0

1
1

文字

分享

0
1
1

三倍體複製蝦全面入侵——進擊の大理石紋螯蝦(上)

寒波_96
・2018/02/27 ・2821字 ・閱讀時間約 5 分鐘 ・SR值 554 ・八年級

縱橫淡水水域的年輕入侵種

螯蝦與蝦、螃蟹等親戚一樣,屬於十足目的旗下一員,而近來有一種螯蝦以強勢入侵種之姿在眾多種螯蝦中備受關注;那就是 1995 年首度在德國發現的大理石紋螯蝦(marbled crayfish)。這種螯蝦誕生距今(2018 年)雖然還不到 30 年,已靠著非凡的適應能力,成為歐洲與馬達加斯加等地的淡水水域,到處都能見到的入侵種。

大理石紋螯蝦(marbled crayfish)。圖 / 取自 Josh More @Flickr

從生態的角度來看,是四處進攻的大理石紋螯蝦嚴重破壞原本的環境,是場保育災難。不過以演化的觀點來看,這種動物的誕生與其生殖模式,卻相當有意思。總之,大理石紋螯蝦很值得研究就對了!

目前我們知道,大理石紋螯蝦是由龍紋螯蝦(slough crayfish,學名 Procambarus fallax)演化而來;才誕生不久,演化上如此年輕的大理石紋螯蝦,能否被定義為一個新的物種?有一些觀察支持這個觀點。比方說,大理石紋螯蝦與龍紋螯蝦兩者並無法混血生下後代。還有更大的差異在染色體套數:龍紋螯蝦的染色體與人類一樣,是較常見的二倍體(diploid),但大理石紋螯蝦卻是動物中罕見的三倍體(triploid)!

單倍體、二倍體、三倍體與四倍體的染色體比較。圖 / 取自 Wikimedia

而更神奇的是,大理石紋螯蝦不但不會與龍紋螯蝦生下後代,也不需要另一隻同類就能生寶寶;龍紋螯蝦是有性生殖,而大理石紋螯蝦卻是採取無性生殖,直接由媽媽生下女兒,一代傳一代,也就是「孤雌生殖(parthenogenesis)」。

兩種近緣物種之間存在生殖隔離、無法產生後代,有好幾種可能。人為配對的生殖實驗顯示,假如把大理石紋螯蝦(只有女生)與男性龍紋螯蝦放在一起,它們會開始情慾交流,男生的精子也能進入女生體內,不過女生產下的後代仍 100% 是大理石紋螯蝦,無一例外。這表示兩者的生殖隔離發生在交配之後的階段,也就是儘管會上演交配行為,卻無法生下混血後裔。[1]

情慾交流中的大理石紋螯蝦(下)與龍紋螯蝦(上),儘管有交配行為,卻無法生下混血的後代。圖/取自 ref 1

種種都證據顯示,大理石紋螯蝦值得一個名正言順的學名:Procambarus virginalis

罕見的三倍體動物

人類是二倍體,一套染色體有 23 條,兩套一共是 46 條,意即每一種染色體都有兩條。而大理石紋螯蝦是三倍體,也就是每一種染色體皆為三條;她們的基因組總共由 276 條染色體組成,所以一套 92 條,是人類的 4 倍。

最近發表的論文報告了大理石紋螯蝦的基因組定序結果,她們一套遺傳物質的 DNA 全長約為 3.5G,比我們智人的 3G 略長;基因數目估計超過 21000 個,也略多於我們的兩萬。[2]

左圖,大理石紋螯蝦的基因組上,各種重複序列的比例。右圖,大理石紋螯蝦基因表現的轉錄體(transcript)數目。圖/取自 ref 2

與龍紋螯蝦相比,大理石紋螯蝦的染色體上,DNA的排列順序沒有明顯改變,像是旋轉、跳躍、閉著眼(誤)之類的跡象;兩者差異主要還是在染色體套數,龍紋螯蝦的每一種染色體皆為兩套,大理石紋螯蝦則是三套。

很有趣的是,大理石紋螯蝦每一對的三條染色體之間,總是有兩條的序列近乎一致,另一條差異明顯,算是所謂的「AA’B基因型」。生殖細胞要如何複製與合體,才能形成兩套遺傳物質一模一樣(A 與 A’),另一套不同(B)的三倍體?

