0

0
0

文字

分享

0
0
0

老鼠見色忘友是先天還是後天的呢?

李紀潔、羅鴻
・2017/11/10 ・2175字 ・閱讀時間約 4 分鐘 ・SR值 535 ・七年級

-----廣告,請繼續往下閱讀-----

  • 文/李紀潔、羅鴻|陽明大學基因體科學研究所畢業生
圖中老鼠為示意圖,非實驗老鼠。source:Maxpixel

成年的公鼠都具有與生俱來的社交行為:當遇到母鼠時,他們會嘗試和她交配;如果遇到其他公鼠,他們會攻擊對方。而老鼠們並不需要被教導就能擁有這些先天的行為反應,也因此決大部分的神經科學家都認為這些行為是透過先天的神經迴路,像是硬體般地建立出來的,而沒有什麼變動性。

但是來自加州科技大學的神經科學研究團隊發現了這些行為和負責調控這些行為的神經並非原先就是設定好的。

這項研究發表在 10 月 19 日的 自然<Nature>雜誌上,由 David Anderson(Seymour Benzer Professor of Biology、Tianqiao and Chrissy Chen Institute for Neuroscience Leadership Chair、Howard Huges Medical Institute Investigator 和 director of the Tianqian and Chrissy Chen Institute for Neuroscience)所領導此研究。

我們已知下視丘是調節及釋放賀爾蒙的重要中樞,而其中下視丘腹中核(ventromedial hypothalamus 簡稱 VMH)又負責調控進食、體溫和性行為。並且當下視丘腹中核的神經群缺失雌激素受體(estrogen receptor 1)的話,母鼠的性行為互動(sexual behavior interaction)則會下降。[注1]

因此,研究團隊在此腦區有雌激素受體的神經細胞裡表現特定的蛋白,當神經活化時則會發出綠色螢光。接著,科學家便能透過小鼠頭上的微型內視顯微鏡(microendoscopy)觀察負責攻擊與交配的腦區,VMH 神經活動的變化。

-----廣告,請繼續往下閱讀-----
利用微型內視顯微鏡觀察及紀錄下視丘腹中核裡活化的神經細胞。source:Nature

首先,該團隊先是針對成年公鼠面對同性和異性的入侵者時 VMH 神經活化的情況進行分析,發現負責攻擊和交配時活化的 VHM 神經細胞是幾乎不重複的兩群細胞。而這兩群細胞在空間上並沒有獨立分開,反而像是鹽和胡椒一般混合分佈在 VMH 當中。而研究人員也能夠透過這些神經活化的分群來推斷究竟公鼠現在面對的是同性或是異性的入侵者。這發現似乎也證實了過往科學家認為這些神經迴路的建立是如同硬體一般的天生註定。

成年公鼠在面對異性或同性時會活化下視丘腹中核裡不同的神經細胞群。source:Nature

但是真的是這樣嗎?

科學家們為了驗證這個假說是否成立,他們更進一步使用尚未社會化的小鼠(Naïve mice),也就是斷乳後就被獨立飼養的老鼠,來進行相同的實驗。若是沒有社交和交配經驗的小鼠也會有不同兩群 VMH 神經負責調控攻擊和交配這兩個行為,便能證實這些行為真的是與天俱來的。

未社會化的小鼠指的是斷乳後就被獨立飼養的老鼠,不會像圖中的小鼠們一樣擠成一團啊。(圖中老鼠為示意圖,非實驗老鼠。)source:Maxpixel

令人吃驚的是,科學家們得到的實驗結果和預想的完全相反!

-----廣告,請繼續往下閱讀-----

未社會化的小鼠在面對同性和異性的小鼠時,活化的 VMH 神經是同一群的神經細胞,而這些小鼠也沒有明顯攻擊和交配的行為發生。只有在重複的接觸公鼠或是母鼠之後,未社會化的小鼠的 VMH 神經活化才會分成不同群細胞,而未社會化的小鼠此時才會開始對不同性別的入侵者有攻擊和交配的行為出現。

未社會化的小鼠會隨著接觸異性或同性而使下視丘腹中核神經細胞產生分群。source:Nature

研究團隊更進一步的去分析,發現未社會化的公鼠能夠分出兩群不同的 VMH 神經細胞和不同行為的主要因素是未社會化的公鼠需要和母鼠有社交經驗。只要未社會化的公鼠和母鼠接觸過 30 分鐘後,他便會在 24 小時後發展出攻擊同性入侵者的行為和不同群的 VMH 神經細胞。相反的,只有和公鼠接觸的未社會化的小鼠並不會發展出攻擊行為和 VMH 神經分群的現象。

未社會化的小鼠在只接觸過母鼠後就會產生對公鼠的攻擊行為。source:Nature

「小鼠的性別特化神經並不是天生的」本篇文章的共同作者 Ryan Remedios(博士後研究員)指出,「性別神經特化的分群是社交經驗,尤其是和雌性的社交經驗的成果。」

「我們完全無法預期會發現這樣的結果」共同第一作者 Ann Kennedy (博士後研究員)說道「大腦的地基VMH 這個腦區是相對原始且古老的腦區,我們過往一直認為它是大腦的地基(basement ),通常認為它的反應比較像管線系統非電腦(computor)。我們的研究指出這個腦區也有可塑性和運算能力。」

-----廣告,請繼續往下閱讀-----

「這是個基礎的神經科學研究」Anderson 說「我們研究的是大腦神經迴路的建構和行為的產生是先天/遺傳(innate)還是後天/經驗(nurture)問題。這些結果證實了即便是我們認為是先天的行為,其神經迴路也有可能是後天才建立好的。這個發現更產生新的問題:為什麼和母鼠的互動能夠改變腦部神經活化的分布,並產生侵略性。」

