Loading [MathJax]/extensions/tex2jax.js

0

0
0

文字

分享

0
0
0

如何用你的大腦控制他人的手?神經肌肉電訊號的神奇應用

楊昀霖
・2018/03/06 ・2598字 ・閱讀時間約 5 分鐘 ・SR值 504 ・六年級

-----廣告,請繼續往下閱讀-----

還記得動畫哆啦A夢裡各種天馬行空的道具嗎!?小時候總覺得這些超乎現實的功能十分酷炫,而其中有一項道具──人體遙控器,就是藉由操作搖桿來控制其他人的動作,聽起來有點小邪惡,但確實是一個非常令人夢寐以求的道具呢~(笑)

圖:翻攝自哆啦A夢

不過你知道嗎?現在真的可能可以操控別人的動作!

隨著科技日新月異,其實這個技術已經在現實世界中能夠實現了,雖然說沒辦法像動畫情節中一樣,拿出遙控器按按鈕就可以直接無線操控別人,但只要透過簡單的小儀器就能夠達到操控他人肢體動作的目的喔!

神經科學家 Greg Gagey 在 TED-Talk 的演說上,邀請兩位自願者上台後,將裝置分別裝在兩個人的手臂上,Greg Gagey請女性自願者動一動她的手腕後,在旁邊的男性自願者手腕竟然真的自己動起來了!(影片5分00秒)某種程度上來說,就是直接操控別人的動作,這究竟是怎麼一回事呢?

在了解操控他人身體動作的奧秘之前,讓我們先了解一下,我們是怎麼控制自己肢體動作的。

-----廣告,請繼續往下閱讀-----

肢體運動的生理機制:神經肌肉電訊號 EMG

當我們想要伸出手拿起水杯、當我們想要跨出大腿向前走一步的時候,大腦神經內會先運算出「動作計畫」,就像是編寫出執行動作的程式碼,接著動作訊號從大腦發出,經過身體上的神經網路,將訊號傳遞到手臂的肌肉組織,當肌肉組織接收到動作訊號的時候,就會開始收縮帶動肢體關節,做出我們大腦命令肢體做出來的動作!

讓我們再回頭看看神經科學家 Greg Gagey 在 TED-Talk 的影片,他在兩位自願者手上分別裝上了感測貼片(4分43秒),並與連接儀器連接,看來「玄機」就在這裡。
其實我們人體的神經傳遞訊息就是依靠神經電位差,當神經細胞受到刺激時就會產生動作電位並傳遞出去。剛剛提過的大腦的動作訊息,藉由身體上的神經網路傳遞到肢體上的肌肉組織時,皮膚表皮可以收集到電位差,也就是神經肌肉電訊號(Electromyography,簡稱 EMG)。

圖由 Sandy Roberts 拍攝,刊登於此

現在我們已經知道控制肌肉動作的就是由肢體上的神經傳過來的電訊號,如果我們收集到訊號後,傳送一樣的電刺激到另一個人的手上呢!?

用電刺激讓你的手動起來!

再一次回到影片一開始(影片2分50秒),只要女性自願者的手腕一動,儀器立刻顯示感測到神經肌肉電訊號(EMG)。當神經科學家 Greg Gagey 邀請男性自願者上台後,再一次請女性自願者做動作,此時儀器馬上傳送電刺激到另一外男性自願者的手上,男性自願者手上的肌肉受到刺激後就會開始收縮,所以他的手就會不由自主地動起來!(影片5分00秒)

-----廣告,請繼續往下閱讀-----

 

(影片5分00秒)

那為什麼當 Greg Gagey 去搬動這位女性的手的時候,男性自願者的手卻又完全沒反應呢?(影片5分30秒)這是因為由於手腕是被別人、被外力移動的,自己並沒有產生主動動作的「想法」,大腦也沒有發出神經訊號,所以當然儀器就不會發出電刺激使男性自願者的手腕動起來囉~

那麼人體遙控器真的可以實現囉?

根據剛剛的說法,當肌肉受到外來的電刺激,就會啟動收縮的機制並產生動作!所以如果真的有一個儀器連結全身的肌肉,藉由遙控器操作的話,確實是可能製造出一個可以用來控制一個人的全身肢體動作的遙控器~

但人體的肌肉還挺複雜的,而且控制其他的人身體肯定會有道德與法律上的問題~但是未來還是有可能實現的!