綜合基因組分析與之前的研究結果,論文推測大理石紋螯蝦的遺傳組合是「同源多倍體(autopolyploidy)」,看起來一個可能是:母體其中一套染色體先複製一次後,再和另一套合體,產生兩同一異的三倍體。不過以上仍屬推測,需要更明確的實驗才能證實。

大理石紋螯蝦與其他生物間的親緣關係。圖/取自 ref 2

孤雌生殖新物種,最初是如何起源?

大理石紋螯蝦不只是動物中少有的三倍體,還是極端罕見的「孤雌生殖的三倍體」。孤雌生殖是無性生殖的一種,不需要結合兩性的生殖細胞,能夠直接由母體生下女兒。由於龍紋螯蝦是有性生殖,因此從精卵結合的方式,驟然改變為孤雌生殖,很可能與大理石紋螯蝦的演化起源息息相關。

孤雌生殖有好幾種方式,論文指出在定義上大理石紋螯蝦可以歸類為非減數孤雌生殖(apomictic parthenogenesis,亦有稱為無融合孤雌生殖): 卵子生成時只經歷有絲分裂(mitotic oogenesis),卻沒有減數分裂(meiosis),就直接發育為胚胎(不過她們是三倍體,似乎又不是一般的偶數倍體那麼典型)。在此種生殖方式下,母體的 DNA 組合直接傳遞給女兒,不會發生遺傳重組,也就是說每隻大理石紋螯蝦,在遺傳上都可以視為複製品。

大理石紋螯蝦是如何誕生的?她們是 AA’B基因型的三倍體,龍紋螯蝦卻是二倍體(AB基因型),所以最初的大理石紋螯蝦,應該是由龍紋螯蝦的生殖細胞,經歷錯誤的複製程序,之後再不正常合體而形成。

大理石紋螯蝦。圖/取自 Science 新聞〈An aquarium accident may have given this crayfish the DNA to take over the world

已經知道某些水生動物,受到環境劇烈變化刺激時,生殖細胞的複製容易出錯,形成同源多倍體(通常會產生不孕的個體)。看似合理的劇本是,人類養殖的龍紋螯蝦,水溫突然太熱或太冷,導致卵子發育時的複製過程不正確,接著又成功受精,形成反常的三倍體。

而此一突變的三倍體不但成功活了下來,還不知道什麼原因,具有自我繁衍的孤雌生殖能力,隨後發展成一個全新的物種:大理石紋螯蝦。這類由於變成多倍體,而與同類生殖隔離而形成新種的狀況,在植物中不是太少見,但在動物中卻是罕有的案例。

怎麼聽起來那麼像勵志故事!不過要提醒各位,以上劇本儘管合理,卻純屬推測,仍需更多證據支持。

大理石紋螯蝦怎麼誕生,怎麼生寶寶,目前了解都不夠清楚。只能肯定,此一「全新的物種」,已經帶來恐怖的生態浩劫。她們在世界各地不受阻礙地大肆擴張,是否得益於基因突變,而具備嶄新的遺傳優勢呢?儘管有了基因組,以上問題卻仍不是那麼容易回答。甚至還有演化理論預測,她們即使一時得意,長期卻難逃滅絕的命運!?

To Be Continued……

參考文獻:

  1. Vogt, G., Falckenhayn, C., Schrimpf, A., Schmid, K., Hanna, K., Panteleit, J., … & Lyko, F. (2015). The marbled crayfish as a paradigm for saltational speciation by autopolyploidy and parthenogenesis in animals. Biology open, bio-014241.
  2. Gutekunst, J., Andriantsoa, R., Falckenhayn, C., Hanna, K., Stein, W., Rasamy, J., & Lyko, F. (2018). Clonal genome evolution and rapid invasive spread of the marbled crayfish. Nature ecology & evolution, 1.

