0

0
0

文字

分享

0
0
0

半量子漩渦

peregrine
・2011/03/01 ・559字 ・閱讀時間約 1 分鐘 ・SR值 563 ・九年級
相關標籤: 量子 (27)

(圖援用自原文)

在多數已知的半導體中,電子成對形成自旋單一態(spin singlets),這是自旋向上及自旋向下具有零角動量(angular momentum)的組合。

不過,在包括鍶釕酸鹽(Sr2RuO4,或SRO)的少數材料中,上述電子對則形成自旋三重態(spin triplets)。於SRO中,此些三重態被認為形成一種能以兩個微弱交互作用的超流體凝態(superfluid condensates)所呈現的形態,一個自旋向上,另一個自旋向下。這種排列形式能支撐半量子的渦旋(half-quantum vortices:HQVs)。由於HQVs在量子計算方面的諸多潛在應用,因而已受到理論學家們的廣泛研究及實驗者們的探索。

目前,由美國伊利諾大學香檳分校(University of Illinois at Urbana-Champaign)Raffi Budakian領導的研究人員業已發現HQVs於SRO中的證據。(如原文上圖)他們在一根懸臂上安置了一個微米大小的SRO環,並藉由觀察沿著該懸臂(Hx)微弱的振盪磁場如何影響該懸臂的諧振振盪(resonant oscillation),來監測此環的磁矩(magnetic moment)。如原文下圖,他們發現,該環正常的掃描Hz(scanning Hz)沒有額外的靜態Hx時,感應了屬於即將成為全量子渦旋之正確大小及位置的磁化階梯(magnetization steps)。

當他們添增夠強的靜態Hx時,此些階梯變成一半高的增量,這與HQVs的存在是相一致的。為了強化上述事實,此些研究人員使用不同的半導體及較大的SRO樣本重做上述實驗,結果皆未發現半高的階梯。

-----廣告,請繼續往下閱讀-----

原文網址:http://blogs.physicstoday.org/update/2011/01/half-quantum-vortices-1.html
翻譯:peregrine
本文轉載自PEREGRINE科學點滴

-----廣告,請繼續往下閱讀-----
文章難易度
peregrine
38 篇文章 ・ 0 位粉絲

0

1
0

文字

分享

0
1
0
從認證到實踐:以智慧綠建築三大標章邁向淨零
鳥苷三磷酸 (PanSci Promo)_96
・2024/11/15 ・4487字 ・閱讀時間約 9 分鐘

本文由 建研所 委託,泛科學企劃執行。 


當你走進一棟建築,是否能感受到它對環境的友善?或許不是每個人都意識到,但現今建築不只提供我們居住和工作的空間,更是肩負著重要的永續節能責任。

綠建築標準的誕生,正是為了應對全球氣候變遷與資源匱乏問題,確保建築設計能夠減少資源浪費、降低污染,同時提升我們的生活品質。然而,要成為綠建築並非易事,每一棟建築都需要通過層層關卡,才能獲得標章認證。

為推動環保永續的建築環境,政府自 1999 年起便陸續著手推動「綠建築標章」、「智慧建築標章」以及「綠建材標章」的相關政策。這些標章的設立,旨在透過標準化的建築評估系統,鼓勵建築設計融入生態友善、能源高效及健康安全的原則。並且政府在政策推動時,為鼓勵業界在規劃設計階段即導入綠建築手法,自 2003 年特別辦理優良綠建築作品評選活動。截至 2024 年為止,已有 130 件優良綠建築、31 件優良智慧建築得獎作品,涵蓋學校、醫療機構、公共住宅等各類型建築,不僅提升建築物的整體性能,也彰顯了政府對綠色、智慧建築的重視。

-----廣告,請繼續往下閱讀-----

說這麼多,你可能還不明白建築要變「綠」、變「聰明」的過程,要經歷哪些標準與挑戰?

綠建築標章智慧建築標章綠建材標章
來源:內政部建築研究所

第一招:依循 EEWH 標準,打造綠建築典範

環境友善和高效率運用資源,是綠建築(green building)的核心理念,但這樣的概念不僅限於外觀或用材這麼簡單,而是涵蓋建築物的整個生命週期,也就是包括規劃、設計、施工、營運和維護階段在內,都要貼合綠建築的價值。

關於綠建築的標準,讓我們先回到 1990 年,當時英國建築研究機構(BRE)首次發布有關「建築研究發展環境評估工具(Building Research Establishment Environmental Assessment Method,BREEAM®)」,是世界上第一個建築永續評估方法。美國則在綠建築委員會成立後,於 1998 年推出「能源與環境設計領導認證」(Leadership in Energy and Environmental Design, LEED)這套評估系統,加速推動了全球綠建築行動。

臺灣在綠建築的制訂上不落人後。由於臺灣地處亞熱帶,氣溫高,濕度也高,得要有一套我們自己的評分規則——臺灣綠建築評估系統「EEWH」應運而生,四個英文字母分別為 Ecology(生態)、Energy saving(節能)、Waste reduction(減廢)以及 Health(健康),分成「合格、銅、銀、黃金和鑽石」共五個等級,設有九大評估指標。

-----廣告,請繼續往下閱讀-----

我們就以「台江國家公園」為例,看它如何躍過一道道指標,成為「鑽石級」綠建築的國家公園!