不過下面這部影片也許可以滿足你的控制欲望,但前提你需要先接受……蟑螂這個人人喊打的小生物。目前已經有人成功將蟑螂的神經與儀器連接,並使用 APP 遙控(影片3分30秒),地板上的小蟑螂就像玩具遙控車一樣被操控,是不是真的很神奇呢?

-----廣告,請繼續往下閱讀-----

神經科學在醫學領域的應用

在醫學上,神經肌肉電訊號可以用來檢測神經肌肉的功能,如果訊號異常就可以懷疑組織是否病變。肌肉電刺激則是用來刺激肌肉收縮,針對神經、肌肉系統損傷的患者,達到放大肌肉收縮力道的加乘效果!

還記得最一開始的影片嗎?Greg Gagey 利用感測貼片接收女性的神經肌肉電訊號(EMG)之後,再對另一位男性自願者的手部進行肌肉電刺激。如果接收到神經肌肉電訊號(EMG)之後,針對同一個人進行電刺激的話會有甚麼效果呢?

中風後的患者,因為大腦神經損傷造成,所以發出來的動作訊號可能不足或是有異常,無法徵召適當的肌肉產生動作,這時候我們可以藉由感測貼片讀取肌電波,電腦系統讀取後,發出適量的電刺激幫助中風患者的肢體完成動作,透過儀器的幫助與不斷地練習,可以幫助中風患者的大腦更快速重新學習掌握肢體控制的能力!

除了上述使用電刺激以外,神經肌肉電訊號(EMG)還可以如何應用於復健的領域呢?!

-----廣告,請繼續往下閱讀-----

結合遊戲讓復健更有效率又不無趣!

在影片中可以看到,玩家將肌肉電極貼片黏貼在手上,透過晶片控制器可將感測到的神經肌肉電位訊號,再透過晶片轉換為電腦控制訊號,當我們用大腦控制肌肉收縮的時候就可以操作電腦遊戲了!

平常我們只能依靠視覺(眼睛看)、本體覺(感受自己身體關節彎曲的程度、肌肉收縮的感覺),來得知肢體動作的執行的情況,例如說我們將手伸出去拿起桌上的水杯時,可以透過眼睛觀察來調整手伸出去的距離與高度,而本體覺可以幫助我們感受到肩膀、手肘、手腕、以及手指各個小關節彎曲的程度來調整手的動作。

透過神經肌肉電訊號(EMG)感測我們可以透過儀器測量,量化肢體肌肉收縮的程度,透過電腦的數據顯示,我們可以更了解這些身體變化,並可以藉此練習更精準地控制自己的肌肉與肢體,也就是生物回饋訓練(Biofeedback Training)。再結合控制晶片,將感測到的神經肌肉電訊號(EMG)轉化成電腦遊戲的控制訊號,就可以達到邊遊戲邊復健的目的囉~是不是十分有趣呀!

如果還想了解更多EMG在復健治療的應用,可以參考此篇:幫助中風病人重獲新生的鋼鐵人手套

一個由人、感測器及處理器組成的反饋環,可以作為生物回饋的訓練。 圖/By Marek Jacenko [CC BY-SA 3.0], via Wikipedia Commons

-----廣告,請繼續往下閱讀-----

感謝劉仁凱提供建議、協助編纂此文。

-----廣告,請繼續往下閱讀-----
文章難易度
楊昀霖
5 篇文章 ・ 1 位粉絲
一個正在攻讀研究所的職能治療師(occupational therapist, OT),希望以科學的角度推廣職能治療專業以及相關復健知識,讓更多人認識並加入職能治療專業!