本文亦刊載於作者部落格《盲眼的尼安德塔石匠》暨其 facebook 同名專頁

文章難易度
寒波_96
168 篇文章 ・ 574 位粉絲
生命科學碩士、文學與電影愛好者、戳樂黨員,主要興趣為演化,希望把好東西介紹給大家。部落格《盲眼的尼安德塔石器匠》、同名粉絲團《盲眼的尼安德塔石器匠》。

0

13
3

文字

分享

0
13
3
鬆餅好朋友!你知道甜滋滋楓糖漿怎麼來的嗎?
活躍星系核_96
・2020/09/23 ・2218字 ・閱讀時間約 4 分鐘 ・SR值 453 ・五年級

  • 文/Carol Hsu|生科系畢業,目前工作與臨床試驗相關。喜歡植物,想要小丑魚。

今早,我想來點麥當勞的美式煎餅配咖啡?

等等,你是不是忘記給我楓糖漿。

鬆餅與楓糖。圖/Pexels

其實,楓糖漿( Maple Syrup )可不只是搭配美式煎餅的小角色。在加拿大,人們更加楓糖漿視為國寶,楓糖漿更有著「液體黃金」的響亮稱號。

楓糖漿不只擁有甜而不膩的好滋味,更是富含維生素以及胺基酸等養分,且具有高營養價值,有益於身體健康;此外,相較於其他糖類,楓糖漿的熱量也較低,因此食用時較不會為身體帶來過多的負擔。

那麼,楓糖漿究竟是如何製成的?又是從何而來的呢?

鑿開楓糖樹幹收集汁液,甜滋滋糖水就此攻佔餐桌

早在 17 世紀時,居住在北美大陸的印地安人,就已經開始食用楓糖漿。

在印第安語中,楓糖叫做「Sinzibuckwud」,意思是「汲取自樹木」 (Drawn from the wood )。在春天來臨時,他們會將糖楓樹(sugar maple)剖開或是鑿洞,藉此收集樹幹的汁液,並且將其加熱蒸煮,蒸發掉多餘的水分,熬製成我們所熟知的楓糖漿。

圖/Pexels

楓糖漿主要成分是蔗糖(sucrose),但是楓樹的汁液,是含有葡萄糖、有機鹽類、胺基酸、酵素等有機物質。楓糖漿嘗起來有著不同風味,除了因為來自不同樹種、地區之外,還有在於這些成分比例上的不同。

那麼,這甜甜的楓樹汁液又是如何形成的呢?

夜晚結凍、白天融化,溫差大讓楓樹汁液被擠出

有別於普遍認知中,植物輸導組織中的木質部(xylem)是負責運輸水分及礦物質,韌皮部(phloem)負責運送養分。這含有蔗糖的楓樹汁液,是源自於楓樹木質部的汁液(sap)。

在北美大陸,冬季與春季的交替之時早晚溫差很大,溫暖的白天與凍結的夜晚週期地更替,此時,楓樹中的水分正處於凍融循環之中,不斷地結冰、融化,然後再結冰。

圖/Pexels

當午夜來臨,環境溫度降低,此時楓樹中木質部的水氣遇冷結凍成冰;到了白天,溫度漸漸升高,夜晚形成的冰融化,進而導致樹幹中的氣體膨脹,對於外壁產生壓力,這壓力會將楓樹汁液從根部推向莖頂,然後從最近的出口離開樹幹。因此,在收集糖楓樹汁液時,若是對糖楓樹施加壓力,可是能獲得正常產量的三倍以上的楓樹汁液呢!

可不是所有的楓樹都能用來製作糖漿。在眾多種類的楓樹種中,糖楓、紅楓以及黑楓最常被拿來製作楓糖漿,其樹幹枝葉的含糖量平均有 2~3%;以糖楓樹為例,其汁液的含糖量大多落在 2 至 3 %,含糖量較高的樹汁液還可以達到 5 至 6%甚至 10%。

那影響楓糖漿的產量及甜度的因素是什麼呢?

