築設計能夠減少資源浪費、降低污染,同時提升我們的生活品質。然而,要成為綠建築並非易事,每一棟建築都需要通過層層關卡,才能獲得標章認證。

為推動環保永續的建築環境,政府自 1999 年起便陸續著手推動「綠建築標章」、「智慧建築標章」以及「綠建材標章」的相關政策。這些標章的設立,旨在透過標準化的建築評估系統,鼓勵建築設計融入生態友善、能源高效及健康安全的原則。並且政府在政策推動時,為鼓勵業界在規劃設計階段即導入綠建築手法,自 2003 年特別辦理優良綠建築作品評選活動。截至 2024 年為止,已有 130 件優良綠建築、31 件優良智慧建築得獎作品,涵蓋學校、醫療機構、公共住宅等各類型建築,不僅提升建築物的整體性能,也彰顯了政府對綠色、智慧建築的重視。

-----廣告,請繼續往下閱讀-----

說這麼多,你可能還不明白建築要變「綠」、變「聰明」的過程,要經歷哪些標準與挑戰?

綠建築標章智慧建築標章綠建材標章
來源:內政部建築研究所

第一招:依循 EEWH 標準,打造綠建築典範

環境友善和高效率運用資源,是綠建築(green building)的核心理念,但這樣的概念不僅限於外觀或用材這麼簡單,而是涵蓋建築物的整個生命週期,也就是包括規劃、設計、施工、營運和維護階段在內,都要貼合綠建築的價值。

關於綠建築的標準,讓我們先回到 1990 年,當時英國建築研究機構(BRE)首次發布有關「建築研究發展環境評估工具(Building Research Establishment Environmental Assessment Method,BREEAM®)」,是世界上第一個建築永續評估方法。美國則在綠建築委員會成立後,於 1998 年推出「能源與環境設計領導認證」(Leadership in Energy and Environmental Design, LEED)這套評估系統,加速推動了全球綠建築行動。

臺灣在綠建築的制訂上不落人後。由於臺灣地處亞熱帶,氣溫高,濕度也高,得要有一套我們自己的評分規則——臺灣綠建築評估系統「EEWH」應運而生,四個英文字母分別為 Ecology(生態)、Energy saving(節能)、Waste reduction(減廢)以及 Health(健康),分成「合格、銅、銀、黃金和鑽石」共五個等級,設有九大評估指標。

-----廣告,請繼續往下閱讀-----

我們就以「台江國家公園」為例,看它如何躍過一道道指標,成為「鑽石級」綠建築的國家公園!

位於臺南市四草大橋旁的「台江國家公園」是臺灣第8座國家公園,也是臺灣唯一的濕地型的國家公園。同時,還是南部行政機關第一座鑽石級的綠建築,其外觀採白色系列,從高空俯瞰,就像在一座小島上座落了許多白色建築群的聚落;從地面看則有臺南鹽山的意象。

因其地形與地理位置的特殊,生物多樣性的保護則成了台江國家公園的首要考量。園區利用既有的魚塭結構,設計自然護岸,保留基地既有的雜木林和灌木草原,並種植原生與誘鳥誘蟲等多樣性植物,採用複層雜生混種綠化。以石籠作為擋土護坡與卵石回填增加了多孔隙,不僅強化了環境的保護力,也提供多樣的生物棲息環境,使這裡成為動植物共生的美好棲地。

台江國家公園是南部行政機關第一座鑽石級的綠建築。圖/內政部建築研究所

第二招:想成綠建築,必用綠建材

要成為一幢優秀好棒棒的綠建築,使用在原料取得、產品製造、應用過程和使用後的再生利用循環中,對地球環境負荷最小、對人類身體健康無害的「綠建材」非常重要。

-----廣告,請繼續往下閱讀-----

這種建材最早是在 1988 年國際材料科學研究會上被提出,一路到今日,國際間對此一概念的共識主要包括再使用(reuse)、再循環(recycle)、廢棄物減量(reduce)和低污染(low emission materials)等特性,從而減少化學合成材料產生的生態負荷和能源消耗。同時,使用自然材料與低 VOC(Volatile Organic Compounds,揮發性有機化合物)建材,亦可避免對人體產生危害。