0

1
1

文字

分享

0
1
1
伺服器過熱危機!液冷與 3D VC 技術如何拯救高效運算?
鳥苷三磷酸 (PanSci Promo)_96
・2025/04/11 ・3194字 ・閱讀時間約 6 分鐘

-----廣告,請繼續往下閱讀-----

本文與 高柏科技 合作,泛科學企劃執行。

當我們談論能擊敗輝達(NVIDIA)、Google、微軟,甚至是 Meta 的存在,究竟是什麼?答案或許並非更強大的 AI,也不是更高速的晶片,而是你看不見、卻能瞬間讓伺服器崩潰的「熱」。

 2024 年底至 2025 年初,搭載 Blackwell 晶片的輝達伺服器接連遭遇過熱危機,傳聞 Meta、Google、微軟的訂單也因此受到影響。儘管輝達已經透過調整機櫃設計來解決問題,但這場「科技 vs. 熱」的對決,才剛剛開始。 

不僅僅是輝達,微軟甚至嘗試將伺服器完全埋入海水中,希望藉由洋流降溫;而更激進的做法,則是直接將伺服器浸泡在冷卻液中,來一場「浸沒式冷卻」的實驗。

-----廣告,請繼續往下閱讀-----

但這些方法真的有效嗎?安全嗎?從大型數據中心到你手上的手機,散熱已經成為科技業最棘手的難題。本文將帶各位跟著全球散熱專家 高柏科技,一同看看如何用科學破解這場高溫危機!

運算=發熱?為何電腦必然會發熱?

為什麼電腦在運算時溫度會升高呢? 圖/unsplash

這並非新問題,1961年物理學家蘭道爾在任職於IBM時,就提出了「蘭道爾原理」(Landauer Principle),他根據熱力學提出,當進行計算或訊息處理時,即便是理論上最有效率的電腦,還是會產生某些形式的能量損耗。因為在計算時只要有訊息流失,系統的熵就會上升,而隨著熵的增加,也會產生熱能。

換句話說,當計算是不可逆的時候,就像產品無法回收再利用,而是進到垃圾場燒掉一樣,會產生許多廢熱。

要解決問題,得用科學方法。在一個系統中,我們通常以「熱設計功耗」(TDP,Thermal Design Power)來衡量電子元件在正常運行條件下產生的熱量。一般來說,TDP 指的是一個處理器或晶片運作時可能會產生的最大熱量,通常以瓦特(W)為單位。也就是說,TDP 應該作為這個系統散熱的最低標準。每個廠商都會公布自家產品的 TDP,例如AMD的CPU 9950X,TDP是170W,GeForce RTX 5090則高達575W,伺服器用的晶片,則可能動輒千瓦以上。

-----廣告,請繼續往下閱讀-----

散熱不僅是AI伺服器的問題,電動車、儲能設備、甚至低軌衛星,都需要高效散熱技術,這正是高柏科技的專長。

「導熱介面材料(TIM)」:提升散熱效率的關鍵角色

在電腦世界裡,散熱的關鍵就是把熱量「交給」導熱效率高的材料,而這個角色通常是金屬散熱片。但散熱並不是簡單地把金屬片貼在晶片上就能搞定。

現實中,晶片表面和散熱片之間並不會完美貼合,表面多少會有細微間隙,而這些縫隙如果藏了空氣,就會變成「隔熱層」,阻礙熱傳導。

為了解決這個問題,需要一種關鍵材料,導熱介面材料(TIM,Thermal Interface Material)。它的任務就是填補這些縫隙,讓熱可以更加順暢傳遞出去。可以把TIM想像成散熱高速公路的「匝道」,即使主線有再多車道,如果匝道堵住了,車流還是無法順利進入高速公路。同樣地,如果 TIM 的導熱效果不好,熱量就會卡在晶片與散熱片之間,導致散熱效率下降。

-----廣告,請繼續往下閱讀-----

那麼,要怎麼提升 TIM 的效能呢?很直覺的做法是增加導熱金屬粉的比例。目前最常見且穩定的選擇是氧化鋅或氧化鋁,若要更高效的散熱材料,則有氮化鋁、六方氮化硼、立方氮化硼等更高級的選項。

典型的 TIM 是由兩個成分組成:高導熱粉末(如金屬或陶瓷粉末)與聚合物基質。大部分散熱膏的特點是流動性好,盡可能地貼合表面、填補縫隙。但也因為太「軟」了,受熱受力後容易向外「溢流」。或是造成基質和熱源過分接觸,高分子在高溫下發生熱裂解。這也是為什麼有些導熱膏使用一段時間後,會出現乾裂或表面變硬。

為了解決這個問題,高柏科技推出了凝膠狀的「導熱凝膠」,說是凝膠,但感覺起來更像黏土。保留了可塑性、但更有彈性、更像固體。因此不容易被擠壓成超薄,比較不會熱裂解、壽命也比較長。

OK,到這裡,「匝道」的問題解決了,接下來的問題是:這條散熱高速公路該怎麼設計?你會選擇氣冷、水冷,還是更先進的浸沒式散熱呢?