「事實上負責調控生殖和侵略行為的神經細胞在腦區分佈上是相當接近的,而這在生物學上相當重要,因為這些行為都是能讓個體生存並繁衍的必要條件。」Anderson 補充說明「這同時也造就了新的想法,是否具有性暴力傾向的人是因為他們的這個腦區『神經錯亂』了呢?如果真的如此,那麼也許有天我們能夠透過解開這些功能錯亂的神經來抑制性暴力傾向的行為。當然這目前仍只是空想,以此為出發點的治療仍是條漫漫長路。」

參考資料

  1. Roles of Estrogen Receptor-α Gene Expression in Reproduction-Related Behaviors in Female Mice”Endocrinology. 1998 Dec;139(12):5070-81.
  2. Social behaviour shapes hypothalamic neural ensemble representations of conspecific sex”Send to
    Nature. 2017 Oct 18;550(7676):388-392. doi: 10.1038/nature23885.
  3. Nature or nurture? Innate social behaviors in the mouse brain
文章難易度
李紀潔、羅鴻
13 篇文章 ・ 3 位粉絲
來自陽明大學基科所的畢業生,喜歡神經科學、遺傳和演化的企鵝狂熱二人組。本來對科普寫作毫無興趣,在大學老師強烈遊說之下仍然無動於衷,畢業後卻意外開始在泛科學寫科普文章。興趣分別是畫畫和魔術方塊。目前兩人都在德國攻讀神經科學博士,分別專攻老化和神經再生、電生理和動物行為。

0

3
3

文字

分享

0
3
3
圖形處理單元與人工智慧
賴昭正_96
・2024/06/24 ・6944字 ・閱讀時間約 14 分鐘

-----廣告,請繼續往下閱讀-----

  • 作者/賴昭正|前清大化學系教授、系主任、所長;合創科學月刊

我擔心人工智慧可能會完全取代人類。如果人們能設計電腦病毒,那麼就會有人設計出能夠自我改進和複製的人工智慧。 這將是一種超越人類的新生命形式。

——史蒂芬.霍金(Stephen Hawking) 英國理論物理學家

大約在八十年前,當第一台數位計算機出現時,一些電腦科學家便一直致力於讓機器具有像人類一樣的智慧;但七十年後,還是沒有機器能夠可靠地提供人類程度的語言或影像辨識功能。誰又想到「人工智慧」(Artificial Intelligent,簡稱 AI)的能力最近十年突然起飛,在許多(所有?)領域的測試中擊敗了人類,正在改變各個領域——包括假新聞的製造與散佈——的生態。

圖形處理單元(graphic process unit,簡稱 GPU)是這場「人工智慧」革命中的最大助手。它的興起使得九年前還是個小公司的 Nvidia(英偉達)股票從每股不到 $5,上升到今天(5 月 24 日)每股超過 $1000(註一)的全世界第三大公司,其創辦人(之一)兼首席執行官、出生於台南的黃仁勳(Jenson Huang)也一躍成為全世界排名 20 內的大富豪、台灣家喻戶曉的名人!可是多少人了解圖形處理單元是什麼嗎?到底是時勢造英雄,還是英雄造時勢?

黃仁勳出席2016年台北國際電腦展
Nvidia 的崛起究竟是時勢造英雄,還是英雄造時勢?圖/wikimedia

在回答這問題之前,筆者得先聲明筆者不是學電腦的,因此在這裡所能談的只是與電腦設計細節無關的基本原理。筆者認為將原理轉成實用工具是專家的事,不是我們外行人需要了解的;但作為一位現在的知識分子或公民,了解基本原理則是必備的條件:例如了解「能量不滅定律」就可以不用仔細分析,即可判斷永動機是騙人的;又如現在可攜帶型冷氣機充斥市面上,它們不用往室外排廢熱氣,就可以提供屋內冷氣,讀者買嗎?

CPU 與 GPU

不管是大型電腦或個人電腦都需具有「中央處理單元」(central process unit,簡稱 CPU)。CPU 是電腦的「腦」,其電子電路負責處理所有軟體正確運作所需的所有任務,如算術、邏輯、控制、輸入和輸出操作等等。雖然早期的設計即可以讓一個指令同時做兩、三件不同的工作;但為了簡單化,我們在這裡所談的工作將只是執行算術和邏輯運算的工作(arithmetic and logic unit,簡稱 ALU),如將兩個數加在一起。在這一簡化的定義下,CPU 在任何一個時刻均只能執行一件工作而已。

-----廣告,請繼續往下閱讀-----

在個人電腦剛出現只能用於一般事物的處理時,CPU 均能非常勝任地完成任務。但電腦圖形和動畫的出現帶來了第一批運算密集型工作負載後,CPU 開始顯示心有餘而力不足:例如電玩動畫需要應用程式處理數以萬計的像素(pixel),每個像素都有自己的顏色、光強度、和運動等, 使得 CPU 根本沒辦法在短時間內完成這些工作。於是出現了主機板上之「顯示插卡」來支援補助 CPU。

1999 年,英偉達將其一「具有集成變換、照明、三角形設定/裁剪、和透過應用程式從模型產生二維或三維影像的單晶片處理器」(註二)定位為「世界上第一款 GPU」,「GPU」這一名詞於焉誕生。不像 CPU,GPU 可以在同一個時刻執行許多算術和邏輯運算的工作,快速地完成圖形和動畫的變化。

依序計算和平行計算

一部電腦 CPU 如何計算 7×5+6/3 呢?因每一時刻只能做一件事,所以其步驟為:

  • 計算 7×5;
  • 計算 6/3;
  • 將結果相加。

總共需要 3 個運算時間。但如果我們有兩個 CPU 呢?很多工作便可以同時(平行)進行:

-----廣告,請繼續往下閱讀-----
  • 同時計算 7×5 及 6/3;
  • 將結果相加。

只需要 2 個運算時間,比單獨的 CPU 減少了一個。這看起來好像沒節省多少時間,但如果我們有 16 對 a×b 要相加呢?單獨的 CPU 需要 31 個運算的時間(16 個 × 的運算時間及 15 個 + 的運算時間),而有 16 個小 CPU 的 GPU 則只需要 5 個運算的時間(1 個 × 的運算時間及 4 個 + 的運算時間)!