在綠建築標章後,內政部建築研究所也於 2004 年 7 月正式推行綠建材標章制度,以建材生命週期為主軸,提出「健康、生態、高性能、再生」四大方向。舉例來說,為確保室內環境品質,建材必須符合低逸散、低污染、低臭氣等條件;為了防溫室效應的影響,須使用本土材料以節省資源和能源;使用高性能與再生建材,不僅要經久耐用、具高度隔熱和防音等特性,也強調材料本身的再利用性。


在台江國家公園內,綠建材的應用是其獲得 EEWH 認證的重要部分。其不僅在設計結構上體現了生態理念,更在材料選擇上延續了對環境的關懷。園區步道以當地的蚵殼磚鋪設,並利用蚵殼作為建築格柵的填充材料,為鳥類和小生物營造棲息空間,讓「蚵殼磚」不再只是建材,而是與自然共生的橋樑。園區的內部裝修選用礦纖維天花板、矽酸鈣板、企口鋁板等符合綠建材標準的系統天花。牆面則粉刷乳膠漆,整體綠建材使用率為 52.8%。

被建築實體圍塑出的中庭廣場,牆面設計有蚵殼格柵。圖/內政部建築研究所

在日常節能方面,台江國家公園也做了相當細緻的設計。例如,引入樓板下的水面蒸散低溫外氣,屋頂下設置通風空氣層,高處設置排風窗讓熱空氣迅速排出,廊道還配備自動控制的微噴霧系統來降溫。屋頂採用蚵殼與漂流木創造生態棲地,創造空氣層及通風窗引入水面低溫外企,如此一來就能改善事內外氣溫及熱空氣的通風對流,不僅提升了隔熱效果,減少空調需求,讓建築如同「與海共舞」,在減廢與健康方面皆表現優異,展示出綠建築在地化的無限可能。

-----廣告,請繼續往下閱讀-----
島式建築群分割後所形成的巷道與水道。圖/內政部建築研究所

在綠建材的部分,另外補充獲選為 2023 年優良綠建築的臺南市立九份子國民中小學新建工程,其採用生產過程中二氧化碳排放量較低的建材,比方提高高爐水泥(具高強度、耐久、緻密等特性,重點是發熱量低)的量,並使用能提高混凝土晚期抗壓性、降低混凝土成本與建物碳足跡的「爐石粉」,還用再生透水磚做人行道鋪面。

2023 年優良綠建築的臺南市立九份子國民中小學。圖/內政部建築研究所
2023 年優良綠建築的臺南市立九份子國民中小學。圖/內政部建築研究所

同樣入選 2023 年綠建築的還有雲林豐泰文教基金會的綠園區,首先,他們捨棄金屬建材,讓高爐水泥使用率達 100%。別具心意的是,他們也將施工開挖的土方做回填,將有高地差的荒地恢復成平坦綠地,本來還有點「工業風」的房舍告別荒蕪,無痛轉綠。

雲林豐泰文教基金會的綠園區。圖/內政部建築研究所

等等,這樣看來建築夠不夠綠的命運,似乎在建材選擇跟設計環節就決定了,是這樣嗎?當然不是,建築是活的,需要持續管理–有智慧的管理。

第三招:智慧管理與科技應用

我們對生態的友善性與資源運用的效率,除了從建築設計與建材的使用等角度介入,也須適度融入「智慧建築」(intelligent buildings)的概念,即運用資通訊科技來提升建築物效能、舒適度與安全性,使空間更人性化。像是透過建築物佈建感測器,用於蒐集環境資料和使用行為,並作為空調、照明等設備、設施運轉操作之重要參考。

-----廣告,請繼續往下閱讀-----

為了推動建築與資通訊產業的整合,內政部建築研究所於 2004 年建立了「智慧建築標章」制度,為消費者提供判斷建築物是否善用資通訊感知技術的標準。評估指標經多次修訂,目前是以「基礎設施、維運管理、安全防災、節能管理、健康舒適、智慧創新」等六大項指標作為評估基準。
以節能管理指標為例,為了掌握建築物生命週期中的能耗,需透過系統設備和技術的主動控制來達成低耗與節能的目標,評估重點包含設備效率、節能技術和能源管理三大面向。在健康舒適方面,則在空間整體環境、光環境、溫熱環境、空氣品質、水資源等物理環境,以及健康管理系統和便利服務上進行評估。

樹林藝文綜合大樓在設計與施工過程中,充分展現智慧建築應用綜合佈線、資訊通信、系統整合、設施管理、安全防災、節能管理、健康舒適及智慧創新 8 大指標先進技術,來達成兼顧環保和永續發展的理念,也是利用建築資訊模型(BIM)技術打造的指標性建築,受到國際矚目。