位於臺南市四草大橋旁的「台江國家公園」是臺灣第8座國家公園,也是臺灣唯一的濕地型的國家公園。同時,還是南部行政機關第一座鑽石級的綠建築,其外觀採白色系列,從高空俯瞰,就像在一座小島上座落了許多白色建築群的聚落;從地面看則有臺南鹽山的意象。

因其地形與地理位置的特殊,生物多樣性的保護則成了台江國家公園的首要考量。園區利用既有的魚塭結構,設計自然護岸,保留基地既有的雜木林和灌木草原,並種植原生與誘鳥誘蟲等多樣性植物,採用複層雜生混種綠化。以石籠作為擋土護坡與卵石回填增加了多孔隙,不僅強化了環境的保護力,也提供多樣的生物棲息環境,使這裡成為動植物共生的美好棲地。

台江國家公園是南部行政機關第一座鑽石級的綠建築。圖/內政部建築研究所

第二招:想成綠建築,必用綠建材

要成為一幢優秀好棒棒的綠建築,使用在原料取得、產品製造、應用過程和使用後的再生利用循環中,對地球環境負荷最小、對人類身體健康無害的「綠建材」非常重要。

-----廣告,請繼續往下閱讀-----

這種建材最早是在 1988 年國際材料科學研究會上被提出,一路到今日,國際間對此一概念的共識主要包括再使用(reuse)、再循環(recycle)、廢棄物減量(reduce)和低污染(low emission materials)等特性,從而減少化學合成材料產生的生態負荷和能源消耗。同時,使用自然材料與低 VOC(Volatile Organic Compounds,揮發性有機化合物)建材,亦可避免對人體產生危害。

在綠建築標章後,內政部建築研究所也於 2004 年 7 月正式推行綠建材標章制度,以建材生命週期為主軸,提出「健康、生態、高性能、再生」四大方向。舉例來說,為確保室內環境品質,建材必須符合低逸散、低污染、低臭氣等條件;為了防溫室效應的影響,須使用本土材料以節省資源和能源;使用高性能與再生建材,不僅要經久耐用、具高度隔熱和防音等特性,也強調材料本身的再利用性。


在台江國家公園內,綠建材的應用是其獲得 EEWH 認證的重要部分。其不僅在設計結構上體現了生態理念,更在材料選擇上延續了對環境的關懷。園區步道以當地的蚵殼磚鋪設,並利用蚵殼作為建築格柵的填充材料,為鳥類和小生物營造棲息空間,讓「蚵殼磚」不再只是建材,而是與自然共生的橋樑。園區的內部裝修選用礦纖維天花板、矽酸鈣板、企口鋁板等符合綠建材標準的系統天花。牆面則粉刷乳膠漆,整體綠建材使用率為 52.8%。

被建築實體圍塑出的中庭廣場,牆面設計有蚵殼格柵。圖/內政部建築研究所

在日常節能方面,台江國家公園也做了相當細緻的設計。例如,引入樓板下的水面蒸散低溫外氣,屋頂下設置通風空氣層,高處設置排風窗讓熱空氣迅速排出,廊道還配備自動控制的微噴霧系統來降溫。屋頂採用蚵殼與漂流木創造生態棲地,創造空氣層及通風窗引入水面低溫外企,如此一來就能改善事內外氣溫及熱空氣的通風對流,不僅提升了隔熱效果,減少空調需求,讓建築如同「與海共舞」,在減廢與健康方面皆表現優異,展示出綠建築在地化的無限可能。

-----廣告,請繼續往下閱讀-----
島式建築群分割後所形成的巷道與水道。圖/內政部建築研究所

在綠建材的部分,另外補充獲選為 2023 年優良綠建築的臺南市立九份子國民中小學新建工程,其採用生產過程中二氧化碳排放量較低的建材,比方提高高爐水泥(具高強度、耐久、緻密等特性,重點是發熱量低)的量,並使用能提高混凝土晚期抗壓性、降低混凝土成本與建物碳足跡的「爐石粉」,還用再生透水磚做人行道鋪面。

2023 年優良綠建築的臺南市立九份子國民中小學。圖/內政部建築研究所
2023 年優良綠建築的臺南市立九份子國民中小學。圖/內政部建築研究所

同樣入選 2023 年綠建築的還有雲林豐泰文教基金會的綠園區,首先,他們捨棄金屬建材,讓高爐水泥使用率達 100%。別具心意的是,他們也將施工開挖的土方做回填,將有高地差的荒地恢復成平坦綠地,本來還有點「工業風」的房舍告別荒蕪,無痛轉綠。