天氣因素、種子產量,都會影響楓糖甜度與產量

影響楓糖汁液含糖量的因素,除了樹種間的差異,另一因素則是取決於楓樹冬季時儲存多少的糖。楓樹枝液的糖分,主要是來自於秋冬時儲存於根部的養分,楓樹在秋季時落葉及儲備養分,待春季時,再將養份分解,提供給初生的新芽。

像楓樹這種耐蔭樹種,會傾向在冬季貯藏較多的糖。只要照射到足夠的陽光及擁有充足的水分和養分,楓樹就可不斷地行光合作用,製造出更多的糖。這糖份的產量,是遠比自身生長所需的量來的更多,因此才能在樹蔭遮蔽的貧瘠時提,維持基本生命所需。

此外,楓樹汁液在樹幹中的流動也會受到夜晚結凍與白天溶融的溫度差所影響,對於楓糖漿生產者而言,出太陽的時候,是收集楓糖汁液的好日子,因此,3、4月時的最高溫與最低溫溫差,會影響楓樹汁液的產量。

圖/Pexels

不只有天氣因素會影響楓糖產量,近期研究指出,楓樹種子的散播量,在楓糖漿產量預測上扮演著重要的角色。

研究團隊收集了過去 17 年來佛蒙特州 28 個站點,楓糖漿的產量以及糖楓樹總種子含量,結果發現,當楓樹的種子產量爆發時,隔年的楓糖漿的產量都會下降,因此可知,楓糖漿的產量會隨著糖楓樹種子的產量增加而降低。

楓樹汁液所含的糖以及種子需要的養分,都是由楓樹中的碳水化合物合成,因此樹木生產大量種子的時候,其所能生產的楓糖的量就大幅降低。

雖然楓樹種子產量明顯影響楓糖漿的產量,天氣對於楓樹汁液的影響仍是不容小覷的。因此,如果把種子的產量、天氣以及溫度都一起列入考慮的話,或許就能更準確預測明年楓糖漿的產量囉!

對了,楓樹喜歡寒冷的環境,太過炙熱的環境,對於楓樹的生長以楓糖漿的產量都會造成衝擊。在享用楓糖漿帶來的美味同時,也別忘了好好愛護地球,一起減緩全球暖化的速度。

參考資料


你是國中生或家有國中生或正在教國中生?
科學生跟著課程進度每週更新科學文章並搭配測驗。來科學生陪你一起唸科學!

文章難易度
活躍星系核_96
754 篇文章 ・ 93 位粉絲
活躍星系核(active galactic nucleus, AGN)是一類中央核區活動性很強的河外星系。這些星系比普通星系活躍,在從無線電波到伽瑪射線的全波段裡都發出很強的電磁輻射。 本帳號發表來自各方的投稿。附有資料出處的科學好文,都歡迎你來投稿喔。 Email: contact@pansci.asia

0

0
0

文字

分享

0
0
0
牛牛不過吃個草,也可以衝康到微生物世界?
MiTalk
・2019/01/29 ・1924字 ・閱讀時間約 4 分鐘 ・SR值 484 ・五年級

陳俊堯
慈濟大學生命科學系 助理教授

 

 

除了牛,微生物也吃草!?

牛得吃草才能活。牛是動物,草是植物,但是動物和植物之間的事,居然搞到微生物世界都發生了不得了的動盪。

如果你是熟知微生物世界新聞的人,應該可以猜到後面的故事了。牛要吃草,吃下去的草裡有大量纖維素為主的植物多醣,影響腸子裡的細菌組成。細菌用了這些多醣來發酵,其中古菌們啃了有機物後產生甲烷,甲烷組成屁被牛排出,大氣裡甲烷濃度升高。甲烷是溫室氣體,人吃的牛越多,大氣裡甲烷越高,地球變熱,又把人類往滅亡的方向推進了一點。好可怕。