-----廣告,請繼續往下閱讀-----

液冷與 3D VC 散熱技術:未來高效散熱方案解析

除了風扇之外,目前還有哪些方法可以幫助電腦快速散熱呢?圖/unsplash

傳統的散熱方式是透過風扇帶動空氣經過散熱片來移除熱量,也就是所謂的「氣冷」。但單純的氣冷已經達到散熱效率的極限,因此現在的散熱技術有兩大發展方向。

其中一個方向是液冷,熱量在經過 TIM 後進入水冷頭,水冷頭內的不斷流動的液體能迅速帶走熱量。這種散熱方式效率好,且增加的體積不大。唯一需要注意的是,萬一元件損壞,可能會因為漏液而損害其他元件,且系統的成本較高。如果你對成本有顧慮,可以考慮另一種方案,「3D VC」。

3D VC 的原理很像是氣冷加液冷的結合。3D VC 顧名思義,就是把均溫板層層疊起來,變成3D結構。雖然均溫板長得也像是一塊金屬板,原理其實跟散熱片不太一樣。如果看英文原文的「Vapor Chamber」,直接翻譯是「蒸氣腔室」。

在均溫板中,會放入容易汽化的工作流體,當流體在熱源處吸收熱量後就會汽化,當熱量被帶走,汽化的流體會被冷卻成液體並回流。這種利用液體、氣體兩種不同狀態進行熱交換的方法,最大的特點是:導熱速度甚至比金屬的熱傳導還要更快、熱量的分配也更均勻,不會有熱都聚集在入口(熱源處)的情況,能更有效降溫。

-----廣告,請繼續往下閱讀-----

整個 3DVC 的設計,是包含垂直的熱導管和水平均溫板的 3D 結構。熱導管和均溫板都是採用氣、液兩向轉換的方式傳遞熱量。導熱管是電梯,能快速把散熱工作帶到每一層。均溫板再接手將所有熱量消化掉。最後當空氣通過 3DVC,就能用最高的效率帶走熱量。3DVC 跟水冷最大的差異是,工作流體移動的過程經過設計,因此不用插電,成本僅有水冷的十分之一。但相對的,因為是被動式散熱,其散熱模組的體積相對水冷會更大。

從 TIM 到 3D VC,高柏科技一直致力於不斷創新,並多次獲得國際專利。為了進一步提升 3D VC 的散熱效率並縮小模組體積,高柏科技開發了6項專利技術,涵蓋系統設計、材料改良及結構技術等方面。經過設計強化後,均溫板不僅保有高導熱性,還增強了結構強度,顯著提升均溫速度及耐用性。

隨著散熱技術不斷進步,有人提出將整個晶片組或伺服器浸泡在冷卻液中的「浸沒式冷卻」技術,將主機板和零件完全泡在不導電的特殊液體中,許多冷卻液會選擇沸點較低的物質,因此就像均溫板一樣,可以透過汽化來吸收掉大量的熱,形成泡泡向上浮,達到快速散熱的效果。

然而,因為水會導電,因此替代方案之一是氟化物。雖然效率差了一些,但至少可以用。然而氟化物的生產或廢棄時,很容易產生全氟/多氟烷基物質 PFAS,這是一種永久污染物,會對環境產生長時間影響。目前各家廠商都還在試驗新的冷卻液,例如礦物油、其他油品,又或是在既有的液體中添加奈米碳管等特殊材質。

-----廣告,請繼續往下閱讀-----

另外,把整個主機都泡在液體裡面的散熱邏輯也與原本的方式大相逕庭。如何重新設計液體對流的路線、如何讓氣泡可以順利上浮、甚至是研究氣泡的出現會不會影響元件壽命等等,都還需要時間來驗證。