雲林豐泰文教基金會的綠園區。圖/內政部建築研究所

等等,這樣看來建築夠不夠綠的命運,似乎在建材選擇跟設計環節就決定了,是這樣嗎?當然不是,建築是活的,需要持續管理–有智慧的管理。

第三招:智慧管理與科技應用

我們對生態的友善性與資源運用的效率,除了從建築設計與建材的使用等角度介入,也須適度融入「智慧建築」(intelligent buildings)的概念,即運用資通訊科技來提升建築物效能、舒適度與安全性,使空間更人性化。像是透過建築物佈建感測器,用於蒐集環境資料和使用行為,並作為空調、照明等設備、設施運轉操作之重要參考。

-----廣告,請繼續往下閱讀-----

為了推動建築與資通訊產業的整合,內政部建築研究所於 2004 年建立了「智慧建築標章」制度,為消費者提供判斷建築物是否善用資通訊感知技術的標準。評估指標經多次修訂,目前是以「基礎設施、維運管理、安全防災、節能管理、健康舒適、智慧創新」等六大項指標作為評估基準。
以節能管理指標為例,為了掌握建築物生命週期中的能耗,需透過系統設備和技術的主動控制來達成低耗與節能的目標,評估重點包含設備效率、節能技術和能源管理三大面向。在健康舒適方面,則在空間整體環境、光環境、溫熱環境、空氣品質、水資源等物理環境,以及健康管理系統和便利服務上進行評估。

樹林藝文綜合大樓在設計與施工過程中,充分展現智慧建築應用綜合佈線、資訊通信、系統整合、設施管理、安全防災、節能管理、健康舒適及智慧創新 8 大指標先進技術,來達成兼顧環保和永續發展的理念,也是利用建築資訊模型(BIM)技術打造的指標性建築,受到國際矚目。

樹林藝文綜合大樓。圖/內政部建築研究所「111年優良智慧建築專輯」(新北市政府提供)

在興建階段,為了保留基地內 4 棵原有老樹,團隊透過測量儀器對老樹外觀進行精細掃描,並將大小等比例匯入 BIM 模型中,讓建築師能清晰掌握樹木與建築物之間的距離,確保施工過程不影響樹木健康。此外,在大樓啟用後,BIM 技術被運用於「電子維護管理系統」,透過 3D 建築資訊模型,提供大樓內設備位置及履歷資料的即時讀取。系統可進行設備的監測和維護,包括保養計畫、異常修繕及耗材管理,讓整棟大樓的全生命週期狀況都能得到妥善管理。

智慧建築導入 BIM 技術的應用,從建造設計擴展至施工和日常管理,使建築生命周期的管理更加智慧化。以 FM 系統 ( Facility Management,簡稱 FM ) 為例,該系統可在雲端進行遠端控制,根據會議室的使用時段靈活調節空調風門,會議期間開啟通往會議室的風門以加強換氣,而非使用時段則可根據二氧化碳濃度調整外氣空調箱的運轉頻率,保持低頻運作,實現節能效果。透過智慧管理提升了節能效益、建築物的維護效率和公共安全管理。

-----廣告,請繼續往下閱讀-----

總結

綠建築、綠建材與智慧建築這三大標章共同構建了邁向淨零碳排、居住健康和環境永續的基礎。綠建築標章強調設計與施工的生態友善與節能表現,從源頭減少碳足跡;綠建材標章則確保建材從生產到廢棄的全生命週期中對環境影響最小,並保障居民的健康;智慧建築標章運用科技應用,實現能源的高效管理和室內環境的精準調控,增強了居住的舒適性與安全性。這些標章的綜合應用,讓建築不僅是滿足基本居住需求,更成為實現淨零、促進健康和支持永續的具體實踐。

建築物於魚塭之上,採高腳屋的構造形式,尊重自然地貌。圖/內政部建築研究所

-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

鳥苷三磷酸 (PanSci Promo)_96
211 篇文章 ・ 312 位粉絲
充滿能量的泛科學品牌合作帳號!相關行銷合作請洽:contact@pansci.asia

0

4
2

文字

分享

0
4
2
量子糾纏態的物理
賴昭正_96
・2024/04/24 ・5889字 ・閱讀時間約 12 分鐘

  • 作者/賴昭正|前清大化學系教授、系主任、所長;合創科學月刊

我不會稱量子糾纏為量子力學的「一般 (a)」特徵,而是量子力學「獨具 (the)」的特徵,它強制了完全背離經典的思想路線。

——薛定鍔(Edwin Schrödinger)1933 年諾貝爾物理獎得主

相對論雖然改寫了三百多年來物理學家對時間及空間的看法,但並未改變人類幾千年來對「客觀宇宙」——「實在」(reality)——的認知與經驗:不管我們是否去看它,或者人類是否存在,月亮永遠不停地依一定的軌道圍繞地球運轉。可是量子力學呢?它完全推翻了「客觀宇宙」存在的觀念。在它的世界裡,因果律成了或然率,物體不再同時具有一定的位置與運動速度……。