牛的腸內菌種會將醣類轉換成甲烷,經由牛屁釋放到空氣中。圖/pixabay

上面講的事的確沒錯。但我要講的不是這個你已經聽過的故事。

草食性動物吃草,直接影響被吃植物的生存和能量分配,吃得認真點還可能會改變當地的植物組成。如果一棵植物被啃掉一半的葉子,一定會設法趕快從土壤裡把氮源吸起來讓自己造新葉來補光合作用的不足。不過植物認真吸走氮源,也就表示土壤裡的微生物能用的氮源也變少。

植物生長難免會有枯枝落葉,這些東西在地表逐漸分解,都變成供應土壤微生物的養份。2015 年在美國懷俄明州的研究就發現,少了草食動物啃食的草地土壤裡,細菌真菌的數量比較多,而且分解植物纖維素木質素的基因、呼吸和分解含氮化合物的基因都比較多(Peschel et al. 2015)。好像動物多吃兩口,就會讓微生物們縮衣節食了。

植物是土壤有機物的主要來源。圖/作者提供

2017 年的一篇研究也發現,動物的啃食不只傷到植物,躺在土裡的微生物也中槍。在研究的這個區域裡數量最多的細菌是 Actinobacteria 門的菌種,而真菌的第一名則是 Ascomyces。在有動物啃食的區域,Actinomycetes 門細菌的數量變少,導致多樣性增高,但是 Ascomyces 門真菌的數量反而增加,讓多樣性降低。這個因為啃食造成的數量變化還伴隨著較低的土壤含碳量、微生物分解纖維素木質素的基因變少、呼吸作用和分解含氮分子的基因也變少。

似乎草食動物來搶食物的後果是微生物退讓,利用養份的狀況都變差了。

另一個在奧地利森林裡做的研究也看到類似的狀況。在有牛隻啃食植物的地方,不但菌相改變,還發現原本可以吸存甲烷的森林土壤,因為菌相改變,變成會向外排放溫室氣體甲烷(Mutschlechner et al. 2018)。就算不放屁,牛也一樣可以藉別人的手來衝康地球。

先別管微生物,你有沒有想過毛毛蟲?

但是你一定沒想到下面這種影響,來看看這篇最近出現的有趣報告。這個研究想看動物啃食的影響,比較了開放給草食動物覓食的區域,以及用網架隔離動物進不去的區域。要比較什麼東西呢?他們找了這個地區常見的蛾類幼蟲 (spring webworm caterpillars, Ocnogyna loewii),要來比較在這些草地上毛蟲的腸道菌相。

實驗結果發現這菌相還真有不同,毛蟲在小時候群居期的菌相還算接近,長大一點獨自行動後,兩組的菌相開始變得不一樣。難道說,作者認為牛隻在草地裡走來走去吃草,會嚇得毛毛蟲拉肚子而改變腸道菌相?

蛾類 Ocnogyna loewii  的幼蟲。照片來自 Ziva & Amir,CC BY-NC-ND 2.0 授權。

你猜錯了,不是。毛毛蟲沒辦法「看見」一隻牛走來走去。但是,走來走去的牛可以吃光某些好吃的植物,改變當地的植物組成。而當它們羽化成蛾時,會隨機在植物上產卵,下一代就以那植物為食。科學家們發現兩區草地上的植物組成不一樣,推測是因為植物改變,進到毛蟲肚子裡的食物也改變,在被採回實驗室分析後就得到不一樣的菌相。

牛啊牛啊,你吃個草就天下大亂了,那人的罪孽該怎麼辦呢?