高柏科技目前已將自家產品提供給各大廠商進行相容性驗證,相信很快就能推出更強大的散熱模組。

-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

0

1
0

文字

分享

0
1
0
為期刊拍張封面 顯微鏡下的科學魔法
顯微觀點_96
・2024/05/27 ・3010字 ・閱讀時間約 6 分鐘

-----廣告,請繼續往下閱讀-----

本文轉載自顯微觀點

希爾思使用VS120拍攝,小鼠大腦矢狀切口上的染色圖像。圖片來源:EVIDENT|Olympus官網

「我開始拍攝美麗的影像是出於興趣,因為我喜歡神經科學圖像藝術性的一面。」

史蒂芬妮.希爾思(Stephanie Shiers)是美國德州達拉斯大學的認知神經科學家,她拍攝的顯微鏡影像曾被選作多本期刊的封面,包括《神經科學雜誌》 (The Journal of Neuroscience)、《科學轉化醫學》 (Science Translational Medicine)等。要怎麼做才能讓自己拍攝的作品登上期刊封面呢?

希爾思在 2019 年取得認知和神經科學博士學位,目前從事疼痛研究,以移植捐贈者的神經組織探索慢性疼痛的臨床前機制和治療方法。

最驕傲的時刻——影像獲選期刊封面

希爾思攻讀博士期間,當第一篇論文獲得刊登且拍攝的照片一同被選為封面發表時,是她最引以為傲的時刻。她表示,第一篇論文被發表本身已經很令人興奮,當時並未預期會獲選封面,「因為我只是基於我對神經科學藝術的熱愛,而拍攝漂亮的圖片」。

-----廣告,請繼續往下閱讀-----

事實上,論文中所有影像都使用 40 倍物鏡拍攝,但她後來決定使用 100 倍物鏡拍攝,以捕捉一些漂亮的影像,加以觀察。

「我能看到所有的樹突和軸突初始段,這看起來令人震撼!」當希爾思與她的指導教授分享時,教授鼓勵她投稿期刊封面,同時提交論文。

希爾思表示,在攻讀博士學位時,面對周遭的同行都非常專業,自己曾感到無所適從。然而,當成功的數據和封面影像出現時,過去辛勤的工作和壓力都值得了。

歷經徬徨 受科學魔法吸引踏上研究路

對於自己選擇踏入神經科學研究,並繼續攻讀博士、成為科學家,希爾思坦承自己也曾經歷徬徨。「因為不知道自己想做什麼」,希爾思大學時曾選了三個主修、一個副修。

-----廣告,請繼續往下閱讀-----

原想攻讀醫學院的希爾思,在接受緊急救護技術(EMT)訓練時,意識到自己不想當醫師。因此她又選了神經科學和歷史專業,因為她自認可能喜歡人文學科、可能想成為律師。

直到完成學士學位後希爾思仍不清楚自己的職涯方向。但當她加入校內實驗室時,發現自己「真的很喜歡」,進而申請進入加州大學戴維斯分校的 NeuroMab 研究機構(UC Davis/NIH NeuroMab facility),從事免疫組織化學的工作。

在這份工作中,希爾思研究進行免疫組織化學染色、抗體驗證,在顯微鏡下觀察「肉眼」看不見的東西。這時她意識到「科學是最我們所擁有,最接近魔法的東西」,也因此確認了職業道路——走上學術研究之路。

而現在對希爾思來說,最難忘的時刻莫過於帶領在實驗室掙扎的學生領略科學的奇妙。

-----廣告,請繼續往下閱讀-----

曾經有一名學生未受太多訓練,因此希爾思帶著她完成染色工作、教她操作共軛焦顯微鏡;而當學生第一次看到顯微鏡下的影像時,露出驚訝的表情。 「看到別人也能體驗到科學的神奇,真是太好了!」希爾思這麼說道。