這樣違反「常識」的宇宙觀,不要說一般人難以接受,就是量子力學革命先鋒的傅朗克(Max Planck)及愛因斯坦(Albert Einstein)也難以苟同!但在經過一番企圖挽回古典力學的努力失敗後,傅朗克終於牽就了新革命的產物;但愛因斯坦則一直堅持不相信上帝在跟我們玩骰子!因此 1935 年提出了現在稱為「EPR 悖論(EPR Paradox)」的論文,為他反對聲浪中的最後一篇影響深遠的傑作。

1964 年,出生於北愛爾蘭、研究基本粒子及加速器設計的貝爾(John Bell),利用「業餘」時間來探討量子力學的基礎問題,提出題為「關於愛因斯坦(Einstein)-波多爾斯基(Podolsky)-羅森(Roson)悖論」的論文。貝爾深入地研究量子理論,確立了該理論可以告訴我們有關物理世界基本性質的地方,使直接透過實驗來探索看似哲學的問題(如現實的本質)成為可能。

2022 年的諾貝爾物理獎頒發給三位「用光子糾纏實驗,……開創量子資訊科學」的業思特(Alain Aspect)、克勞瑟(John Clauser)、蔡林格(Anton Zeilinger)的物理學家。讀者在許多報章雜誌(如 12 月號《科學月刊》)均可看到有關貝爾及他們之工作的報導,但比較深入討論貝爾實驗的文章則幾乎沒有。事實上貝爾的數學確實是很難懂的,但只要對基本物理有點興趣,我們還是可以了解他所建議之實驗及其內涵的。因此如果讀者不怕一點數學與邏輯,請繼續讀下去吧:我們將用古典力學及量子力學推導出在實驗上容易證明/反駁的兩個不同結果。

-----廣告,請繼續往下閱讀-----

角動量與自旋角動量

在我們日常生活裡,一個物體(例如地球)可以擁有兩種不同類型的角動量。第一種類型是由於物體的質心繞著某個固定(例如太陽)的外部點旋轉而引起的,這通常稱為軌道角動量。第二種類型是由於物體的內部運動引起的,這通常稱為自旋角動量。在量子物理學裡,粒子可以由於其在空間中的運動而擁有軌道角動量,也可以由於其內部運動而擁有自旋角動量。實際上,因為基本粒子都是無結構的點粒子,用我們日常物體的比喻並不完全準確1;因此在量子力學中,最好將自旋角動量視為是粒子所擁有的「內在性質」,並不是粒子真正在旋轉。實驗發現大部分的基本粒子都具有獨特的自旋角動量,就像擁有獨特的電荷和質量一樣:電子的自旋角動量為 ½ 2,光子的自旋角動量為 1。

量子力學裡的角動量有兩個與我們熟悉之角動量非常不同的性質:

  1. 前者不能連續變化,而是像能量一樣被量化(quantized)了,例如電子的自旋量子數為 ½,所以我們在任何方向上所能量到的自旋角動量只能是 +½(順時針方向旋轉)或 -½(逆時針方向旋轉)
  2. 後者的角動量可以同時在不同的方向上有確定的分量,但基本粒的(自旋)角動量卻不能。

EPR 論文

EPR 論文討論的是位置與動量的客觀實在性;貝爾將其論點擴展到自旋粒子的角動量上,討論兩個粒子相撞後分別往左、右兩個不同方向飛離後的實驗。因曾相撞作用之故,它們具有「關連」(correlated)的自旋角動量;但常識與經驗告訴我們,如果分開得夠遠的話,它們之間應不再互相作用影響,因此我們在任一體系所做的測量也應只會影響到該體系而已。這「可分離性」(separability)及「局部性」(locality)的兩個假設可以説是物理學成功的基石,因此沒有人會懷疑其正確性的。

讓我們在這裡假設粒子相撞後的總自旋角動量爲零。如果我們測得左邊粒子的 B- 方向自旋為順時(見圖一),則可以透過「關連」而預測右邊粒子的 B- 方向自旋應為逆時。因右邊粒子一直是孤立的,基於物理體系的「可分離性」與「局部性」,如果我們可以預測到其自旋的話,則其自旋應該早就存在,爲一「實在」的自然界物理量。

-----廣告,請繼續往下閱讀-----
EPR 與貝爾實驗裝置。 圖/作者提供   

同樣地,如果我們突然改變主意去量得左邊粒子的 C- 方向自旋為順時,則也可以透過「關連」而預測到右邊粒子的 B- 方向自旋應為逆時。但右邊粒子一直是孤立的,因此其 C- 方向自旋也應該早就存在,亦爲一「實在」的自然界物理量。所以右邊的粒子毫無疑問地應同時具有一定的 B- 方向自旋與 C- 方向自旋。同樣的論點也告訴我們:左邊的粒子毫無疑問地也應同時具有一定的 B- 方向自旋與 C- 方向自旋。如果量子力學説粒子不能同時具有一定的 B- 方向與 C- 方向自旋,而只能告訴我們或然率,那量子力學顯然不是一個完整的理論!

