0

1
0

文字

分享

0
1
0

由音頻產生奇妙的幾何圖形:克拉尼誕辰|科學史上的今天:11/30

張瑞棋_96
・2015/11/30 ・1084字 ・閱讀時間約 2 分鐘 ・SR值 544 ・八年級

-----廣告,請繼續往下閱讀-----

克拉尼在正方形金屬薄片上鋪了一層薄薄的細沙,接著拿起小提琴琴弓,將弦靠在金屬片邊緣,緩緩拉動。細沙隨著金屬片的細微震動而上下跳動,慢慢改變位置,結果竟形成一幅對稱的幾何圖案。克拉尼驚喜的看著聲音在眼前幻化成形,自己最愛的音樂與科學就這麼巧妙地結合在一起,還有什麼比這更棒?!

恩斯特·克拉尼。圖片來源:wikipedia

克拉尼出身書香門第。曾祖父是滿腹經綸的神學家,祖父與父親不但分別是德國威騰堡大學的神學教授與法律教授,還先後擔任過這所大學的校長。家風凜然,加上父親堅持要他將來當律師,克拉尼被迫選讀法律與哲學。但就在他1782年大學畢業後,父親過世,克拉尼終於可以重拾自小熱愛的音樂與科學。

其實克拉尼只是重做虎克1680年就做過的實驗,差別在於虎克當年用的是玻璃板與麵粉。虎克發現此一現象後並未深究,直到百年以後,克拉尼才系統性地展開一系列實驗,並於1787年出版著作,發表實驗結果;自此這類由音頻產生的幾何圖案就稱為「克拉尼圖形」(Chladni patterns)。

自此這類由音頻產生的幾何圖案被稱為「克拉尼圖形」。圖/flickr

克拉尼圖形呈現的就是駐波的二維波形。當弓弦劃過金屬片邊緣時,會使金屬片產生共振,於是位於震動較大之部位的沙就會不斷跳動,直到彈跳至震動較小的位置──也就是波的節線,因而勾勒出波的共振圖案。不同的頻率會產生不同型態的共振,如今信號產生器可以產生精確的各種頻率,更能輕易製造出繁複美麗的共振圖案。除了純粹欣賞視覺之美,因為提琴、吉他等樂器所發出的美妙聲音就是源自琴身本身的共振,因此克拉尼圖形也被用來設計或改良這類樂器。

-----廣告,請繼續往下閱讀-----
克拉尼用以產生駐波二維波形的裝置。圖片來源:wikipedia

除了弦樂器,克拉尼還曾在教堂的管風琴中裝入各種氣體,測量其振動頻率,而首度計算出不同氣體中的音速。克拉尼就因為在聲學上所做的先驅性研究,而被稱為「聲學之父」。

此外他還研究隕石,根據所蒐集的資料分析,於1794年發表論文,率先主張隕石來自外太空,而非當時普遍認為的來自火山。一開始克拉尼備受嘲弄,直到1803年的流星雨在法國北部落下數以千計的隕石碎片,經法國科學家調查,出具報告後,克拉尼的論點才終於獲得世人認同。

本文同時收錄於《科學史上的今天:歷史的瞬間,改變世界的起點》,由究竟出版社出版。

文章難易度
張瑞棋_96
423 篇文章 ・ 953 位粉絲
1987年清華大學工業工程系畢業,1992年取得美國西北大學工業工程碩士。浮沉科技業近二十載後,退休賦閒在家,當了中年大叔才開始寫作,成為泛科學專欄作者。著有《科學史上的今天》一書;個人臉書粉絲頁《科學棋談》。

0

69
2

文字

分享

0
69
2
聲音的DNA:聲紋辨識
雅文兒童聽語文教基金會_96
・2023/01/14 ・2473字 ・閱讀時間約 5 分鐘

-----廣告,請繼續往下閱讀-----

  • 文/洪萱眉 雅文基金會聽語科學研究中心 助理研究員

在如今這個網路時代,人人在日常生活中都常要透過帳號、密碼來辨識身份,不管是提款卡、行動裝置(手機、筆電、平板)、網路銀行、行動支付等,都需設定一組帳號密碼來辨識自己的身份。

為了不讓自己的帳號被駭,每次都得抓破頭來設定,太簡單擔心被破解,太複雜又怕自己記不住。更煩人的是,每個平台的密碼設定都有自己的規則,有些要求要有特殊符號,有些則要求英文大小寫和數字都要有。

於是,為了兼顧安全與便利性,越來越多廠商使用指紋辨識來解鎖,這樣既不用擔心忘記密碼,也不容易被盜用。然而,你知道,我們的聲音其實和指紋一樣,也能進行身份辨識嗎?