現在就讓我們來看看為什麼稱 GPU 為「圖形」處理單元。圖一左圖《我愛科學》一書擺斜了,如何將它擺正成右圖呢? 一句話:「將整個圖逆時針方向旋轉 θ 即可」。但因為左圖是由上百萬個像素點(座標 x, y)組成的,所以這句簡單的話可讓 CPU 忙得不亦樂乎了:每一點的座標都必須做如下的轉換

x’ = x cosθ + y sinθ

y’ = -x sinθ+ y cosθ

-----廣告,請繼續往下閱讀-----

即每一點均需要做四個 × 及兩個 + 的運算!如果每一運算需要 10-6 秒,那麼讓《我愛科學》一書做個簡單的角度旋轉,便需要 6 秒,這豈是電動玩具畫面變化所能接受的?

圖形處理的例子

人類的許多發明都是基於需要的關係,因此電腦硬件設計家便開始思考:這些點轉換都是獨立的,為什麼我們不讓它們同時進行(平行運算,parallel processing)呢?於是專門用來處理「圖形」的處理單元出現了——就是我們現在所知的 GPU。如果一個 GPU 可以同時處理 106 運算,那上圖的轉換只需 10-6 秒鐘!

GPU 的興起

GPU 可分成兩種:

  • 整合式圖形「卡」(integrated graphics)是內建於 CPU 中的 GPU,所以不是插卡,它與 CPU 共享系統記憶體,沒有單獨的記憶體組來儲存圖形/視訊,主要用於大部分的個人電腦及筆記型電腦上;早期英特爾(Intel)因為不讓插卡 GPU 侵蝕主機的地盤,在這方面的研發佔領先的地位,約佔 68% 的市場。
  • 獨立顯示卡(discrete graphics)有不與 CPU 共享的自己專用內存;由於與處理器晶片分離,它會消耗更多電量並產生大量熱量;然而,也正是因為有自己的記憶體來源和電源,它可以比整合式顯示卡提供更高的效能。

2007 年,英偉達發布了可以在獨立 GPU 上進行平行處理的軟體層後,科學家發現獨立 GPU 不但能夠快速處理圖形變化,在需要大量計算才能實現特定結果的任務上也非常有效,因此開啟了為計算密集型的實用題目編寫 GPU 程式的領域。如今獨立 GPU 的應用範圍已遠遠超出當初圖形處理,不但擴大到醫學影像和地震成像等之複雜圖像和影片編輯及視覺化,也應用於駕駛、導航、天氣預報、大資料庫分析、機器學習、人工智慧、加密貨幣挖礦、及分子動力學模擬(註三)等其它領域。獨立 GPU 已成為人工智慧生態系統中不可或缺的一部分,正在改變我們的生活方式及許多行業的遊戲規則。英特爾在這方面發展較遲,遠遠落在英偉達(80%)及超微半導體公司(Advance Micro Devices Inc.,19%,註四)之後,大約只有 1% 的市場。

-----廣告,請繼續往下閱讀-----
典型的CPU與GPU架構

事實上現在的中央處理單元也不再是真正的「單元」,而是如圖二可含有多個可以同時處理運算的核心(core)單元。GPU 犧牲大量快取和控制單元以獲得更多的處理核心,因此其核心功能不如 CPU 核心強大,但它們能同時高速執行大量相同的指令,在平行運算中發揮強大作用。現在電腦通常具有 2 到 64 個核心;GPU 則具有上千、甚至上萬的核心。

結論

我們一看到《我愛科學》這本書,不需要一點一點地從左上到右下慢慢掃描,即可瞬間知道它上面有書名、出版社等,也知道它擺斜了。這種「平行運作」的能力不僅限於視覺,它也延伸到其它感官和認知功能。例如筆者在清華大學授課時常犯的一個毛病是:嘴巴在講,腦筋思考已經不知往前跑了多少公里,常常為了追趕而越講越快,將不少學生拋到腦後!這不表示筆者聰明,因為研究人員發現我們的大腦具有同時處理和解釋大量感官輸入的能力。

人工智慧是一種讓電腦或機器能夠模擬人類智慧和解決問題能力的科技,因此必須如人腦一樣能同時並行地處理許多資料。學過矩陣(matrix)的讀者應該知道,如果用矩陣和向量(vector)表達,上面所談到之座標轉換將是非常簡潔的(註五)。而矩陣和向量計算正是機器學習(machine learning)演算法的基礎!也正是獨立圖形處理單元最強大的功能所在!因此我們可以了解為什麼 GPU 會成為人工智慧開發的基石:它們的架構就是充分利用並行處理,來快速執行多個操作,進行訓練電腦或機器以人腦之思考與學習的方式處理資料——稱為「深度學習」(deep learning)。

黃仁勳在 5 月 22 日的發布業績新聞上謂:「下一次工業革命已經開始了:企業界和各國正與英偉達合作,將價值數萬億美元的傳統資料中心轉變為加速運算及新型資料中心——人工智慧工廠——以生產新商品『人工智慧』。人工智慧將為每個產業帶來顯著的生產力提升,幫助企業降低成本和提高能源效率,同時擴大收入機會。」

附錄

人工智慧的實用例子:下面一段是微軟的「copilot」代書、谷歌的「translate」代譯之「one paragraph summary of GPU and AI」。讀完後,讀者是不是認為筆者該退休了?