貝爾的實驗

貝爾將這一個物理哲學上的爭論變成可以證明或反駁的實驗!如圖一,我們可以設計偵測器來測量相隔 120 度的 A、B、C 三個方向的自旋(順時或逆時)。依照古典力學(EPR),自旋在這三個方向上都有客觀的存在定值。假設左粒子分別為(順、順、逆);則因總自旋須爲零,右粒子在三方向的自旋相對應爲(逆、逆、順)。在此情況下,如果我們「同時去量同一方向」之左、右粒子自旋,應可以發現(順逆)(順逆)(逆順)三種組合。可是如果我們「同時且隨機地取方向去量」左、右粒子自旋,應可以發現的組合有(順逆)(順逆)(順順)(順逆)(順逆)(順順)(逆逆)(逆逆)(逆順)九種;其中相反自旋的結果佔了 5/9。讀者應該不難推出:不管粒子在三方向的自旋定值爲何,發現相反自旋的結果不是 5/9 就是 9/9,即永遠 ≥ 5/9。

量子力學怎麼說呢? 在同一個假設的情況下, 量子力學也說如果我們「同時去量同一方向」之左、右粒子自旋, 應發現的組合也是只有(順逆)(順逆)(逆順)三種。但量子力學卻說:可是如果我們「同時且隨機地取方向去量」左、右粒子自旋,則會得到不同於上面預測之 ≥ 5/9 的結果!為什麼呢?且聽量子力學道來。

量子力學與或然率

自動角動量。圖/作者提供

在古典力學裡,如果在某個方向測得的自旋角動量為 +½,則其在任何方向的分量應為 +½ cosθ,如圖二所示。但在量子力學裡,因為不可能同時在其它方向精確地測得自旋角動量,因此分量只能以出現 +½ 或 -½ 之或然率來表示;這與古典力學不同,也正是問題所在。但古典力學到底還是經過幾百年之火煉的真金,因此如果我們做無窮次的測量,則其結果應該與古典力學相同:即假設測得 +½ 的或然率是 P,則

-----廣告,請繼續往下閱讀-----

如果角度是 120º,則解得 P 等於 1/4:也就是說有 1/4 的機會量得與主測量同一方向(+½)自旋角動量,3/4 機會量得 -½ 自旋角動量。

讓我們看看這或然率用於上面所提到之貝爾實驗會得到怎麼樣的結果。依量子力學的計算,如果在左邊 A- 方向量得的是順時鐘的話,則因「關連」,右邊 A- 方向量得的便一定(100%)是逆時鐘;但因角動量不能同時在不同的方向上有確定的分量, 故在其它兩方向量得逆時鐘的或然率依照上面的計算將各爲 1/4,因此左、右同時測得相反自旋的或然率只有 ½ [=(1+1/4+1/4)*3/9,三方向、九方向組合]而己。

實驗結果呢?1/2,小於 5/9!顯然粒子在不同方向同時具有固定自旋的假設是錯的!EPR 是錯的!古典力學是錯的!量子力學戰勝了!貝爾失望克勞瑟賭輸了!

量子糾纏態

上面提到如果左邊 A- 方向量得的是順時鐘的話,則右邊 A- 方向量得的便一定(100%)是逆時鐘;可是左、右粒子在作用後,早已咫尺天涯,右粒子怎麼知道左粒子量得的是順時鐘呢?量子力學的另一大師薛定鍔(Edwin Schrödinger)從 EPR 論文裡悟到了「糾纏」(entanglement)的觀念。他認爲在相互作用後,兩個粒子便永遠糾纏在一起,形成了一個量子體系。因是一個體系,因此當我們去量左邊粒子之自旋時,量子體系波函數立即崩潰,使得右邊粒子具有一定且相反的自旋。可是右邊的粒子如何「立即知道」我們在量左邊的粒子 A- 方向及測得之值呢?那就只有靠愛因斯坦所謂之「鬼般的瞬間作用」(spooky action at a distance)了!此一超光速的作用轟動了科普讀者3!筆者也因之接到一些朋友的詢問,為寫這一篇文章的一大動機。

-----廣告,請繼續往下閱讀-----

可是仔細想一想,在古典力學裡不也是這樣——如果左邊 A- 方向量得的是順時,則右邊 A- 方向量得的便一定是逆時——嗎?但卻從來沒有科學家或科普讀者認為有「鬼般的瞬間作用」或「牛頓糾纏態」去告訴右邊粒子該出現什麼。這「鬼般的瞬間作用」事實上是因為在未測量之前,量子力學認為右邊粒子自旋是存在於一種沒有定值之或然率狀態的「奇怪」解釋所造成的。例如我們擲一顆骰子,量子力學說:在沒擲出之前,出現任何數的或然率「存在」於一種「波函數」中。但一旦擲出 4 後,波函數便將立即崩潰:原來出現 4 之 1/6 或然率立即瞬間變成 100%,其它數的或然率也立即瞬間全部變成零了。但在日常生活中,我們(包括 EPR)從不認為那些或然率「波函數」為一「客觀的實體」,故也從來沒有人問:其它數怎麼瞬間立即知道擲出 4 而不能再出現呢?波函數數怎麼瞬間立即崩潰呢?