專屬個人的聲音密碼

每個人的聲音都有獨特性,和指紋一樣能進行身份辨識。圖/freepik

聲音跟指紋一樣,都有獨一無二的特定性,而在利用聲音的特性做辨識時,就稱為聲紋辨識。我們接到熟識親朋好友來電時,他們不用說他是誰,我們只要一聽到聲音就能辨識。這是因為每個人的說話特性不同,聽聲音就能辨識說話者。而我們的語音訊號中可供辨識的因素,主要可分為三個面向[1]

-----廣告,請繼續往下閱讀-----
  • 發音器官的差異:因每個人的發音器官差異,如口腔形狀、聲帶長短粗細不同,造成每個人的聲音特性有所不同。例如,當小朋友前排乳牙掉了時,說話時會有俗稱「漏風」的感覺,就是因為口腔的共鳴特性變了而造成的;而男生的聲帶比女生的要長且粗厚,振動頻率較低,因此聲音較低沈。
  • 說話方式的差異:每個人的說話習慣的不同,像是說話的語速、語氣、抑揚頓挫、咬字清晰度、口音等等。比如電話一接通,就聽到大聲又連珠炮似的說話,馬上就知道是樓上的王阿姨要找媽媽。或是一聽到緩慢溫柔充滿感情的台灣國語,就知道是阿嬤從台南打電話來了。
  • 說話內容的差異:生長背景、教育程度、社經地位的不同,使說話內容有所差異,例如:用詞、句型等等。像巷口賣水果的阿伯和他讀中文系的女兒,同樣要向顧客自賣自誇鳳梨有多甜,女兒也許會說「那甜蜜的滋味藏著一絲微微的酸,就像那年夏天的初戀」,阿伯則可能會說「帥哥偶謀騙你,這粒旺來跟我女兒的笑容一樣甜啦!」

上述的這些差異都可作為我們辨識說話者的依據。而其中說話方式和內容可能被他人學習、模仿,只有發音器官的差異是天生的,無法被模仿且在分析,所以許多辨識系統是採用發音的聲學特徵(acoustic features),例如,聲音頻率(高/低)、音色(如:輕柔、渾厚)等特性都可作為辨識的依據[1]

聲紋比對辨身分

聲紋辨識和指紋一樣,皆為生物辨識的一種。從人類的身上萃取出具有身份鑑別能力的特徵,如:指紋、聲音,將此特徵經處理、分析後儲在系統裡,日後可依據此特徵來辨識使用者的身份。利用我們獨特的聲音來辨識身份的聲紋技術,亦可稱為「語者辨認」或「說話人辨認」(speaker identification)[2]

聲紋辨識的過程包含兩個階段:1. 聲紋提取(voiceprint extraction)。2. 聲紋比對(voiceprint comparison)。在確認說話者的身分之前,要先有說話者的聲音語料,依說話者提供的聲音語料進行分析,並建立專屬他的聲紋模型

一般在處理語音訊號時,會將音檔切割成小區段的方式來處理、進行分析,透過聲譜圖上的資訊來分析說話者的聲音頻率、音強、抑揚頓挫等建立專屬他的聲紋模型,並將其聲紋資訊存到系統裡。就像將我們的指紋存到手機的系統裡一樣,可以比對我們登錄系統裡的生物資訊來進行身份的核對。

-----廣告,請繼續往下閱讀-----

當系統裡存有說話者的聲紋資訊後,其實就就能快速的進行一對一的說話者身份驗證(speaker verification),或是進行一對多的說話者辨認(speaker identification),從眾多人找出誰是說話者[3]

聲紋辨識不只可以抓犯人,還可以……

上述的聲紋辨識,是不是會讓你聯想到在看影集時,劇中的刑警從報案中心的人聲或是搜集回來的錄音檔中,辨識出報案人或犯人的身份。一般大家的印象會覺得聲紋辨識只會出現在刑事調查中,但其實日常生活中已經有用到聲紋來辨識身份囉!比如,智慧型手機的語音助理,只要說出關鍵詞:「嘿,Siri」、「OK Google」就能啟動AI回應。