-----廣告,請繼續往下閱讀-----

GPU(圖形處理單元)和 AI(人工智慧)之間的協同作用徹底改變了高效能運算領域。GPU 具有平行處理能力,特別適合人工智慧和機器學習所需的複雜資料密集運算。這導致了影像和視訊處理等領域的重大進步,使自動駕駛和臉部辨識等技術變得更加高效和可靠。NVIDIA 開發的平行運算平台 CUDA 進一步提高了 GPU 的效率,使開發人員能夠透過將人工智慧問題分解為更小的、可管理的、可同時處理的任務來解決這些問題。這不僅加快了人工智慧研究的步伐,而且使其更具成本效益,因為 GPU 可以在很短的時間內執行與多個 CPU 相同的任務。隨著人工智慧的不斷發展,GPU 的角色可能會變得更加不可或缺,推動各產業的創新和新的可能性。大腦透過神經元網路實現這一目標,這些神經元網路可以獨立但有凝聚力地工作,使我們能夠執行複雜的任務,例如駕駛、導航、觀察交通信號、聽音樂並同時規劃我們的路線。此外,研究表明,與非人類動物相比,人類大腦具有更多平行通路,這表明我們的神經處理具有更高的複雜性。這個複雜的系統證明了我們認知功能的卓越適應性和效率。我們可以一邊和朋友聊天一邊走在街上,一邊聽音樂一邊做飯,或一邊聽講座一邊做筆記。人工智慧是模擬人類腦神經網路的科技,因此必須能同時並行地來處理許多資料。研究人員發現了人腦通訊網路具有一個在獼猴或小鼠中未觀察獨特特徵:透過多個並行路徑傳輸訊息,因此具有令人難以置信的多任務處理能力。

註解

(註一)當讀者看到此篇文章時,其股票已一股換十股,現在每一股約在 $100 左右。

(註二)組裝或升級過個人電腦的讀者或許還記得「英偉達精視 256」(GeForce 256)插卡吧?

(註三)筆者於 1984 年離開清華大學到 IBM 時,就是參加了被認為全世界使用電腦時間最多的量子化學家、IBM「院士(fellow)」Enrico Clementi 的團隊:因為當時英偉達還未有可以在 GPU 上進行平行處理的軟體層,我們只能自己寫軟體將 8 台中型電腦(非 IBM 品牌!)與一大型電腦連接來做平行運算,進行分子動力學模擬等的科學研究。如果晚生 30 年或許就不會那麼辛苦了?

-----廣告,請繼續往下閱讀-----

(註四)補助個人電腦用的 GPU 品牌到 2000 年時只剩下兩大主導廠商:英偉達及 ATI(Array Technology Inc.)。後者是出生於香港之四位中國人於 1985 年在加拿大安大略省成立,2006 年被超微半導體公司收購,品牌於 2010 年被淘汰。超微半導體公司於 2014 年 10 月提升台南出生之蘇姿豐(Lisa Tzwu-Fang Su)博士為執行長後,股票從每股 $4 左右,上升到今天每股超過 $160,其市值已經是英特爾的兩倍,完全擺脫了在後者陰影下求生存的小眾玩家角色,正在挑戰英偉達的 GPU 市場。順便一題:超微半導體公司現任總裁(兼 AI 策略負責人)為出生於台北的彭明博(Victor Peng);與黃仁勳及蘇姿豐一樣,也是小時候就隨父母親移居到美國。

(註五)

延伸閱讀

  • 熱力學與能源利用」,《科學月刊》,1982 年 3 月號;收集於《我愛科學》(華騰文化有限公司,2017 年 12 月出版),轉載於「嘉義市政府全球資訊網」。
  • 網路安全技術與比特幣」,《科學月刊》,2020 年 11 月號;轉載於「善科教育基金會」的《科技大補帖》專欄。
文章難易度

討論功能關閉中。

賴昭正_96
43 篇文章 ・ 56 位粉絲
成功大學化學工程系學士,芝加哥大學化學物理博士。在芝大時與一群留學生合創「科學月刊」。一直想回國貢獻所學,因此畢業後不久即回清大化學系任教。自認平易近人,但教學嚴謹,因此穫有「賴大刀」之惡名!於1982年時當選爲 清大化學系新一代的年青首任系主任兼所長;但壯志難酬,兩年後即辭職到美留浪。晚期曾回台蓋工廠及創業,均應「水土不服」而鎩羽而歸。正式退休後,除了開始又爲科學月刊寫文章外,全職帶小孫女(半歲起);現已成七歲之小孫女的BFF(2015)。首先接觸到泛科學是因爲科學月刊將我的一篇文章「愛因斯坦的最大的錯誤一宇宙論常數」推薦到泛科學重登。

0

3
4

文字

分享

0
3
4
空虛、寂寞、真的會覺得冷?體溫調節與憂鬱症的關聯──《做個有溫度的人》
時報出版_96
・2022/09/11 ・3423字 ・閱讀時間約 7 分鐘

憂鬱跟冷的聯想

著名的臨床心理師貝克(Aaron Beck)曾寫電子郵件告訴我,他臨床治療的患者常說他們覺得冷。或許沒有人對這點感到意外,畢竟覺得冷與感到憂鬱似乎「很自然」就湊在一起了。然而,這並沒有告訴我們,讓兩者如此明顯相連的生理機制是什麼。

Cat GIF
如果常常覺得冷的話,記得注意保暖,還要注意你的心情哦!圖/GIPHY

1970年,韋克林(Anthony Wakeling)與羅素(Gerald Russell)做了一項研究,探索十一位罹患神經性厭食症的女性患者的體溫調節。

神經性厭食症是一種可能危及生命的飲食障礙,其特徵是自我限制飲食、過激的減肥欲望、非常害怕體重增加(該研究也找來十一位健康的女性作為對照組)。雖然多數的厭食症患者體重過輕,但她們還是認為自己太胖。儘管她們已經吃得很少了,有些人還會催吐或濫用瀉藥。我們知道神經性厭食症可能導致心臟受損、骨質疏鬆症、不孕,或其他與營養不良有關的疾病。

那十一位患者在住院期間於營養不良狀態下接受檢測,隨後又於進食後再次接受檢測;這些測試包括衡量口腔與皮膚的溫度在接受熱刺激與標準膳食之後的反應。

-----廣告,請繼續往下閱讀-----

研究人員發現,這些患者基本上對任何類型的溫度變化都不太敏感。因此,神經性厭食症似乎與體溫調節能力受損有關。臨床證據與體溫控制失調是一致的,患者的四肢冰涼發青,組織與微血管床受損,常喊冷。事實上,一些嚴重營養不良的人會出現體溫過低的現象,甚至可能致命。