事實上從上面的分析,讀者應該可以看出:根本不需要用「右粒子『知道』左粒子量得的是順時鐘」,我們所需要知道的只是量子力學的遊戲規則:粒子的角動量不能同時在不同方向上有確定的分量;即如果 100% 知道某一方向的自旋,其它方向的自旋便只能用或然率來表示。一旦承認這個遊戲規則,那麼什麼「量子糾纏態」或「鬼般的瞬間作用」便立即瞬間消失!這些「奇怪」名詞之所以出現,正是因為我們要使用日常生活經驗語言來解釋量子系統中訊息編碼之奇怪且違反直覺的特性4 所致。

結論

在想用日常生活邏輯或語言來了解自然界的運作失敗後,幾乎所有的物理學家現在都採取保利(Wolfgang Pauli)的態度:

了解「自然界是怎樣的(運作)」只不過是形上學家的夢想。我們實際上擁有的只是「我們能對大自然界說些什麼」。在量子力學層面,我們能說的就是我們能用數學來說的——結合實驗、測試、預測、觀察等。因此,幾乎所有其它事物在本質上都是類比和或想像的。事實上,類比或意象性的東西可能——而且經常——誤導我們。

-----廣告,請繼續往下閱讀-----

換句話說,物理學的任務是透過數學計算5,告訴我們在什麼時刻及什麼地方可以看到月亮;至於月亮是不是一直那裡,或怎麼會到那裡……則是哲學的問題,不是物理學能回答或必須回答的。如果硬要用日常生活邏輯或語言去解釋月亮怎麼出現到哪裡,那麼我們將常被誤導。

誠如筆者在『思考的極限:宇宙創造出「空間」與「時間」?』一文裡所說的:『空間與時間都根本不存在:它們只是分別用來說明物體間之相對位置與事件間之前後秩序的「語言」而已。沒有物體就沒有空間的必要;沒有事件就沒有時間的必要』,我們在這裡也可以說;「量子糾纏態」根本不存在,它只是用來說明量子力學之奇怪宇宙觀的「語言」而已;沒有量子力學的或然率自然界,就沒有「量子糾纏態」的必要。

註解

  1. 讓我們回顧一下在 1925 年最早提出電子自旋觀念的高玆密(Samuel Goudsmit)及烏倫別克(George Uhlenbeck)當時所遭遇到的困擾。如果不是因為他們那時還是個無名小卒的研究生,提出電子自旋的人大概便不是他們了!底下是烏倫別克的回憶:『然後我們再一起去請教(電磁學大師)羅倫玆(Hendrik Lorentz)。羅倫玆不只以他那人盡皆知的慈祥接待我們,並且還表現出很感興趣的樣子——雖然我覺得多少帶點悲觀。他答應將仔細想一想。一個多禮拜後,他交給我們一整潔的手稿。雖然我們無法完全了解那些長而繁的有關自旋電子的電磁性計算,但很明顯地,如果我們對電子自旋這一觀念太認真的話,則將遭遇到相當嚴重的難題!例如,依質能互換的原則,磁能便會大得使電子的質量必須大於質子;或者如果我們堅持電子的質量必須為已知的實驗數值,則電子必須比整個原子還大!高玆密及我都認為至少在目前我們最好不要發表任何東西。可是當我們將決定告訴羅倫玆教授時,他回答說:「我早已將你們的短文寄出去投稿了!你們倆還年青得可以去做一些愚蠢的事!」』。後來呢?電子自旋的概念在整個量子力學的系統裏,脫出了「點」與「非點」這類的爭論,而被物理學界普遍接受。今天當物理學家用「電子自旋」這一術語時,有他們特定的運作定義,絕不虛幻,但也絕不表示電子是一個旋轉的小球(因為那將與實驗不符);但是有時把電子看為自轉的小球,可以幫助我們理解與教育初學者。
  2. 單位為普朗克常數(Planck constant)除以 2π。
  3. 玻爾(Niel Bohr):「那些第一次接觸量子理論時不感到震驚的人不可能理解它。」
  4. 這種量子效應以前一直被認為造成困擾,導緻小型設備比大型設備的可靠性更低、更容易出錯。但 1995 年後,科學家開始認識到量子效應雖然「令人討厭」,但實際上可以用來執行以前不可能處理的重要資訊任務,「量子資訊科學」於焉誕生。
  5. 薛定鍔:「量子理論的數學框架已經通過了無數成功的測試,現在被普遍接受為對所有原子現象的一致和準確的描述。」