樹林藝文綜合大樓。圖/內政部建築研究所「111年優良智慧建築專輯」(新北市政府提供)

在興建階段,為了保留基地內 4 棵原有老樹,團隊透過測量儀器對老樹外觀進行精細掃描,並將大小等比例匯入 BIM 模型中,讓建築師能清晰掌握樹木與建築物之間的距離,確保施工過程不影響樹木健康。此外,在大樓啟用後,BIM 技術被運用於「電子維護管理系統」,透過 3D 建築資訊模型,提供大樓內設備位置及履歷資料的即時讀取。系統可進行設備的監測和維護,包括保養計畫、異常修繕及耗材管理,讓整棟大樓的全生命週期狀況都能得到妥善管理。

智慧建築導入 BIM 技術的應用,從建造設計擴展至施工和日常管理,使建築生命周期的管理更加智慧化。以 FM 系統 ( Facility Management,簡稱 FM ) 為例,該系統可在雲端進行遠端控制,根據會議室的使用時段靈活調節空調風門,會議期間開啟通往會議室的風門以加強換氣,而非使用時段則可根據二氧化碳濃度調整外氣空調箱的運轉頻率,保持低頻運作,實現節能效果。透過智慧管理提升了節能效益、建築物的維護效率和公共安全管理。

-----廣告,請繼續往下閱讀-----

總結

綠建築、綠建材與智慧建築這三大標章共同構建了邁向淨零碳排、居住健康和環境永續的基礎。綠建築標章強調設計與施工的生態友善與節能表現,從源頭減少碳足跡;綠建材標章則確保建材從生產到廢棄的全生命週期中對環境影響最小,並保障居民的健康;智慧建築標章運用科技應用,實現能源的高效管理和室內環境的精準調控,增強了居住的舒適性與安全性。這些標章的綜合應用,讓建築不僅是滿足基本居住需求,更成為實現淨零、促進健康和支持永續的具體實踐。

建築物於魚塭之上,採高腳屋的構造形式,尊重自然地貌。圖/內政部建築研究所

-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

鳥苷三磷酸 (PanSci Promo)_96
211 篇文章 ・ 312 位粉絲
充滿能量的泛科學品牌合作帳號!相關行銷合作請洽:contact@pansci.asia

0

0
0

文字

分享

0
0
0
棒球場上的腦科學:直球?變化球?──WBC經典賽系列文(2)
貓心
・2017/03/07 ・3285字 ・閱讀時間約 6 分鐘 ・SR值 579 ・九年級

棒球場上的打擊,是一件很困難的任務。我曾有一個體育老師用這麼一句話來形容棒球打者:「在世界上有哪一個職業,失敗率高達七成,卻可以領高薪呢?」當然啦,在中華職棒這個常常出現15:15這種網球般比數的奇妙聯盟,或許好的打擊者打擊率必須要來到3成5才行,但即使如此,一個好的中華職棒打者的失敗率依然高達6成5。

一個打者,要能夠把球打得好,除了打擊本身的技巧之外,選球也是另一個很重要的因素。而選球又可以分成兩個部分,一個是選擇你想攻擊的球路,例如教練常常會要打者「挑直球打」,另一個則是判斷球會不會進入好球帶。

而過去關於棒球打擊的研究,也剛好在「判斷球種」和「判斷好壞球」上有所著墨,本文就要先來介紹「當一個打者在判斷球種時,他的大腦會出現哪些變化呢?」

_mg_8574
圖/作者攝影

-----廣告,請繼續往下閱讀-----

直球?變化球?

根據我所讀到的論文,實驗者通常會挑選「直球V.S.曲球」或是「直球V.S.曲球V.S.滑球」來做為刺激的材料,而滑球和曲球也是棒球場上最常見的兩種球路。

先來看看在分辨這三種球路的時候,打者所需耗費的時間吧。要分辨一顆球是什麼球路,很重要的一個因素,就是這顆球移動的速度,以及變化的角度。

很直覺的,要分辨一顆球是直球、曲球或滑球,最容易被分辨出來的應該是直球,Sherwin等人在2012年所發表的一篇論文就證實了這一點,他們策劃了一系列的腦電圖(Electroencephalography, EEG)研究,從六名受試者(五男一女,均沒有參與過職業棒球或大學棒球的訓練)腦神經的訊號可以發現,快速球比其他兩種球路更快被區分出來。