吃草的牛會影響土壤裡及植物上的菌相。照片來自 DominikSchraudolf,CC0 授權。

參考文獻

  1. Berman TS, Laviad-Shitrit S, Lalzar M, Halpern M, Inbar M. Cascading effects on bacterial communities: cattle grazing causes a shift in the microbiome of a herbivorous caterpillar. ISME J. 2018 Aug;12(8):1952-1963.
  2. Eldridge DJ, Delgado-Baquerizo M, Travers SK, Val J, Oliver I, Hamonts K, Singh BK. Competition drives the response of soil microbial diversity to increased grazing by vertebrate herbivores. Ecology. 2017 Jul;98(7):1922-1931.
  3. Mutschlechner M, Praeg N, Illmer P. The influence of cattle grazing on methane fluxes and engaged microbial communities in alpine forest soils. FEMS Microbiol Ecol. 2018 May 1;94(5). fiy019.
  4. Peschel AR, Zak DR, Cline LC, Freedman Z. Elk, sagebrush, and saprotrophs: indirect top-down control on microbial community composition and function. Ecology. 2015 Sep;96(9):2383-93.

 

本文轉載自MiTalkzine,原文《老牛吃草引發的蝴蝶效應》

歡迎訂閱微雜誌MiTalkzine,加入 MiTalker 的行列,一起來認識這個星球上千萬種各式各樣的微生物吧!

訂閱連結:https://goo.gl/Qo59iG

文章難易度

0

23
0

文字

分享

0
23
0
海鳥食安大危機:不死的塑膠垃圾
Gilver
・2015/09/09 ・4049字 ・閱讀時間約 8 分鐘 ・SR值 531 ・七年級

「每一片塑膠都是史前生物的鬼魂,回來尋找牠的同類。」
--改自蘇打綠《各站停靠》

Credit: U.S. Fish and Wildlife Service Headquarters/Flickr
Credit: U.S. Fish and Wildlife Service Headquarters/Flickr

編譯/Gilver

這張千萬人驚呆(?)、震驚世界的照片中不是一隻機械海鳥,而是攝影師克里斯.喬登(Chris Jordan)在中途島(Midway Atoll)所拍攝的信天翁。屍體正在腐壞的牠腹中滿是消化不了的塑膠垃圾,你甚至可以看見完整的打火機躺在裡頭。

海洋的塑膠垃圾已經成為當代最嚴重的環保議題之一,足以與氣候變遷、海洋酸化和生物多樣性流失相提並論,而且仍在持續惡化。而在今年,海洋生態學家克里斯.威爾考克斯(Chris Wilcox)所發表的的全球規模研究預估:到了2050年,他們所研究的海鳥種類將有 99.8% 的個體都會誤食塑膠。

Photo by Bo Eide/Flickr
Photo by Bo Eide/Flickr

沒看見,不代表就不存在

「眼不見為淨」,似乎能夠貼切的形容人類看待塑膠垃圾的態度。千萬年前死去的史前海洋生物,在地底持續高熱加壓,最後形成了以碳氫化合物為主的石油。而在人類史進入工業時代後,人們將石油從地層中抽出,加工煉成、製造出塑膠。製程便宜、性質多變、輕巧又便利的塑膠,無疑大大改善了人類的生活;只要你還在都市裡,所見之處必然有塑膠製品。

然而,這些塑膠被人視作廢棄物之後,都跑到哪裡去了呢?

答案是:它們難以分解,仍頑強的在這個世界的各個角落不肯離去。現在,人們每年製造將近三億噸塑膠,廢棄之後大多會在陸地上的掩埋場或垃圾坑中封印長眠,只有1%會進入海洋。然而早在40年前,美國國家科學院就有研究指出仍有將近千分之一的塑膠會被河流、洪水或暴風雨沖走,或者直接被海上船隻傾倒、進入海中。而且,自1950年代以來,全球的塑膠垃圾每11年就增加一倍;即使最後只有1%最後會進入海洋,但以現今的垃圾生產速度來看,每年還是有三十萬噸的塑膠垃圾進入海中。

CNv7lnNWIAA7CqK
現代的小美人魚,實在是沒有要愛上人類的理由了。漫畫圖片作者:Dave Coverly

海上塑膠垃圾都去哪裡了?