Science Trans 1
圖片來源:擷自《Science Translational Medicine vol. 13, issue 595》封面

超敏通道

圖像顯示小鼠背根神經節表現瞬態受體蛋白 5 (TRPC5,紅色)編碼瞬時受體電位規範 5(TRPC5,紅色)、抑鈣基因相關胜肽(CGRP,綠色)、P2X3 受體(藍色)和神經絲蛋白 200(青色)的基因。

希爾思為〈Transient Receptor Potential Canonical 5 Mediates Inflammatory Mechanical and Spontaneous Pain in Mice.〉的共同作者。

本篇論文主要探討,多種原因引起疼痛超敏反應,其中 TRPC5 的活化增加了囓齒動物對疼痛的敏感性,而 TRPC5 通道也在人類感覺神經元中表現,因此研究認為 TRPC5 抑制劑可能可有效減輕患者的疼痛超敏反應。

拍科學藝術照 封面也可以很抽象

對於如何拍出「封面等級」的科學藝術照,希爾思也給出幾點建議。首先,她強調擁有適合的儀器至關重要,以降低信噪比和提升影像品質。

此外,研究者必須接受更多基礎訓練。她表示,過去自己雖操作過很多次顯微鏡,但主要使用明視野照明觀察。直到開始博士課程後學習神經解剖學、蛋白質定位等知識,使用免疫螢光染色最適當的卻是使用暗視野照明。因此持續接受培訓,了解如何正確使用顯微鏡也是非常重要的。

希爾思也建議,在實驗數據收集階段,就可預先規劃影像拍攝;一邊構思論文中需要使用的圖像和材料,如果材料和研究內容一致,就當場拍攝解析度更高的影像。

-----廣告,請繼續往下閱讀-----

她也鼓勵研究者不斷嘗試新事物,例如使用不同染劑(明視野病理染色劑、鈣染色劑等)與顯微鏡搭配,將更容易拍攝出引人注目的影像。

希爾思鼓勵研究者盡可能地投稿封面影像,並強調封面不必與數據收集所用的影像完全相同;甚至許多期刊封面的圖片可以是抽象的、不一定要和照片一樣真實。

物種特異性表達

以原位雜合技術(in situ hybridization,左)和空間轉錄(Spatial Transcriptomics,右)並置的人類背根神經節,用於描述感覺神經元轉錄譜的特徵。

痛覺受器是專門的感覺神經元,存在於背根神經節(DRG)和三叉神經節中,對生成最終疼痛感知的神經元信號至關重要。

希爾思為〈Spatial transcriptomics of dorsal root ganglia identifies molecular signatures of human nociceptors.〉的第二作者。

本篇研究試圖為人類疼痛受器生成等效訊息,利用空間轉錄數據識別痛覺受器的轉錄組特徵,並藉以識別物種間差異和潛在的藥物靶點。

Sciencetrans2022 1
圖片來源:擷自《Science Translational Medicine (vol. 14, issue 632》封面 
Jneurosci 3
圖片來源:擷自《The Journal of Neuroscience vol. 38, issue 33》封面

圖像為患有神經性疼痛的小鼠內側前額皮質神經元,紅色為 PV 陽性細胞小白蛋白陽性中間神經元(紅色)與軸突初始段標記(Ankyrin-G,綠色)和核標記(DAPI,藍色)的共同標記。

希爾思為〈Neuropathic Pain Creates an Enduring Prefrontal Cortex Dysfunction Corrected by the Type II Diabetic Drug Metformin But Not by Gabapentin〉的第一作者。

認知障礙是神經性疼痛的共病。本篇研究使用原治療糖尿病的藥物二甲雙胍,治療神經疼痛 7 天後出現逆轉,包括功能和解剖學出現變化,顯示該藥物或可老藥新用於治療神經性疼痛及其認知合併症。

  1. https://www.olympus-lifescience.com/en/discovery/behind-the-lens-dr-stephanie-shiers-creates-cover-worthy-neuroscience-art/
  2. Sadler, Katelyn E et al. “Transient receptor potential canonical 5 mediates inflammatory mechanical and spontaneous pain in mice.” Science translational medicine vol. 13,595 (2021).
  3. Tavares-Ferreira, Diana et al. “Spatial transcriptomics of dorsal root ganglia identifies molecular signatures of human nociceptors.” Science translational medicine vol. 14,632 (2022).
  4. Shiers, Stephanie et al. “Neuropathic Pain Creates an Enduring Prefrontal Cortex Dysfunction Corrected by the Type II Diabetic Drug Metformin But Not by Gabapentin.” The Journal of neuroscience : the official journal of the Society for Neuroscience vol. 38,33 (2018).