除此之外,由於這三種球路的軌跡及速度都有所差異,被辨識出來的時間點也有所不同,因此受試者在區辨這三種球路時的大腦反應模式可以說是截然不同[1],不過更細節的部分,由於太過複雜,因此就不在本篇文章細談了,有興趣的人可以找出原論文來讀看看。

-----廣告,請繼續往下閱讀-----

判斷球種與揮擊時的大腦變化

然而,當一個打者分辨出一種球路是直球、曲球或滑球之後,他們接下來會怎麼做呢?當然就是攻擊它啦!這一個研究團隊後續又做了另一份研究[2],他們以三名美國大學棒球聯賽第一級(NCAA Division I)的大學棒球隊球員做為受試者,讓他們觀看468個模擬球路(快速球、曲球、控制組,其中控制組是電腦隨機模擬出來的球路,該球路不符合牛頓物理定律的球路軌跡),這個研究分成兩個部分,其中一個是腦電圖的研究,另一個則是功能性磁振造影(fMRI,functional magnetic resonance imaging)的研究。

腦電圖和功能性磁振照影最大的差別就是,腦電圖可以測量到每一毫秒的大腦電波變化,但是沒辦法精確地掌握這些腦電波的變化是來自於哪一個腦區;而功能性磁振照影雖然只能每兩秒鐘掃描一次,但是卻可以測量到很精細的大腦變化。因此,結合這兩種研究,便能夠精確地掌握到,打者在選擇攻擊的球種時,在不同時間上,大腦反應的區域有何不同。

其中腦電圖的研究結果發現,在棒球從投手的手中出手後500ms左右時,打者的大腦反應會來到高峰,這可能反應出打者出手的時機點(以投手板到本壘板的距離18.44公尺而言,該實驗的模擬球路中的速球球速為83mph,換算成我國常用的km/hr後,則是133kph左右,而一顆時速133公里的球,從投出到進入本壘板,所需時間大約是496ms,因此在出手後500ms前後所出現的大腦反應高峰,可能正代表著打者出手的時間點)。

而第二次的大腦反應高峰則是在球出手後900ms時,這可能代表著打者針對剛剛所做的判斷進行反思,因而產生了第二個大腦反應的極大期。

-----廣告,請繼續往下閱讀-----

_mg_8532
圖/作者攝影

那麼,這兩個大腦反應的極大期,大腦到底在做些什麼呢?這個團隊又用了功能性磁振造影來對大腦在判斷球路時的腦區變化做了研究,研究結果顯示,無論受試者看到的是直球、曲球或是滑球,大腦中對應到的反應區域大多都分布在後半部,而這些區域和視覺處理與動作處理有關,其中包含了參與複雜影像視覺編碼的舌回(lingual gyrus)[3]、辨識物體的側枕葉皮質(lateral occipital cortex,LOC)[4]、解釋視覺圖像的布羅德曼分區(Brodmann)第18腦區[5]、負責注意力和多功能整合的布羅德曼分區第19腦區[6],以及有助於覺察運動中物體的顳葉中區(middle temporal,MT,又稱視覺皮質第五區,V5)[7]。

而前面提到的第二個神經訊號大量反應的時期,也就是球出手後900ms的反應極大期,在fMRI的研究中則發現,這和上額葉(superior frontal)、副扣帶迴(paracingulate gyri)的反應有關,這些腦區會在受試者正確辨識出球路之後活化,它們負責的功能則是正向顯著事件(positive salient events)[8]和內省(introspection)[9],白話一點來說就是「受試者很肯定地認為,剛剛所做的判斷應該是正確無誤的!」。

_mg_8821
圖/作者攝影

-----廣告,請繼續往下閱讀-----

 判斷正確與錯誤,大腦反應也會有所不同

有趣的是,這份實驗也針對受試者判斷正確與判斷錯誤時的大腦變化進行比較,結果發現,當受試者判斷正確時,他們的大腦神經變化,會顯著地活化處理高階視覺反應的MT和側枕葉皮質(LOC) ,以及關於動作控制和處理的蒼白球(globus pallidus)和殼核(putamen) [7],還有牽涉到自我獎勵的額葉極區(frontal pole regions),且這些腦區的啟動,是不需要經過意識控制的!也就是說,他們的大腦會很自動地從辨認出球路切換到準備揮棒的模式裡,不需要經過大腦思考,這也是為什麼大聯盟傳奇名將Yogi Berra會說:「打者是不能一邊思考,一邊好好地打擊的(you can’t think and hit at the same time)。」。