其實,這個過程就是擷取聲音特徵,並與之前登錄的音檔互相比對,進行說話者的身份認證。除此之外,越來越多的金融機構也開始引進這項技術,憑聲音來確認身份,這樣除了可以取代回答冗長的問題來確認客戶身份、提高便利性外,也同時提高了安全性[4]

除了辨識身份,聲紋辨識其實也能應用在其他地方。現在也有許多研究團隊開發各種聲紋科技的應用,例如:透過大數據的聲音比對,由電腦判斷出鳳梨的好壞[5]、或是辨識青蛙叫聲的APP [6]等,這些也都是運用到聲紋辨識的原理。想必聲紋科技的發展會是一種趨勢,未來會有越來越多的場合都能運用此技術,讓我們拭目以待!

-----廣告,請繼續往下閱讀-----
現今生活中越來越多使用聲紋辨識技術。比如,現代人不可分開的智慧型手機,對手機的語音助理說出關鍵台詞,就能啟動AI的回應。圖/freepik

參考資料:

  1. 王小川。(2009)。說話人辨認。語音訊號處理(第二版,頁12-2 – 12-12)。全華圖書。清華大學電機系。淺談語者辨認http://web.ee.nthu.edu.tw/p/404-1175-11508.php?Lang=zh-tw
  2. Phonexia. (n.d). What Is Voice Biometrics?https://www.phonexia.com/knowledge-base/voice-biometrics-essential-guide/
  3. 緒方憲太郎。(2022)。語音科技將會如何改變未來。聲音經濟學(林詠譯,頁159-191)。商周出版。
  4. 洪明生、蘇晟維。(2022/12/11)。大數據聲紋比對判斷好壞 選鳳梨用「聽」的! Yahoo!新聞。取自:https://bit.ly/3Vrh2Hf
  5. 上游新聞市集。(2022/8/25)。現在是哪隻青蛙在叫?「蛙抵家」APP幫你聽聲認蛙!青蛙辨識軟體,揪你幫台灣錄蛙聲。取自:https://today.line.me/tw/v2/article/7NjZrr8
雅文兒童聽語文教基金會_96
54 篇文章 ・ 222 位粉絲
雅文基金會提供聽損兒早期療育服務,近年來更致力分享親子教養資訊、推動聽損兒童融合教育,並普及聽力保健知識,期盼在家庭、學校和社會埋下良善的種子,替聽損者營造更加友善的環境。

0

6
9

文字

分享

0
6
9
如果天空少了月亮,地球會怎麼樣?——《有趣的天文學》
麥浩斯
・2022/04/25 ・1477字 ・閱讀時間約 3 分鐘

-----廣告,請繼續往下閱讀-----

如果天空少了月亮?文學家應該會很難過,音樂家也會少了創作的題材,沒有中秋節就少了月餅,也沒有烤肉。不過夜晚少了一個大光害,天文學家絕對會很高興!

潮汐變小、一天變短

地球上的潮起潮落,主要是月球繞地球運行造成的。太陽也會影響地球的潮汐,不過對地球的潮汐力只有月球的 46%。如果沒有月球的話,造成地球潮起潮落就只剩下太陽,滿潮和乾潮的幅度就會變小。

月球讓地球產生的潮汐,使地球愈轉愈慢。數十億年前,地球剛形成時,地球自轉的速度比現在快許多;因為月球的潮汐力,讓地球自轉的速度漸漸變慢,慢到現在的一天 24 小時。如果沒有月球,地球的一天可能不到 10 小時。

月球讓地球產生的潮汐,使地球愈轉愈慢。圖/Pexels

左搖右晃的地球

月球就像是走鋼索的人握的平衡桿,讓地球自轉軸保持穩定,如果少了月球這個平衡桿,地球自轉軸左搖右晃的幅度就會變大。

目前地球自轉軸相對於公轉平面的傾斜角是 23.4 度,因為月球的存在,這個傾角的變化幅度不大,大約在 22.1 度和 24.5 度之間。傾角讓太陽直射地球的位置在北回歸線和南回歸線間移動,讓地球出現四季變化。