研究這些厭食症族群往往很困難,因為大樣本取得不易;樣本小則意味著,目前為止我們的結論大多只是推測。但我們的理論性推論呼應了一個概念:食物攝取是由下視丘的結構所調節的,下視丘也正是調節溫度的地方。

hypothalamus 就是下視丘,主要功能跟人體的恆定有關。圖/wikipedia

以手術破壞下視丘內的核(名稱是腹內側核〔ventromedial nucleus〕)會導致老鼠暴飲暴食及肥胖;老鼠下視丘的極外側部分(即遠離那個核)雙側受損時,會導致老鼠節食,把自己餓死。新的研究已把這些結果延伸應用到其他物種上,例如,山羊與老鼠的研究都顯示,腹內側核涉及食物攝取的調節。

注意,人類大腦中的下視丘很小,所以很難研究。不過,觀察顯示,人類的這個大腦結構出現病變時,可能使人變胖或消瘦。

-----廣告,請繼續往下閱讀-----

前面提過,下視丘的一部分在體溫調節中負責扮演主恆溫器的角色;但我們也提過,下視丘不只是恆溫器而已,它也調節多種基本的代謝流程、睡眠、疲勞、晝夜節律與依附行為。這裡需要再次提醒大家,研究人員必須避免陷入反向推論的陷阱。

下視丘很複雜,一個神經區域不只負責一種行為或機制。我們知道,身體承受熱壓力時,它的視前區是散熱控制部位。食物攝取與體溫調節之間的關聯不是偶然的,兩者都攸關新陳代謝,也都參與身體能量平衡的間接控制。韋克林與羅素研究厭食症患者時,推測食物攝取調節失靈可能與無法調節體溫有關。

早期關於神經性厭食症的病因,理論是強調心理根源,例如童年遭到性侵、在功能失調的家庭成長所造成的情感創傷。一般認為導致神經性厭食症的其他心理因素,還包括焦慮、孤獨、自卑、憂鬱。以文化身體理想意象為基礎的社會原因,在過去也是重要因素。

厭食症發生的原因有很多種也很複雜。圖/Pixabay

厭食症跟憂鬱症的關聯

最近,研究探索了基因因素(這種疾病有很高的遺傳性)以及「下視丘─腦下垂體─腎上腺軸」的過度活躍(導致無法妥善地調節荷爾蒙)。有些人認為厭食症與憂鬱症之間是因果關係,但兩者的關聯其實沒那麼直接。

-----廣告,請繼續往下閱讀-----

早期的憂鬱症理論就像厭食症理論一樣,把憂鬱症視為一種心理失調,但最近的研究是探索身體失調與社交情境的失調。在這方面,醫學與心理學都穩定地朝著一條漫漫長路發展:持續把神經運作視為身體現象,把大腦、神經系統與其他身體組成視為包含在單一生物的整體內。

以前的理論認為,大腦是所有心理疾病的源頭。這類理論雖然還沒被完全推翻,但越來越多人認為,把情緒障礙(尤其是憂鬱症)視為涉及中樞神經系統、周圍神經系統以及所有影響中樞神經系統的身心失調,可能比較正確。這反映了一種仍持續發展的心理健康觀點,不僅源自於大腦,而且源自一個更大、涵蓋更廣的系統,而那個系統會配合實體與社交環境進行調適。

換言之,從身體到中樞神經系統的輸入,在認知與情緒狀態中都扮演關鍵要角。來自周邊的輸入,其中包括溫度感覺訊號,那些訊號可能對幸福感與憂鬱感有很重要的影響。

傳統上,理論是把焦點放在體溫調節的生理面,也就是達成與維持恆定。不過,最近的研究以證據顯示,調節體溫所涉及的神經機制與情緒狀態的關聯,遠比傳統理論所想的更密切。

-----廣告,請繼續往下閱讀-----
溫度的調節對於身體的影響遠比我們想得重要!恆溫動物是這樣,那變溫動物也一樣嗎?圖/envatoelements

溫暖的好處

我們已經看到,接觸實體冷熱與有關社交冷熱的認知及情感行為相關。最近,許多對嚙齒動物做的研究顯示,實體溫暖會刺激血清素的分泌;在大眾文化中,這些神經傳遞物質與產生幸福感、快樂感、甚至欣快感有關。這個觀點確實有些道理,雖然生物化學與生理上的現實複雜得多。

總之,臨床前的嚙齒動物研究顯示,啟動分泌血清素的神經元,身體溫暖後就會產生類似抗憂鬱藥的效果。因此,我們可以推論,溫度感覺通路與掌控情緒的大腦系統會相互作用,無法妥善調節溫度可能與情感疾病(affective disorder)有關。最耐人尋味的是,研究顯示,提供實體溫暖(即啟動溫暖的溫度感覺神經通路)可能有治療情感疾病(包括憂鬱症)的療效。

我們知道,有情感疾病的人,對溫度有不同的感知,對皮膚溫度變化也有不同的反應,他們不見得能調節體溫。有些研究人員甚至認為,膚電傳導程度可能是辨識憂鬱症的特徵。情緒與溫度看似具有許多關聯,不過,根據現有的證據,我認為目前並沒有簡單的生物特徵可以判斷心理症狀。

不管有沒有具體的生物特徵,憂鬱症患者似乎都有調節體溫的問題。這現象呼應了貝克在電子郵件中的臆測:憂鬱症患者對溫度的反應確實變了。

-----廣告,請繼續往下閱讀-----

對無害的溫度刺激產生負面的情緒反應,可能也與憂鬱症有關,因為憂鬱症會弱化一個人對舒適溫暖的感知,但強化一個人對不舒適高溫的感知。研究也顯示,憂鬱症患者比健康的人更少流汗,可見降溫機制運作不良。