那麼,這些流進海中的塑膠垃圾都去哪裡了呢?這些垃圾有的漂流到北極,變成流冰的一部份;有的沖刷到岸邊,日久成了海邊的「塑膠石」。不過,大多數的垃圾仍漂浮在海上,在廣闊海洋中心的巨大渦流中反覆輪迴,就好像一座垃圾之島。這樣的巨大渦流,在全世界主要有五區。

五環流(5 Gyres)北半球投影示意圖。Source: wikipedia
世界五大渦流的北半球投影示意圖。Source: Avsa
Pacific-garbage-patch-map_2010_noaamdp
巨大的太平洋垃圾帶(Pacfic garbage patch)示意圖。圖片來源:NOAA

為了得知有多少廢棄物在五大海洋渦流中漂浮,全球海洋研究計畫「馬德里遠征隊」(Malaspina expedition)派出四艘輪船在2010、2011年前往五大渦流區域,以細目網持續捕撈垃圾數個月。結果發現,五大渦流區域表面每平立方公里就有將近60萬個廢棄物碎片,相當於一座小巨蛋就遍布一萬八千片垃圾。然而意外的是,根據先前製造垃圾的速率,研究團隊原本預期會撈起千萬噸垃圾,但實際撈起的重量最多也只有四萬噸。計畫領導人卡洛斯.杜阿爾提(Carlos Duarte)對此表示:「我們無法解釋99%海中的塑膠。」(相較之下暗物質大約占宇宙96%,不可解釋的海中塑膠卻有99%啊!)

既然海中有99%的塑膠垃圾無法解釋,那它們都去哪裡了?答案令人遺憾,其中一個可能就是被海洋動物吃掉了。塑膠垃圾可能早已進入全球海洋食物網,而在全世界海域漁獵的人類,無疑也是食物網的一份子,而且還站在高階消費者的位置,吃著各式各樣的海鮮。

Photo by Chester Siu
Photo by Chester Siu

塑膠垃圾的壞,海鳥最知道

只要在海上漂流,塑膠就會變成更小的碎塊。當垃圾在開闊的海面上漂流時,波浪的拍打和來自太陽的輻射都能將它們分解成更小的碎塊、越變越小--有許多人以「塑膠濃湯」形容這個現象,因為這些塑膠就像是熱湯裡的馬鈴薯塊越煮越小,最後變得無所不在。直到這些碎屑小到約直徑5mm以下、開始變得像是食物,就可能會被海洋生物吃下,比如像是燈籠魚(lanternfish)這類廣布世界、且已有食入塑膠紀錄的小型魚。

這些塑膠垃圾危害海鳥及其他海洋生物的原因,主要有三:(1)被網目纏住或塑膠環、塑膠袋套牢,導致活動或發育上的障礙。(2)吞下體積較大的塑膠後無法順利通過的消化道,堆積在胃中佔去相當的空間,讓動物無法攝取到足夠的營養。(3)有的塑膠會吸收並濃縮環境汙染物,隨著攝食進入動物體內、在消化道內釋放出來,例如殺蟲劑成分DDT、類戴奧辛物質多氯聯苯等,這兩種物質不但不易在自然下分解,也容易在脂肪組織中累積、具有致癌性。

塑膠垃圾對海洋動物的影響
Source: Impacts of Marine Debris on Biodiversity

海鳥是近年受害生物中誤食垃圾研究較為透徹的動物,因此成為海洋生態學家關注的重點對象之一。今年8月,克里斯.威爾考克斯(Chris Wilcox)等人在《Proceedings of the National Academy of Sciences》期刊上發表的研究警告塑膠汙染對海鳥的威脅越來越強,且已蔓延成全球性的問題。研究團隊根據過往累積的資料,包括80種以上的海鳥誤食塑膠紀錄、活動海域、漂浮塑膠的已知濃度、塑膠生產成長速率······等一同進行空間風險分析(spatial risk analysis),預測今日已有90%的海鳥個體已經吃下塑膠,而且受難鳥的數字還在上升。