反之,當受試者無法對該球種做出正確判斷時,他們便不會啟動預備揮棒的動作區,反而是啟動了位於前額葉的布羅德曼腦區第10腦區[1][2]。前額葉是關於思考與決策的腦區,而布羅德曼腦區第10腦區最主要的功能正是處理困難的認知作業(task difficulty)[10]。這可能是因為受試者有看到這些球,但資訊並未傳到更高階的視覺紀錄區或是正確編碼(如MT、LOC),因此受試者感到很困惑,因而啟動了負責思考的大腦區域,試圖想出剛剛看到的到底是哪一種變化球。

1

這樣的研究結果,不免讓我聯想到我打棒球的經驗,其實打者在選擇球路作攻擊時,常常是一種很自然的身體反應,從投手抬腳投球的那一剎那,到擊中球為止,其實打者是沒有什麼時間仔細思考該如何揮棒、何時揮棒的,而是一種連貫「判斷—揮擊」的動作,這正好呼應了實驗研究的結果。

順帶一提,雖然實驗當中並沒有提到這一點,不過我認為,當一個打者被一顆球凍結住,站著不動遭到三振時,很有可能就是因為,他來不及對眼前的球路做出反應,因而未能啟動他下意識的動作區域吧。

-----廣告,請繼續往下閱讀-----

我變!我變!我變變變!

在最後,關於變化球和打者反應之間的另一個有趣研究,則是針對「投手的球種越多,會對打者造成什麼樣的影響」為主題進行研究的,結果發現,當一個投手的球種越多時,打者得動用到越多的腦區聯合起來來分辨球路,而非增加某一特定腦區的活動量來分辨球種;除此之外,當投手球種到達三種時,和只有兩種時相比,打者能夠正確區分球種的機率就會掉到5成左右,且反應時間雖未達顯著差異,但會隨著球路越多,而有越來越慢的趨勢[11]。

1

因此,如果你想成為一個讓打者摸不著頭緒的投手,即便你無法和達比修一樣練成一手七彩變化球,但實驗告訴你,只要有兩種變化球,就足以讓打者有一半的機率猜不透你想投什麼球了!

如果你喜歡我的文章,歡迎點圖追蹤粉專 Psydetective-貓心

參考文獻

-----廣告,請繼續往下閱讀-----
  1. Sherwin, J.Muraskin, & P.Sajda(2012)You can’t think and hit at the same time: neural correlates of baseball pitch classification. Front Neurosci, 6: p. 177.
  2. Muraskin, J.Sherwin,& P.Sajda(2013)A System for Measuring the Neural Correlates of Baseball Pitch Recognition and Its Potential Use in Scouting and Player Development. Sports Analytics Conference.
  3. Machielsen, W.C., et al., FMRI of visual encoding: reproducibility of activation. Hum Brain Mapp, 2000. 9(3): p. 156-64. 17.
  4. Grill-Spector, K., et al., The lateral occipital complex and its role in object recognition. Vision Res, 2001. 41(10-11): p. 1409-22. 19. Hyvarinen, J., et al., Early visual deprivation alters modality of neuronal responses in area 19 of monkey cortex. Neurosci Lett, 1981. 26(3): p. 239-43
  5. Kaas, J.H., Theories of visual cortex organization in primates: Areas of the third level. Extrageniculostriate Mechanisms Underlying VisuallyGuided Orientation Behavior, 1996. 112: p. 213-221. 18.
  6. Tootell, R.B.H., et al., Functional-Analysis of Human Mt and Related Visual Cortical Areas Using Magnetic-Resonance-Imaging. Journal of Neuroscience, 1995. 15(4): p. 3215-3230. 21.
  7. Marchand, W.R., et al., Putamen coactivation during motor task execution. Neuroreport, 2008. 19(9): p. 957-60.
  8. Euston, D.R., et al., The role of medial prefrontal cortex in memory and decision making. Neuron, 2012. 76(6): p. 1057-70.
  9. Goldberg, I.I., et al., When the brain loses its self: Prefrontal inactivation during sensorimotor processing. Neuron, 2006. 50(2): p. 329-339.
  10. Philiastides, M.G., et al., EEG-informed fMRI reveals spatiotemporal characteristics of perceptual decision making. Journal of Neuroscience, 2007. 27(48): p. 13082-13091.
  11. Ryu, J.Kim, A.Ali, W.Kim & S.J. Radlo (2015) Changes in baseball batters’ brain activity with increased pitch choice. Journal of Integrative Neuroscience, Vol. 14, No. 3369–381.
-----廣告,請繼續往下閱讀-----
貓心
76 篇文章 ・ 122 位粉絲
心理作家。台大心理系學士、國北教心理與諮商所碩士。 寫作主題為「安全感」,藉由依附理論的實際應用,讓缺乏安全感的人,了解安全感構成的要素,進而找到具有安全感的對象,並學習建立具有安全感的對話。 對於安全感,許多人有一個想法:「安全感是自己給自己的。」但在實際上,安全感其實是透過成長過程中,從照顧者對自己敏感而支持的回應,逐漸內化而來的。 因此我認為,獲得安全感的兩個關鍵在於:找到相對而言具有安全感的伴侶,並透過能夠創造安全感的說話方式與對方互動,建立起一段具有安全感的關係。 個人專欄粉專: https://www.facebook.com/psydetective/ 個人攝影粉專: https://www.facebook.com/psyphotographer/