2009 年,一項研究綜合分析了三個獨立實驗室的研究結果,總共涉及 279 位憂鬱症患者與 59 位健康的參與者。綜合分析的結果顯示,膚電傳導性較低導致出汗減少,可能是憂鬱症患者自殺風險的一個指標。研究顯示,傳入的熱感應訊號,會刺激血清素合成系統以及與憂鬱有關的大腦區域。這表示,憂鬱症患者的體內降溫機制運轉不良。

熱的調節不良常被發生在憂鬱症換著身上,但這似乎跟前面提到的感到溫暖會有比較正面的感覺有衝突。圖/envatoelements

2007 年的一項研究,檢視了非典型憂鬱與自我安慰行為之間的關係(例如想吃巧克力之類的療癒美食、想洗熱水澡)。

研究結果顯示,社交因素、體溫調節、憂鬱症之間可能有關聯。這些行為是用來對抗皮膚溫度低或社交冷淡嗎?它們可能是為了觸發降溫機制,以降低交感神經與情緒的促發,以及核心體溫嗎?還是這兩種動機都存在呢?

-----廣告,請繼續往下閱讀-----

回想一下前面的實驗:社交排擠導致皮膚溫度降低,但拿著熱飲又減少了社交排擠的負面影響。我相信身體溫暖可以抒解一些憂鬱感,但真正的解方當然複雜得多。那取決於社交環境、溫度,以及你因應這些因素的方式之間的關係。在未來幾年裡,我相信會有新的技術讓我們詳細研究這些關聯。

——本文摘自《做個有溫度的人:溫度如何影響我們的生活、行為、健康與人際關係》,2022 年 9 月,時報出版,未經同意請勿轉載。

時報出版_96
174 篇文章 ・ 35 位粉絲
出版品包括文學、人文社科、商業、生活、科普、漫畫、趨勢、心理勵志等,活躍於書市中,累積出版品五千多種,獲得國內外專家讀者、各種獎項的肯定,打造出無數的暢銷傳奇及和重量級作者,在台灣引爆一波波的閱讀議題及風潮。

0

7
1

文字

分享

0
7
1
真有吃不胖的天選之人?科學家揪出造成肥胖的關鍵基因
羅夏_96
・2021/08/10 ・2742字 ・閱讀時間約 5 分鐘

-----廣告,請繼續往下閱讀-----

你是那種喝水都會胖的人嗎?看著那些不需飲食控制和運動,就能享受美食並且保持好身材的人,是否感到羨慕忌妒恨?近期發表在 Science 上的研究顯示,如果擁有某些基因的變異,就有潛力成為吃不胖的天選之人( Akbari et al., 2021)。

肥胖對健康的隱患

肥胖是一個在全球範圍內不斷增長的巨大健康隱患,根據世界衛生組織的統計,2016 年全球肥胖人數已是 1975 年的近 3 倍;2016 年,18 歲及以上的成年人中,過重者超過 19 億,其中肥胖者超過 6.5 億人。

肥胖的定義為可損害健康的異常或過量脂肪累積,而常用於定義肥胖的指標為身體質量指數 (Body Mass Index, BMI)。根據世界衛生組織的定義,BMI ≧ 25 時為超重、BMI ≧ 30 為肥胖。不過由於 BMI 未必表示不同的個體有相同的肥胖程度,因此常會合併其他標準如腰臀比或其他心血管症風險因子一起評估。

https://upload.wikimedia.org/wikipedia/commons/thumb/6/6f/Obesity_%26_BMI.png/1024px-Obesity_%26_BMI.png
BMI 作為肥胖的指標。圖/維基百科

研究指出,肥胖者罹患心血管疾病、第二型糖尿病、退化性關節炎以及部分癌症的風險較高,也因此肥胖者的預期壽命較短。而全球因肥胖所造成的醫療支出逐年攀升,因此各國政府近年都積極推動減重的相關指引,期望能降低肥胖對醫療與經濟所造成的負擔。

-----廣告,請繼續往下閱讀-----

想對抗肥胖,得先知道是怎麼胖的

肥胖的根本原因,是能量攝取與消耗間的不平衡所導致。簡單來說,就是熱量攝取太多而身體活動太少,這就導致脂肪的過量累積。在高熱量食物取得容易、工作形式轉為久坐與交通便捷的生活形態下,現代人想變胖並不難。雖然大部分人在飲食控制與運動的幫助下,都能有效地控制體重,但一個人是否容易發胖,還有很多因素必須考慮,從環境、生活型態、工作壓力到基因遺傳等都是會影響人發胖的因素。這些因素中,科學家對的基因遺傳更感興趣,因為了解造成肥胖背後的分子機制,就能為治療肥胖提供合適的藥物標靶。

事實上,先前已有不少研究找出與肥胖相關的基因。例如科學家透過研究早發性肥胖症[註1]患者的基因組,就找出有 20 多個基因對 BMI 有影響。另外通過全基因組關聯研究 (Genome-Wide Association Study, GWAS ) [註2] ,也發現了數百個常見的基因變異對 BMI 有一定程度的影響。不過在先前的研究中,其樣本數通常不大,因此找到的基因是否有代表性,或者是否能成為藥物開發的標靶,仍有待商榷。

為了能更好的找出肥胖相關基因,並在其中找到好的藥物標靶,雷傑納榮製藥公司 ( Regeneron Pharmaceuticals ) 與紐約醫學院、杜克大學和賓夕法尼亞大學組成聯合研究團隊,進行了迄今針對肥胖研究規模最大的 GWAS 分析,希望能找到造成肥胖的關鍵基因。

GWAS 揪出肥胖關鍵基因 —— GPR75

研究團隊收集來自墨西哥、美國和英國共 645,626 名受試者的資料,並對其基因組進行定序。通過比較 BMI 的高低與受試者的定序結果,研究人員找出 16 個基因的變異,與 BMI 的影響有著高度關聯。