而且,在他們2015年最新的研究成果中,全世界海鳥影響風險最高的海域位在塔斯曼海(Tasman sea,澳大利亞和紐西蘭之間)的南方,但這裡在過往卻是人類活動壓力和塑膠垃圾濃度都較小的區域,顯示海鳥不一定要靠近五大渦流獵食,就可能會誤食塑膠垃圾;此外,這篇研究也指出186種、42屬的海鳥都將加入這場致命的爛局,包括信天翁(albatrosses)、海鷗(gull)、海燕(petrel)和企鵝(penguin)。如果狀況持續惡化下去,他們所關注的物種到了2050年就會有將近99.8%的個體都將食入塑膠。

Plastic_found_inside_one_dead_Fulmar_(8080499092)
在死去的暴雪鸌(fulmar)體內找到的塑膠碎片。Source: wiki

而蒙受塑膠之害的生物當然不只海鳥。除了五分之一種類的海鳥,幾乎所有的海龜種類、近乎半數種類的海洋哺乳類也是受害者,其中更涵蓋了將近15%是國際自然保護聯盟(IUCN)紅名單的瀕危物種,像是夏威夷僧海豹(Monachus schauinslandi)、蠵龜(Caretta caretta)等。除了這些體型較大的動物,許多微小生物也會涉入塑膠,在循環到鮪魚、旗魚等大型魚類,甚至是鯨魚身體中,且量在生物累積的作用下還會越來越多。事實上,2012年就有研究顯示超過600種生物受到海洋塑膠垃圾的影響,從微生物到大鯨魚都有,多半是因為攝食,但偶爾也有因為被大型殘骸纏身,比如說老舊的魚網。

Hawaiian_monk_seal_at_French_Frigate_Shoals_07
瀕危的夏威夷僧海豹。Photo by MarkSullivan

「我們幾乎不可能去計算動物們吃下多少量的塑膠。」海洋教育協會(Sea Education Association)的卡拉.羅博士(Kara Law)說,「我們還需要有更好的估計方法,來得知每年多少塑膠進入海洋。」

塑膠垃圾的結局

流入海洋的塑膠垃圾除了被海洋生物吃掉之外,還有其他幾種可能的歸宿。它們可能被沖上岸,被分解成小到偵測不到的碎塊;它們可能被微小的生物黏上,微生物持續增生、使其變重,繼而沉入海面之下。羅博士認為,「這些找不到的海中塑膠最好的結局就是沉到海床去。不過,其他更糟的結局其實有點難設想,因為我們真的清楚這些塑膠會怎樣。」

毫無疑問的,海洋塑膠已經成為跨域議題,而且即使是現在看似沒有塑膠殘骸的地方,在未來可能也將隨著塑膠碎片濃度上升而成為威脅。威爾考克斯的海鳥研究方法雖然可能過於簡化,但其可貴之處在於它橋接了各資料之間的隔閡,而不再只是研究各個獨立區域或物種資料,並且描繪出了地理熱點,提供未來海洋塑膠問題的分析參考。

近年來的材料科學領域中,也有許多生物可分解的新型塑膠,以及新的材料陸續問世。雖然全世界的塑膠垃圾問題短時間內看來是無法解決,但我們仍能透過選擇對環境較為友善的生活方式,減少對塑膠的依賴。期許在未來,這些不死塑膠的問題能夠就此改善,而我們也能夠找到更好的材質取代塑膠,不危害其他生命、繼續在地球上生存著。

關於海洋塑膠對生物的影響,也可參考下面MinuteEarth的 Youtube 影片喔:

 

參考資料

  1. 《Nearly every seabird may be eating plastic by 2050》by Sid Perkins.
  2. 《Impacts of Marine Debris on Biodiversity: Current Status and Potential Solutions》. CBD Technical Series No. 67
  3. Wilcox, Chris, Erik Van Sebille, and Britta Denise Hardesty. “Threat of plastic pollution to seabirds is global, pervasive, and increasing.Proceedings of the National Academy of Sciences (2015): 201502108.
  4. 《Ninety-nine percent of the ocean’s plastic is missing》By Angus Chen

 

文章難易度