-----廣告,請繼續往下閱讀-----

如果沒有月球,地球的自轉軸變動的幅度就會變大,自轉軸的變動會對我們有什麼樣的影響?假設兩個極端的例子,地球的自轉軸傾角是 0 度和 90 度。

如果地球傾角是 0 度,太陽永遠直射赤道,地球上不會有北回和南回歸線,地球將不再有四季變化。

如果地球傾角是 90 度,太陽直射的區域會從北極到南極,也就是北回歸線位在北緯 90 度(也就是北極點),而南回歸線在南緯 90 度(南極點)。這種情況下,地球四季變化會非常劇烈,北半球夏天時,北極不會結冰,溫度比現在還高,南半球冰凍的區域比現在還大,這種極端氣候絕對不利現在地球上生物的生存。

未來人類可能先在月球建立基地,作為人類前進火星的跳板,在月球上測試火星裝備和訓練太空人,準備完成後再前往火星。如果少了月球的整備演練,要一步登陸火星將會困難重重。圖/麥浩斯出版

月球替地球擋子彈

月球是地球的衛星,一直以來它都保護著我們的地球。用望遠鏡看月球,會發現月球上有許多坑洞,這些坑洞幾乎都是隕石撞擊後形成的隕石坑,表示月球在早期受到許多的撞擊。如果少了月球擋下這些隕石,這些隕石可能就會撞上地球。

-----廣告,請繼續往下閱讀-----

隕石撞擊對地球的生命影響很大。6600 萬年前,一顆 10 公里左右的隕石撞擊地球,造成恐龍滅絕。恐龍滅絕後,哺乳類才能興起,人類才有機會出現在地球上。

那些沒有被月球擋下的隕石,如果撞上地球,可能會改變地球物種的演化,人類說不定就不會出現在地球! 最後,如果沒有月亮,阿姆斯壯和另外 11 名阿波羅太空人也就無法登陸月球。人類少了探索月球的寶貴經驗,要直接踏上其他行星表面(例如火星),難度會高許多,甚至變得不可能!

——本文摘自《噢!原來如此 有趣的天文學》,2022 年 3 月,麥浩斯出版

1

7
3

文字

分享

1
7
3
Just Look Up!小行星監測系統「哨兵」全面升級
EASY天文地科小站_96
・2022/01/03 ・2549字 ・閱讀時間約 5 分鐘

-----廣告,請繼續往下閱讀-----

  • 作者/陳子翔|師大地球科學系、EASY 天文地科團隊創辦者

看到下圖密布於太陽系的小行星軌道,你是否會對小行星撞地球這樣的災難感到擔心呢?

對地球有潛在撞擊威脅的 2200 個小行星軌道。圖/NASA/JPL-Caltech

事實上面對小行星的撞擊風險,科學家也是嚴陣以待。畢竟即便是一顆直徑只有數十公尺的小行星撞上地球,其威力也足以摧毀一座城市。更何況還有許多直徑數百公尺,甚至數公里的近地小行星(near-Earth asteroids)存在。因此,對於這些小行星的觀測、研究與監控就顯得格外重要。

揪出藏身夜空中的小行星

對近地小行星監測的第一步,就是要先找出「它們在哪裡」。如同在戰場上比起收到敵方要發動攻勢的情報,更可怕的就是連敵人是誰、敵人在哪裡都還不清楚就被暗中襲擊了。

然而棘手的是,由於直徑小,反照率低的特性,小行星的亮度往往非常低,需要仰賴觀測性能強大的天文台才有辦法看見它們。但大型天文台的觀測視野卻通常很小,難以有效率的「掃描」廣大的夜空,而且這些天文台本來就有很多天文研究工作要進行,能撥給小行星觀測的時間也相當有限。

有鑑於這些因素,專門設立搜尋近地小天體的計畫與望遠鏡,就成了更合適的選項。像是林肯近地小行星研究小組(Lincoln Near-Earth Asteroid Research, LINEAR)、卡特林那巡天系統計畫(Catalina Sky Survey, CSS)以及泛星計畫(Pan-STARRS)等。它們扮演「小行星獵人」的角色定期掃視夜空,尋找移動中的可疑光點。目前透過這些計劃發現的近地小行星已經多達數萬個。

-----廣告,請繼續往下閱讀-----
https://upload.wikimedia.org/wikipedia/commons/7/7d/Neo-chart.png
每年由近地小天體搜尋計畫找到的近地小行星數量,藍色為林肯近地小行星研究小組,綠色為卡特林那巡天系統計畫,紫色為泛星計畫。圖/Wikipedia