-----廣告,請繼續往下閱讀-----
研究團隊進行的大規模 GWAS 分析。圖 / 參考資料 1

這 16 個基因中,有 5 個引起研究團隊的興趣。這 5 個基因分別是 CALCRMC4RGIPRGPR151GPR75,因這 5 個基因不僅都是 G 蛋白偶聯受體 (G protein-coupled receptors, GPCRs)[註3],也都在調節食慾和新陳代謝的下視丘中表現,這讓它們非常適合做為治療肥胖的標靶。

研究團隊分析出影響 BMI 的相關基因。圖 / 參考資料 1

在進一步分析後,研究人員將目光放在 GPR75 這個基因上,原因是該基因的功能喪失型變異 ( loss-of-function variant)[註4]與較低的 BMI 之間有著最大的關聯。分析結果顯示,每 3000 人中就有 1 人帶有 GPR75 的變異,而擁有這個變異的「天選之人」似乎天生就不容易發胖,他們的 BMI 比普通人低 1.8、體重比普通人要輕 5.3 公斤、肥胖的機率也比普通人低 54%。

但上面的結果是根據定序分析所得出的,那麼 GPR75 在生理上是否真的對體重有重要影響呢?為此研究團隊用小鼠實驗來驗證。

研究人員將小鼠的 GPR75 基因剔除,模擬出 GPR75 的功能喪失型變異,並以高脂肪飲食餵養基因剔除小鼠與正常小鼠 14 周後,觀察兩者的體重是否會產生差異,而結果令他們相當驚奇。他們發現基因剔除小鼠的體重要比正常小鼠輕 44%,並且擁有更好的血糖控制能力、對胰島素的敏感也更高。基於這些結果,研究團隊認為 GPR75 確實是極具潛力的肥胖治療標靶。

-----廣告,請繼續往下閱讀-----
GPR75 剔除小鼠在經歷 14 周的高脂肪餵食後,體重明顯比正常小鼠輕。圖 / 參考資料 1

雖然研究團隊找出 GPR75 這個基因有治療肥胖的潛力,現在的研究也指出人體內會活化 GPR75 的潛在分子。但遺憾的是,活化 GPR75 並不能達到減肥的目的,抑制 GPR75 才能達到。因此研究團隊的下一步,便是找到能關閉 GPR75 的方法,藉此來觀察是否能有效對抗肥胖。

而在這篇研究發表後,Science 也發表對這篇研究有著高度評價的專文( Yeo & O’Rahilly, 2021),認為這項研究不僅找出造成肥胖背後的新基因,也為治療肥胖的藥物開發以及分子機制提供了新的思路。不過在專文中也指出該研究的不足,例如只用 BMI 做為衡量身體胖瘦以及健康程度的指標並不精確,還需要更多其他因素進行分析。

雖然擁有 GPR75 變異的天選之人並不多,但隨著研究對肥胖有更多的認識,未來或許吃不胖將不再是讓人羨慕忌妒恨的能力,只需一顆小藥丸,人人都能輕鬆達成!不過在那天來臨前,多注意自己的飲食組成,然後規律運動,這才是保持身材和健康的不二法門〜

註釋

  1. 早發性肥胖症:其定義為在十歲前就發生肥胖,且 BMI 較平均高出 3 個標準差以上的患者。能造成這種症狀的疾病有很多,如小胖威利症候群、科恩症候群等。
  2. 全基因組關聯研究:是指在人類全基因組範圍內找出存在的序列變異,並從中篩選出與疾病相關的變異。
  3. G 蛋白偶聯受體:是人體中最大的蛋白質家族,其基因數占了人類基因的 2~3%,擁有 826 個成員。因 GPCRs 在細胞內的訊息傳遞扮演著十分重要的角色,也參與了人體許多的生理活動,因此也成為許多藥物作用的目標。
  4. 功能喪失型變異:是指該基因產生的變異,會讓基因表現不明顯,或者使基因的產物蛋白質失去功能。

參考資料

  1. Akbari P et al. Sequencing of 640,000 exomes identifies GPR75 variants associated with protection from obesity. Science. 2021 Jul 2;373(6550):eabf8683.
  2. 肥胖和超重
  3. 肥胖症
  4. Yeo GSH, O’Rahilly S. Finding genes that control body weight. Science. 2021 Jul 2;373(6550):30-31.
羅夏_96
52 篇文章 ・ 870 位粉絲
同樣的墨跡,每個人都看到不同的意象,也都呈現不同心理狀態。人生也是如此,沒有一人會體驗和看到一樣的事物。因此分享我認為有趣、有價值的科學文章也許能給他人新的靈感和體悟

0

0
0

文字

分享

0
0
0
老鼠見色忘友是先天還是後天的呢?
李紀潔、羅鴻
・2017/11/10 ・2175字 ・閱讀時間約 4 分鐘 ・SR值 535 ・七年級

  • 文/李紀潔、羅鴻|陽明大學基因體科學研究所畢業生

圖中老鼠為示意圖,非實驗老鼠。source:Maxpixel

成年的公鼠都具有與生俱來的社交行為:當遇到母鼠時,他們會嘗試和她交配;如果遇到其他公鼠,他們會攻擊對方。而老鼠們並不需要被教導就能擁有這些先天的行為反應,也因此決大部分的神經科學家都認為這些行為是透過先天的神經迴路,像是硬體般地建立出來的,而沒有什麼變動性。

但是來自加州科技大學的神經科學研究團隊發現了這些行為和負責調控這些行為的神經並非原先就是設定好的。

這項研究發表在 10 月 19 日的 自然<Nature>雜誌上,由 David Anderson(Seymour Benzer Professor of Biology、Tianqiao and Chrissy Chen Institute for Neuroscience Leadership Chair、Howard Huges Medical Institute Investigator 和 director of the Tianqian and Chrissy Chen Institute for Neuroscience)所領導此研究。