0

0
0

文字

分享

0
0
0
脫離昏迷後的意識探測
國科會 國際合作簡訊網
・2012/07/12 ・963字 ・閱讀時間約 2 分鐘 ・SR值 519 ・六年級

認知神經學@維基
認知神經科學@維基

當一個人自昏迷狀態中醒來時,可能會出現幾種不同的臨床現象。若此人變成植物人並保有反射動作,就可以自行呼吸、睜開眼睛,但是對周遭的環境沒有意識。相反的,若此人處在「最低程度意識」狀態,有時會出現短暫的意識徵兆,例如儘管他無法持續交談,但是可以對親人微笑,其預後狀況較為良好,可以進行特殊照料以協助其復原。不過,這兩種狀態通常很難區分,誤診機率為 40%。為了能夠區分之,一個國際團隊開發了一項結合穿顱腦部刺激與腦電圖的新技術。

這項技術與目前使用的「意識測試」方法非常不同。巴黎硝石醫院(hôpital de la Pitié-Salpêtrière)的神經學家 Lionel Naccache 表示,「實際上,大多數的測試都是要求病人用大腦進行需要意識的認知工作,例如想像在打網球。醫生觀察執行工作時的腦部訊號,就可以確認患者是否有意識。不過,我們很難解釋負面的結果,例如病人可能無法理解我們的措詞或者他正在睡覺等等。米蘭大學的 Marcello Massimini 與其同事共同設計的方式並不會受此限制」。

這個新方式不會刺激患者的溝通能力,其運作基準是根據腦丘與皮層之間的交互作用速度來判定是否有意識。這兩個部位都位於腦部深層。為了探測意識是否存在,研究員將磁線圈置於患者腦中,磁線圈會誘導電流刺激大腦,這種技術稱為「穿顱腦部刺激」。研究員同時以腦電圖來記錄患者的腦部活動。

-----廣告,請繼續往下閱讀-----

狀態不同

為了證明該方式的有效性,研究團隊選了 12 名脫離昏迷狀態的患者,這些患者都可以透過徹底且重複的神經檢測來進行可靠的診斷。在這 12 名患者中,有 5 名已經被診斷為植物人、5 名處於最低程度意識狀態,其餘 2 名則屬於「閉鎖症候群」(locked-in syndrom),也就是說全身癱瘓,但是對周遭有意識。

一旦這些患者獲得診斷,神經學家就以新方式進行測試,並證實的確可以區分這些患者。與處於麻醉狀態者(也就是無意識狀態時)相較之下,刺激植物人會引起特定區域的腦部活動。相反的,刺激處於最低程度意識狀態者,會引發腦丘系統在有意識的狀態下才會出現的複雜活動。同樣的活動狀態也出現在 2 名閉鎖症候群的患者身上。

作者:駐法國代表處科技組
資料來源:Mieux détecter la conscience après un coma—法國《研究》雜誌(La Recherche)2012 年 3 月第 462 號期刊

-----廣告,請繼續往下閱讀-----

轉載自國科會國際合作簡訊網 [2012-07-02]

-----廣告,請繼續往下閱讀-----