用自動化的監測系統,找出小行星中的「危險份子」

發現這些小行星的下一步,就是由觀測資料計算出它們的軌道,並找出哪些小行星對於我們的威脅比較大。而面對數量龐大的近地小行星資料,NASA 噴射推進實驗室(Jet Propulsion Laboratory, JPL)早在 2002 年就開發出一套名為「哨兵(Sentry)」的監測系統,運用設計好的演算法,自動化的評估每個近地小行星撞擊地球的機率,並列出對地球威脅比較大的小行星名單。

以目前的速率來看,每年大約有 3000 個新的近地小行星被發現。而未來隨著更多更先進的天文台投入小行星搜尋的計畫,可以預期小行星的發現數量還會出現顯著的成長。因此就在不久前,NASA 的天文學家已發展出下一代更先進的小行星監測系統:哨兵 II(Sentry II),以因應未來更龐大的資料,同時也對已經使用了近 20 年的哨兵系進行補強。

監測系統升級上線,更完善的為地球把關

就如同各種應用程式都會進行版本更新,並在更新中修正上一個版本的缺點,這次哨兵 II 系統的升級,也從哨兵一代系統多年累積的經驗進行修正。

首先,第一代哨兵系統只有計算萬有引力對小行星軌道的影響,並沒有考量其他外力,例如來自太陽的輻射壓等等。這些力量雖然相對微小,但積少成多、聚沙成塔,長期下來也能影響小行星運行的軌道。另一方面,由於小行星本身會自轉,因此小行星的受光面和背光面會不停改變方向,如此一來熱輻射對小行星造成的力,也會隨著轉動而變化,這個效應被稱作「亞爾科夫斯基效應」(Yarkovsky Effect)。而哨兵 II 的演算法都有將這些因素納入考量,讓小行星的軌道估計算更為精準。

-----廣告,請繼續往下閱讀-----
亞爾科夫斯基效應的動畫。影片/NASA

再來,當小行星的非常靠近地球時,受到地球引力的影響,軌道以及速度都會大幅改變。其原理與太空探測器借助行星的引力來改變自身的軌道和加減速的「重力彈弓」效應相同。

然而太空探測器上面有很多精密的儀器提供科學家精準的定位,小行星卻只能透過地面觀測來估算出它的軌道,科學家其軌道掌握的精確度當然就比較差。而當小行星接近地球時,軌道的計算誤差就會被大幅放大。一個小行星飛掠地球時幾百公尺的誤差,到了下一次來訪時可能就成了幾千公里的差別了。而這幾千公里,就有可能是「撞上地球」和「安全通過」的差距。好消息是,由於在軌道計算上考量的因素更全面,演算法也更加精密,讓哨兵 II 即使在面對這樣的狀況,也能計算出更為精準的結果。

最後,哨兵 II 系統在計算小行星的撞擊風險時,判斷的方式也相較上一代系統更縝密。如同任何觀測與測量,小行星的軌道也會存在誤差,而哨兵 II 會從小行星軌道的誤差範圍內隨機取樣進行計算,以檢查小行星有沒有撞上地球的可能性。相比於第一代哨兵系統預先將有撞擊風險的軌道推算出來後才評估撞擊機率的做法,這樣的更新能降低漏網之魚出現的可能性。

流星, 小行星, 空间, 灾难, 彗星, 天文学, 陨石, 宇宙, 星星, 星系, 坠落, 天空, 科学
隨著科技不斷在更新換代,人類對小行星的認識越來越深入,但我們也仍未擺脫小行星撞擊的威脅。圖/Pixabay

持續探索可能的威脅

小行星、彗星等天體的撞擊一直以來都是很多科幻作品的題材。從科學的角度來看,太陽系中也的確存在非常多小天體,可能對地球上的生命構成威脅。雖然對於近地小天體的災害預防,當今的科學與科技還遠達不到萬無一失的程度,但過去三十年,人類對近地小行星的認識已有了顯著的進展。從搜尋小行星的各個計畫,到針對小行星的太空探測任務,以及本篇文章介紹的兩代哨兵監測系統,都帶給我們許多重要資訊,立下人類面對小行星撞擊風險時不可或缺的基石。

-----廣告,請繼續往下閱讀-----

延伸閱讀

參考資料

所有討論 1
EASY天文地科小站_96
23 篇文章 ・ 1430 位粉絲
EASY 是由一群熱愛地科的學生於 2017 年創立的團隊,目前主要由研究生與大學生組成。我們透過創作圖文專欄、文章以及舉辦實體活動,分享天文、太空與地球科學的大小事