延伸閱讀

-----廣告,請繼續往下閱讀-----

討論功能關閉中。

賴昭正_96
44 篇文章 ・ 58 位粉絲
成功大學化學工程系學士,芝加哥大學化學物理博士。在芝大時與一群留學生合創「科學月刊」。一直想回國貢獻所學,因此畢業後不久即回清大化學系任教。自認平易近人,但教學嚴謹,因此穫有「賴大刀」之惡名!於1982年時當選爲 清大化學系新一代的年青首任系主任兼所長;但壯志難酬,兩年後即辭職到美留浪。晚期曾回台蓋工廠及創業,均應「水土不服」而鎩羽而歸。正式退休後,除了開始又爲科學月刊寫文章外,全職帶小孫女(半歲起);現已成七歲之小孫女的BFF(2015)。首先接觸到泛科學是因爲科學月刊將我的一篇文章「愛因斯坦的最大的錯誤一宇宙論常數」推薦到泛科學重登。

0

3
2

文字

分享

0
3
2
量子力學可以幫你判斷物體溫度?從古典物理過渡到近代的一大推手——黑體輻射
PanSci_96
・2024/03/24 ・3639字 ・閱讀時間約 7 分鐘

1894 年,美國物理學家邁克生(Albert Abraham Michelson)作為芝加哥大學物理系的創立者,在為學校的瑞爾森物理實驗室(Ryerson Physical Laboratory)落成典禮致詞時,表示:「雖然無法斷言說,未來的物理學不會比過去那些驚奇更令人驚嘆,但似乎大部分的重要基本原則都已經被穩固地建立了。」

以我們現在的後見之明,這段話聽起來固然錯得離譜,但在當時,從 17、18 到 19 世紀,在伽利略、牛頓、馬克士威等前輩的的貢獻之下,物理學已經達成了非凡的成就。

我們現在稱為古典的物理學,對於整個世界的描述幾乎是面面俱到了,事實上沒有人預料到 20 世紀將出現徹底顛覆世界物理學認知的重要理論,量子力學。

而這最一開始竟只是出自於一件不起眼的研究,關於物體發出的光。

-----廣告,請繼續往下閱讀-----

萬物皆輻射

在此我們要先理解一個觀念:所有物體無時無刻不在發出電磁波輻射,包括了你、我、你正使用的螢幕,以及我們生活中的所有物品。

至於為什麼會這樣子呢?其中一個主要原因是,物體都是由原子、分子組成,所以內部充滿了帶電粒子,例如電子。這些帶電粒子隨著溫度,時時刻刻不停地擾動著,在過程中,就會以電磁波的形式放出能量。

除了上述原因之外,物體發出的電磁波輻射,還可能有其他來源,我們就暫時省略不提。無論如何,從小到大我們都學過的,熱的傳遞方式分成傳導、對流、輻射三種,其中的輻射,就是我們現在在談的,物體以電磁波形式發出的能量。

那麼,這些輻射能量有什麼樣的特徵呢?為了搞清楚這件事,我們必須先找個適當的範本來研究。

-----廣告,請繼續往下閱讀-----

理想上最好的選擇是,這個範本必須能夠吸收所有外在環境照射在上面的光線,只會發出因自身溫度而產生的電磁輻射。這樣子的話,我們去測量它發出的電磁波,就不會受到反射的電磁波干擾,而能確保電磁波是來自它自己本身。

這樣子的理想物體,稱為黑體;畢竟,黑色物體之所以是黑的,就是因為它能夠吸收外在環境光線,且不太會反射。而在我們日常生活中,最接近理想的黑體,就是一點也不黑、還超亮的太陽!這是因為我們很大程度可以肯定,太陽發出來的光,幾乎都是源於它自身,而非反射自外在環境的光線。

或者我們把一個空腔打洞後,從洞口發出的電磁波,也會近似於黑體輻射,因為所有入射洞口的光都會進入空腔,而不被反射。煉鐵用的鼓風爐,就類似這樣子的結構。

到目前為止,一切聽起來都只是物理學上一個平凡的研究題目。奇怪的是,在對電磁學已經擁有完整瞭解的 19 世紀後半到 20 世紀初,科學家儘管已經藉由實驗得到了觀測數據,但要用以往的物理理論正確推導出黑體的電磁波輻射,卻遇到困難。正是由此開始,古典物理學出現了破口。

-----廣告,請繼續往下閱讀-----

黑體輻射

由黑體發出的輻射,以現在理論所知,長得像這個樣子。縱軸代表黑體輻射出來的能量功率,橫軸代表黑體輻射出來的電磁波波長。

在理想狀況下,黑體輻射只跟黑體的溫度有關,而跟黑體的形狀和材質無關。

以溫度分別處在絕對溫標 3000K、4000K 和 5000K 的黑體輻射為例,我們可以看到,隨著黑體的溫度越高,輻射出來的能量功率也越大;同時,輻射功率最高的波段,也朝短波長、高頻率的方向靠近。

為了解釋這個曲線,物理學家們開始運用「當時」畢生所學來找出函數方程式,分成了兩派:

-----廣告,請繼續往下閱讀-----

一派是 1896 年,由德國物理學家維因(Wilhelm Carl Werner Otto Fritz Franz Wien),由熱力學出發推導出的黑體輻射公式,另一派,在 1900 與 1905 年,英國物理學家瑞立(John William Strutt, 3rd Baron Rayleigh)和金斯(James Jeans),則是藉由電磁學概念,也推導出了他們的黑體輻射公式,稱為瑞立-金斯定律。

你看,若是同時擺上這兩個推導公式,會發現他們都各自對了一半?