查看原始文章

-----廣告,請繼續往下閱讀-----

討論功能關閉中。

1

5
1

文字

分享

1
5
1
【從中國經典認識大腦系列】從「子非魚,安知魚之樂?」淺談主觀意識的本質
YTC_96
・2023/10/18 ・3086字 ・閱讀時間約 6 分鐘

-----廣告,請繼續往下閱讀-----

宋劉寀群魚戲荇。圖/npm.edu.tw

惠施觀點:人不能知道魚的快樂

「子非魚,安知魚之樂?」出自《莊子.秋水》篇中的濠梁之辯。惠施認為莊子不是魚,又怎麼能知道魚是快樂的?這看似簡單的一句話卻點出困擾哲學家以及科學家數百年之久的問題,那就是主觀意識到底是什麼?

圖/Pixabay

濠梁之辯的情境是這樣子的。莊子和惠施同遊至濠水的橋梁。莊子說:「鯈魚出遊時很從容,這就是魚的快樂啊。」惠施說:「你不是魚,怎麼知道魚的快樂?」莊子回答說:「你不是我,怎麼知道我不知道魚的快樂?」惠施說:「我不是你,當然不知道你的想法,而你當然也不是魚,所以你不知道魚的快樂,這完全是可以肯定的。」莊子說:「請回到開頭的話題。你問我『你怎麼知道魚的樂趣?』既然你已經知道我知道,並且問我,那我就是在濠梁上知道的。」

既然莊子認為自己能知道魚的快樂,那我也想問莊子,你知道成為一隻魚又是怎麼樣的感覺嗎?

圖/YouTube

成為一隻蝙蝠可能是什麼樣子

在濠梁之辯後的兩千多年,美國著名哲學家湯瑪斯.內格爾(Thomas Nagel)也從想像自己是蝙蝠(注意不是小小鳥)的過程中獲得靈感,並在 1974 年發表了〈成為一隻蝙蝠可能是什麼樣子〉(What is it like to be a bat?)。他認為主觀經驗無法透過客觀描述來獲得,是心靈與物理之間的解釋鴻溝(Explanatory Gap)。簡單來說,就算我們知道蝙蝠是透過聲納來感知並飛行在空中,但因為我們不是真正的身歷其境成為一隻蝙蝠,我們還是無法知道作為蝙蝠是什麼樣的感覺。

-----廣告,請繼續往下閱讀-----
圖/YouTube

這種主觀經驗,哲學上稱作感質(Qualia),是指主觀意識經驗的特殊品質或性質。它們是個人直接體驗的主觀感受,無法通過客觀描述或第三人稱觀察來完全理解或解釋。感質是一種主觀的、非物理的屬性,無法被完全捕捉或解釋。它們涉及到我們感知世界的方式、感受事物的質感、觸覺、視覺、聽覺、嗅覺等等。

舉例來說,如果你試圖向另一個人解釋一朵玫瑰的芬芳,或者試圖描述一個人的愉快感受,這些主觀感受都屬於感質。它們是我們內心獨有的體驗,無法被他人直接體驗或理解。

另一個哲學家們喜歡舉的例子是「你和我看到的紅色是一樣的嗎?」這或許聽起來是一個很蠢的問題,因為當紅色物品擺在眼前,非色盲或沒有眼疾的一般人都能異口同聲說出該顏色。透過醫學研究,我們也都知道波長約 700 nm 的紅色光刺激到視網膜的錐細胞是我們大家都能看到紅色的原因。

不過,雖然紅色光能刺激每個人相同的視網膜錐細胞是不變的客觀物理事實,但沒有人能保證你和我主觀感受到的紅色是相同的,就像是幾年前網路爆紅的藍黑白金裙 (The Dress)(圖一),即使是同一條裙子的照片,有人說是藍黑裙,卻有人說是白金裙。這也說明看似客觀的色彩,也存在有主觀性。