我們已知下視丘是調節及釋放賀爾蒙的重要中樞,而其中下視丘腹中核(ventromedial hypothalamus 簡稱 VMH)又負責調控進食、體溫和性行為。並且當下視丘腹中核的神經群缺失雌激素受體(estrogen receptor 1)的話,母鼠的性行為互動(sexual behavior interaction)則會下降。[注1]

-----廣告,請繼續往下閱讀-----

因此,研究團隊在此腦區有雌激素受體的神經細胞裡表現特定的蛋白,當神經活化時則會發出綠色螢光。接著,科學家便能透過小鼠頭上的微型內視顯微鏡(microendoscopy)觀察負責攻擊與交配的腦區,VMH 神經活動的變化。

利用微型內視顯微鏡觀察及紀錄下視丘腹中核裡活化的神經細胞。source:Nature

首先,該團隊先是針對成年公鼠面對同性和異性的入侵者時 VMH 神經活化的情況進行分析,發現負責攻擊和交配時活化的 VHM 神經細胞是幾乎不重複的兩群細胞。而這兩群細胞在空間上並沒有獨立分開,反而像是鹽和胡椒一般混合分佈在 VMH 當中。而研究人員也能夠透過這些神經活化的分群來推斷究竟公鼠現在面對的是同性或是異性的入侵者。這發現似乎也證實了過往科學家認為這些神經迴路的建立是如同硬體一般的天生註定。

成年公鼠在面對異性或同性時會活化下視丘腹中核裡不同的神經細胞群。source:Nature

-----廣告,請繼續往下閱讀-----

但是真的是這樣嗎?

科學家們為了驗證這個假說是否成立,他們更進一步使用尚未社會化的小鼠(Naïve mice),也就是斷乳後就被獨立飼養的老鼠,來進行相同的實驗。若是沒有社交和交配經驗的小鼠也會有不同兩群 VMH 神經負責調控攻擊和交配這兩個行為,便能證實這些行為真的是與天俱來的。

未社會化的小鼠指的是斷乳後就被獨立飼養的老鼠,不會像圖中的小鼠們一樣擠成一團啊。(圖中老鼠為示意圖,非實驗老鼠。)source:Maxpixel

令人吃驚的是,科學家們得到的實驗結果和預想的完全相反!

-----廣告,請繼續往下閱讀-----

未社會化的小鼠在面對同性和異性的小鼠時,活化的 VMH 神經是同一群的神經細胞,而這些小鼠也沒有明顯攻擊和交配的行為發生。只有在重複的接觸公鼠或是母鼠之後,未社會化的小鼠的 VMH 神經活化才會分成不同群細胞,而未社會化的小鼠此時才會開始對不同性別的入侵者有攻擊和交配的行為出現。

未社會化的小鼠會隨著接觸異性或同性而使下視丘腹中核神經細胞產生分群。source:Nature

研究團隊更進一步的去分析,發現未社會化的公鼠能夠分出兩群不同的 VMH 神經細胞和不同行為的主要因素是未社會化的公鼠需要和母鼠有社交經驗。只要未社會化的公鼠和母鼠接觸過 30 分鐘後,他便會在 24 小時後發展出攻擊同性入侵者的行為和不同群的 VMH 神經細胞。相反的,只有和公鼠接觸的未社會化的小鼠並不會發展出攻擊行為和 VMH 神經分群的現象。

未社會化的小鼠在只接觸過母鼠後就會產生對公鼠的攻擊行為。source:Nature

-----廣告,請繼續往下閱讀-----

「小鼠的性別特化神經並不是天生的」本篇文章的共同作者 Ryan Remedios(博士後研究員)指出,「性別神經特化的分群是社交經驗,尤其是和雌性的社交經驗的成果。」

「我們完全無法預期會發現這樣的結果」共同第一作者 Ann Kennedy (博士後研究員)說道「大腦的地基VMH 這個腦區是相對原始且古老的腦區,我們過往一直認為它是大腦的地基(basement ),通常認為它的反應比較像管線系統非電腦(computor)。我們的研究指出這個腦區也有可塑性和運算能力。」

「這是個基礎的神經科學研究」Anderson 說「我們研究的是大腦神經迴路的建構和行為的產生是先天/遺傳(innate)還是後天/經驗(nurture)問題。這些結果證實了即便是我們認為是先天的行為,其神經迴路也有可能是後天才建立好的。這個發現更產生新的問題:為什麼和母鼠的互動能夠改變腦部神經活化的分布,並產生侵略性。」

「事實上負責調控生殖和侵略行為的神經細胞在腦區分佈上是相當接近的,而這在生物學上相當重要,因為這些行為都是能讓個體生存並繁衍的必要條件。」Anderson 補充說明「這同時也造就了新的想法,是否具有性暴力傾向的人是因為他們的這個腦區『神經錯亂』了呢?如果真的如此,那麼也許有天我們能夠透過解開這些功能錯亂的神經來抑制性暴力傾向的行為。當然這目前仍只是空想,以此為出發點的治療仍是條漫漫長路。」

-----廣告,請繼續往下閱讀-----

參考資料

  1. Roles of Estrogen Receptor-α Gene Expression in Reproduction-Related Behaviors in Female Mice”Endocrinology. 1998 Dec;139(12):5070-81.
  2. Social behaviour shapes hypothalamic neural ensemble representations of conspecific sex”Send to
    Nature. 2017 Oct 18;550(7676):388-392. doi: 10.1038/nature23885.
  3. Nature or nurture? Innate social behaviors in the mouse brain
文章難易度
李紀潔、羅鴻
13 篇文章 ・ 3 位粉絲
來自陽明大學基科所的畢業生,喜歡神經科學、遺傳和演化的企鵝狂熱二人組。本來對科普寫作毫無興趣,在大學老師強烈遊說之下仍然無動於衷,畢業後卻意外開始在泛科學寫科普文章。興趣分別是畫畫和魔術方塊。目前兩人都在德國攻讀神經科學博士,分別專攻老化和神經再生、電生理和動物行為。