維因近似 Wien approximation 只在高頻率的波段才精確。而瑞立-金斯定律只對低頻率波段比較精確,更預測輻射的強度會隨著電磁波頻率的提升而趨近無限大,等等,無限大?――這顯然不合理,因為現實中的黑體並不會放出無限大的能量。

顯然這兩個解釋都不夠精確。

-----廣告,請繼續往下閱讀-----

就這樣,在 1894 年邁克生才說,物理學可能沒有更令人驚嘆的東西了,結果沒幾年,古典物理學築起的輝煌成就,被黑體輻射遮掩了部分光芒,而且沒人知道,這是怎麼一回事。

普朗克的黑體輻射公式

就在古典物理學面臨進退維谷局面的時候,那個男人出現了——德國物理學家普朗克(Max Planck)。

1878年學生時代的普朗克。圖/wikimedia

普朗克於 1900 年就推導出了他的黑體輻射公式,比上述瑞立和金斯最終在 1905 年提出的結果要更早,史稱普朗克定律(Planck’s law)。普朗克假想,在黑體中,存在許多帶電且不斷振盪、稱為「振子」的虛擬單元,並假設它們的能量只能是某個基本單位能量的整數倍。

這個基本單位能量寫成 E=hν,和電磁輻射的頻率 ν 成正比,比例常數 h 則稱為普朗克常數。換言之,黑體輻射出來的能量,以hν為基本單位、是一個個可數的「量」加起來的,也就是能量被「量子化」了。

-----廣告,請繼續往下閱讀-----

根據以上假設,再加上不同能量的「振子」像是遵循熱力學中的粒子分佈,普朗克成功推導出吻合黑體輻射實驗觀測的公式。

普朗克的方程式,同時包含了維因近似和瑞立-金斯定律的優點,不管在低頻率還是高頻率的波段,都非常精確。如果我們比較在地球大氣層頂端觀測到的太陽輻射光譜,可以發現觀測數據和普朗克的公式吻合得非常好。

其實有趣的是普朗克根本不認為這是物理現象,他認為,他假設的能量量子化,只是數學上用來推導的手段,而沒有察覺他在物理上的深遠涵意。但無論如何,普朗克成功解決了黑體輻射的難題,並得到符合觀測的方程式。直到現在,我們依然使用著普朗克的方程式來描述黑體輻射。不只如此,在現實生活中,有許多的應用,都由此而來。

正因為不同溫度的物體,會發出不同特徵的電磁波,反過來想,藉由測量物體發出的電磁波,我們就能得知該物體的溫度。在疫情期間,我們可以看到某些場合會放置螢幕,上面呈現類似這樣子的畫面。

-----廣告,請繼續往下閱讀-----

事實上,這些儀器測量的,是特定波長的紅外線。紅外線屬於不可見光,也是室溫物體所發出的電磁輻射中,功率最大的波段。只要分析我們身體發出的紅外線,就能在一定程度上判斷我們的體溫。當然,一來我們都不是完美的黑體,二來環境因素也可能產生干擾,所以還是會有些許誤差。

藉由黑體輻射的研究,我們還可以將黑體的溫度與發出的可見光顏色標準化。

在畫面中,有彩虹背景的部分,代表可見光的範圍,當黑體的溫度越高,發出的電磁輻射,在可見光部分越偏冷色系。當我們在購買燈泡的時候,會在包裝上看到色溫標示,就是由此而來。所以,如果你想要溫暖一點的光線,就要購買色溫較低,約兩、三千 K 左右的燈泡。

結語

事實上,在黑體輻射研究最蓬勃發展的 19 世紀後半,正值第二次工業革命,當時鋼鐵的鍛冶技術出現許多重大進步。

德國鐵血宰相俾斯麥曾經說,當代的重大問題要用鐵和血來解決。

就傳統而言,煉鋼要靠工匠用肉眼,從鋼鐵的顏色來判斷溫度,但若能更精確地判斷溫度,無疑會有很大幫助。

德國作為鋼鐵業發達國家,在黑體輻射的研究上,曾做出許多貢獻,這一方面固然可能是學術的求知慾使然,但另一方面,也可以說跟社會的需求與脈動是完全吻合的。
總而言之,普朗克藉由引進能量量子化的概念,成功用數學式描述了黑體輻射;這件事成為後來量子力學發展的起點。儘管普朗克本人沒有察覺能量量子化背後的深意,但有另一位勇者在數年後繼承了普朗克的想法,並做出意味深長的詮釋,那就是下一個故事的主角――愛因斯坦的事了。

歡迎訂閱 Pansci Youtube 頻道 獲取更多深入淺出的科學知識!

-----廣告,請繼續往下閱讀-----
PanSci_96
1259 篇文章 ・ 2383 位粉絲
PanSci的編輯部帳號,會發自產內容跟各種消息喔。