-----廣告,請繼續往下閱讀-----
圖一、藍黑裙?白金裙?都幾咧。圖/The dress – Wikipedia

人類或許能想象自己作為一隻蝙蝠使用聲納來飛行導航,又或是把自己像蝙蝠般倒掛休息,但這和成為一隻真正蝙蝠的感受還是不同的。

感質可能埋藏在複雜的神經網路中

莊子和惠施的辯論背後探討了意識的本質,也引發人們對於知覺和主觀體驗的一種思考。即使經過數千年的探索,「意識究竟是怎麼產生的?」仍是一個深奧而又複雜的問題,也是所謂的「意識的困難問題(Hard Problem of Consciousness)」。從哲學角度,感質無法透過描述去感受,但從科學上來說,我們無法否認大腦是產生主觀感受的關鍵,這也讓神經科學家們好奇是否能找到感質的神經機制。

英國巴斯大學疼痛研究中心的教授羅傑奥普伍德(Roger Orpwood) 多年來進行感質的理論研究,他認為感質是局部大腦皮質網路訊息處理的結果。這個網路能轉換訊息結構(Information Structure; 訊息在大腦中的物理表現,主要是動作電位的模式)和訊息資訊(Information Message; 感質的基礎)(圖二)。當輸入的訊息結構被網路辨識,而產生訊息資訊,這網絡還可以輸出一個訊息資訊的表徵並進行下一個傳遞與轉換(Structure → Message → Structure → Message…)(圖三)。舉例來說,臭雞蛋的硫化氫(H2S)氣味感質是透過一層一層的網路後產生。 當鼻腔吸入硫化氫氣味分子後,嗅覺系統的訊息結構通過嗅覺神經束傳遞到嗅覺皮質網絡。而傳遞的訊息所獲得的資訊都建立在前一個資訊的基礎上。這資訊從硫化氫的第一階段的辨識內在身份(Inner Identiy),演變為硫化氫的內在形式(Inner Form),到發展成硫化氫的意象(Inner Likeness or Image),也就是硫化氫的感質體驗(圖四)。

知名美國神經科學家,研究意識神經機制多年的克里斯托夫.科赫(Christof Koch),也認為意識不是來自個別大腦區域,而是來自區域內和區域間高度網絡化的神經元。意識相關的神經區域(Neural Correlates of Consciousness (NCC))概念的興起,也希望透過實驗研究的方式來找到產生意識的最小神經集合,並了解哪些大腦的區域是產生意識所不可或缺的。

-----廣告,請繼續往下閱讀-----
圖二、當我們看到藍色後,大腦透過訊息結構的模式傳送到視覺皮層 V4 區域。對大腦來說,這就是一種訊息資訊,是我們主觀上看到的「藍色」。圖/frontiersin.org
圖三、網絡或神經元集合中的​​基本訊息處理。輸出訊息結構從被辨識的訊息資訊從輸入訊息結構中形成。訊息(Information)從結構(Structure)到資訊(Message),再到結構。圖/frontiersin.org
圖四、嗅覺感質的產生示意圖。圖/frontiersin.org

結論

莊子和惠施辯論河中的鯈魚是否快樂,以及雙方怎麼知道魚是否快樂,很有趣的帶到了哲學以及神經科學重要的議題。意識到底是什麼?我們能否知道其他人又是其他物種的真正主觀感受?

圖/Pixabay

感質是意識研究中的一個重要議題,它引發了關於意識本質和主觀體驗的哲學和科學辯論。有些人認為感質是生物或腦部運作的結果,而另一些人認為它們是超出物理過程的主觀現象。不論如何,未來仍需要更多的研究來了解意識產生的機制。

-----廣告,請繼續往下閱讀-----
所有討論 1
YTC_96
11 篇文章 ・ 19 位粉絲
從大學部到博士班,在神經科學界打滾超過十年,研究過果蠅、小鼠以及大鼠。在美國取得神經科學博士學位之後,決定先沉澱思考未來的下一步。現在於加勒比海擔任志工進行精神健康知識以及大腦科學教育推廣。有任何問題,歡迎來信討論 ytc329@gmail.com。